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Abstract: The underground mine environment is dangerous and harsh, tracking and detecting
humans based on computer vision is of great significance for mine safety monitoring, which will also
greatly facilitate identification of humans using the symmetrical image features of human organs.
However, existing methods have difficulty solving the problems of accurate identification of humans
and background, unstable human appearance characteristics, and humans occluded or lost. For these
reasons, an improved aberrance repressed correlation filter (IARCF) tracker for human tracking in
underground mines based on infrared videos is proposed. Firstly, the preprocess operations of edge
sharpening, contrast adjustment, and denoising are used to enhance the image features of original
videos. Secondly, the response map characteristics of peak shape and peak to side lobe ratio (PSLR)
are analyzed to identify abnormal human locations in each frame, and the method of calculating the
image similarity by generating virtual tracking boxes is used to accurately relocate the human. Finally,
using the value of PSLR and the highest peak point of the response map, the appearance model
is adaptively updated to further improve the robustness of the tracker. Experimental results show
that the average precision and success rate of the IARCF tracker in the five underground scenarios
reach 0.8985 and 0.7183, respectively, and the improvement of human tracking in difficult scenes is
excellent. The IARCF tracker can effectively track underground human targets, especially occluded
humans in complex scenes.

Keywords: computer vision; human tracking; infrared videos; response map; appearance model

1. Introduction

Human safety monitoring based on computer vision technology is of great significance
to the development of informatization and intelligence in modern industries. Human
tracking detection is a necessary prerequisite for realizing personnel identification based
on symmetrical image features of human organs, such as face, iris, and gait [1–4], and
also lays the foundation for the research work in related fields such as personnel indoor
positioning, artificial intelligence, and human activity recognition [5,6]. Human tracking
aims to predict and locate the human’s position in subsequent frames based on the initial
human position in the first frame of the video, so as to estimate the movement track of
the tracked human. After decades of development, human tracking technology has been
widely used in the fields of security surveillance, human-robot interactions, sporting events,
traffic monitoring [7–10], and has made great progress.

Human tracking is one of the important means of locating and detecting personnel
targets in underground mines continuously in video sequences. By tracking the human
whereabouts in real time, it can help to monitor where the person is walking and the
safety of personnel. If a dangerous situation occurs, the safety monitoring system can be
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coordinated in the fastest and most efficient way to issue early warning signals, which
is very important for ensuring personnel’s safety. In addition, human identification us-
ing symmetric biometrics is more direct and convenient than other asymmetric human
biometrics, so it has rapidly developed into a popular personnel identification method.
More importantly, human tracking and detection is a fundamental premise for human
identification based on symmetrical biometrics.

However, environmental characteristics such as complex backgrounds, loud noise,
dust diffusion and poor lighting conditions in underground mines [11–14] make it difficult
for existing methods to obtain robust human tracking results. Specifically: there is much
electrical equipment in underground mines, the space for human activities is narrow,
making it easy for personnel to be blocked or even lost; the interference factors such as
dust particles, fine water mist, and thermal noise of imaging equipment in the environment
often make the underground video images not clear enough, the feature similarity between
human and background is high, and it is difficult for the tracker to accurately distinguish
humans from backgrounds; the underground lighting conditions are limited and the overall
light is dim, which makes the chromaticity of the personnel target insufficient, although
the miner’s lamp on the helmet can play a good role in supplementing the light, due to
its strong local illumination, the global illumination of the human will be uneven and low,
and it is difficult for the tracker to accurately capture the human. The above-mentioned
situations are the main difficulties faced by human tracking in underground mines, which
makes it difficult for the traditional trackers to successfully track underground humans
using visible light videos.

In order to overcome the difficulties caused by the above problems to underground
human tracking, this paper aims to develop a human tracker that is not affected by special
light conditions and physical environment underground, and has high robustness to
complex situations, such as crowding occlusion among humans and occlusion interference
of production equipment. In this respect, this paper proposes an improved aberrance
repressed correlation filter (IARCF) tracker for human tracking in underground mines
based on thermal infrared videos, which has the advantages of simple implementation,
high computational efficiency and timely correction of tracking errors.

Firstly, image preprocessing technologies are used to enhance the image quality of
the infrared human video, so as to better extract the image features of the video frames.
Secondly, according to the morphological characteristics and peak to side lobe ratio (PSLR)
change of the ARCF’s response map, the methods for human abnormal location discrimina-
tion and human relocation are designed to improve the tracking accuracy in each frame.
Finally, in order to optimize the tracker performance, the appearance model is adaptively
updated by the PSLR and the highest peak point value of the response map. The main
contributions of this paper are as follows:

(1) Considering the poor imaging effect caused by dim lighting conditions in under-
ground mines, the infrared video dataset is collected to track the underground hu-
mans, which effectively alleviates the difficulty of human tracking based on visible
light images.

(2) To enhance the image features of infrared human video and improve the tracking
quality of human targets, the preprocessing operations of edge sharpening, contrast
adjustment and noise removal were performed with the infrared video dataset.

(3) To improve the accuracy of human tracking, the morphological characteristics of the
response map are analyzed to determine whether the human positioning is abnormal,
and if an abnormal location occurs, the human is relocated by shifting the tracking
boxes to calculate the image similarity.

2. Related Work

Expanding in chronological order, the development process of target tracking can be
summarized as from the early classical algorithm to the later kernel correlation filtering
algorithm, and then to the deep learning algorithm.
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2.1. Classical Tracking Algorithm

Classical tracking methods are mainly represented by the Kalman filter, particle filter,
edge detection; background subtraction and their improved forms, the researchers have
proposed a variety of related tracking algorithms. For example, Srilekha et al. introduced a
technique for detecting, tracking as well as counting the vehicles, in which background is
updated using the Kalman filter [15]. Chu et al. proposed an innovative method that uses
projected gradient to facilitate multiple-kernel tracking, which is combined with Kalman
filter to form a complete automatic tracking system [16]. Obolensky et al. described a time
varying extension to the Kalman filter for tracking moving objects in images, the proposed
Kalman filter adapts its model at each step to better estimate the movement of the maneu-
vering target [17]. Majumdar et al. attempted to track the human in a cluttered environment
by identifying the human body based on an RGB color model, particle filter tracking, frame
difference, and also detect collisions between multiple humans [18]. Additionally, Ma-
jumdar et al. also proposed an automatic detection of moving objects and initiating the
particle filter algorithm to track the objects [19]. Further to this, Majumdar et al. proposed
a robust human tracking framework combined optical flow and with the particle filter [20].
Beaugendre et al. presented a robust object tracking method based on a particle filter,
and the main feature in which is multi-candidate object detection based on a background
subtraction algorithm combined with color and interaction features [21]. Kaur et al. first
performed background modelling by taking the mean of the first n frames, and then per-
formed human detection using a background subtraction algorithm, finally completing the
tracking using a Kalman filter [22]. Huang et al. presented a computational framework
for robust detection, tracking, and pose estimation of faces captured by video arrays, and
discussed the development of a multi-primitive skin-tone and edge-based detection module
embedded in a tracking module for efficient and robust face detection and tracking [23].

2.2. Correlation Filter Tracking Algorithm

The characteristic of the correlation filtering tracking algorithm is that the fast Fourier
transform method is used in the filtering process, and then the time domain operation is
converted to the frequency domain, which greatly improves the processing speed of the
tracking algorithm. In 2010, Bolme et al. first proposed the minimum mean square error
(minimum output sum of squared error, MOSSE) filter algorithm [24], and opened the era of
correlation filter-based tracking algorithms. In 2012, Henriques et al. proposed a circulant
structure with kernels (CSK) filter algorithm based on MOSSE [25], CSK mainly solved the
problem of sample redundancy caused by sparse sampling in traditional algorithms. In
2014, Henriques et al. proposed the kernelized correlation filters (KCF) tracking algorithm
after improving the CSK [26]. The kernel function is also introduced, and the unique Fourier
space diagonalization property of the circulant matrix can simplify the calculation, thus
greatly improving the processing efficiency and robustness of the algorithm. In the same
year, Danelljan et al. proposed a discriminative scale space tracker (DSST) to overcome the
change problem of target scale during motion [27]. In 2015, in order to solve the problem
of boundary effects, Danelljan et al. proposed the spatially regularized discriminative
correlation filter (SRDCF) [28], the SRDCF algorithm uses spatial regularization to increase
the weight constraint on the filter boundary function, which optimizes the tracking accu-
racy. In 2018, Li et al. introduced temporal regularization into the single-sample SRDCF,
and further proposed the spatial-temporal regularized correlation filters (STRCF) [29],
which effectively solves the problem of boundary effects in the cyclic sampling process of
correlation filtering. In 2019, in order to deal with the problem of increasing background
interference information, due to the expansion of the search area, Huang et al. introduced
a variation suppression in regular terms into the tracking model, and proposed a tracker
named aberrance repressed correlation filter (ARCF) [30]. In 2020, Wang et al. proposed a
novel ARCF tracker by introducing a temporal regularization into ARCF tracker [31], which
can not only make the filter template retain the historical information for filter learning,
but also achieve a long-time and high precision tracking. Besides, according to different
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application requirements, researchers have also carried out different forms of improvement
around these mainstream correlation filter trackers.

2.3. Deep Learning Tracking Algorithm

With the rise of deep learning methods in the field of video image processing, various
target tracking algorithms related to deep networks have also sprung up. Representative
research results include Nam et al. took the lead in proposing a multi-domain learning
network model (MDNet) based on part of the VGG network structure, MDNet convert the
tracking task into a two-classification problem of target and background. Meanwhile, it
also causes the network to be easily interfered by objects with high similarity to the target,
and the processing effect of occlusion is not good enough [32]. In response to this drawback,
Fan et al. proposed a structure-aware network (Sanet) algorithm, Sanet uses a recurrent
neural network (RNN) to model the target structure to improve its robustness [33]. In
addition, Nam et al. also leveraged multiple convolutional neural networks (CNN) to
build a tree-structured CNN (TCNN) tracking algorithm, which helps to achieve multi-
modality and reliability of object appearance [34]. Subsequently, the emergence of fully
convolutional Siamese networks (SiamFC) [35] and Siamese instance search network for
tracking (SINT) [36] introduced Siamese neural networks into the field of object tracking.
With the in-depth development of the Siamese network, the target tracking has been
greatly improved, compared with the previous methods. Further, for the problem of
insufficient target samples and unbalanced positive and negative samples, Song et al.
proposed an adversarial learning target tracking algorithm of visual tracking via adversarial
learning (VITAL) based on MDNet [37]. After that, as new techniques associated with
deep learning continue to emerge, researchers have also developed other forms of object
tracking algorithms.

2.4. Mine Personnel Tracking Algorithms

In terms of human tracking in underground mines, Zhou et al. proposed a tracking
method for scene information fusion to improve the accuracy and robustness of human
tracking in complex lighting environments [38], that is, a new particle filter framework
was designed. Wang et al. proposed the SI-Camshift algorithm based on surf features and
improved Camshift model, the surf feature plays the role of relocating the search window
when the object is lost, the improved Camshift model can obtain better tracking results
without the interference of non-uniform illumination and similar color [39]. Jiang et al.
proposed an improved algorithm based on principal component analysis-scale invariant
feature transform (PCA-SIFT) and Meanshift for the complex and changeable environment
in coal mines [40], it uses the scale invariance of the PCA-SIFT to establish a target tracking
model, and then uses the Meanshift method to track the moving human.

3. ARCF Tracker

The basic principle of the correlation filter is to calculate the similarity of two target
signals through the convolution operation. The higher the response output of the correlation
filter, the higher the similarity of the two target signals. So, the tracking algorithm takes
advantage of this point to track objects. First, the correlation filter is trained according to the
target samples given in the previous frame, and then the response output of the candidate
sub-image region in the subsequent frames is calculated. The candidate sub-image region
with the highest response output is the new position of the tracking target.

Usually, the correlation filter tracking method uses the circulant matrix method to
collect a large number of positive and negative samples to train the correlation filter, and
according to the diagonalizability of circulant matrices, the calculation is converted from
the time domain to the frequency domain to further improve the operation speed. The
mathematical idea of the traditional correlation filter tracker is to find a suitable filter w
by solving the minimum mean square error between the expected output y and the actual
response output. So, the idea of a traditional correlation filter tracker is as follows:
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Given a D-dimensional training sample x and an ideal response map y ∈ RN ,xd ∈
RN(d = 1, 2, · · · , D), D represents the number of sample x collected for correlation filter
training, y is represented by a Gaussian vector. By introducing the regularized least squares
and the kernel function, the traditional tracker model can be trained by

ε(wk) =

∥∥∥∥∥y−
D

∑
d=1

f (xd
k )

∥∥∥∥∥
2

2

+ λ
D

∑
d=1

∥∥∥wd
k

∥∥∥2

2
(1)

where k represents the kth frame in the video, wd ∈ RM represents the correlation filters
trained in the dth channel, λ represents the regularization coefficient to prevent sample
training from overfitting.

However, the traditional correlation filter tracker often suffers from boundary effects
due to the limited search region originating from its periodic shifting of the area near
original object [30]. This can easily cause aberrance tracking, which directly affects the
accuracy of the tracking result. To suppress aberrance tracking during training, the training
objective of the ARCF tracker is optimized according to Equation (2) to minimize the
loss function. The specific form is that the aberrance penalty term is added on the basis
of Equation (1).

ε(wk) =
1
2

∥∥∥∥∥y−
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Bxd
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∥∥∥∥∥
2

2
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2
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+
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(Bxd
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k−1)
[
ψp,q

]
−

D

∑
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Bxd
k ∗ wd

k

∥∥∥∥∥
2

2

(2)

where B ∈ RM×N represents the cropping matrix used to select the center of each channel
xd of the input vectorized sample, k and (k − 1) represent the kth frame and the (k − 1)th
frame in the video respectively, Bxd

k ∗ wd
k represents the response map of the kth frame,

Bxd
k−1 ∗ wd

k−1 represents the response map of the (k − 1)th frame, γ denotes the aberrance
penalty parameter to control the suppression of aberrance tracking, p and q represent the
peak positions of the two response maps in the two-dimensional space respectively,

[
ψp,q

]
represents the shift operation performed to make the two peaks match each other. The
third term on the right side of the Equation (2) is the regularization term used to restrict
the aberrance.

First, as described above, to further improve the computational efficiency, Equation (2)
is converted to the frequency domain space according toε̂(wk, ĝk) =

1
2

∥∥∥∥ŷ−
^
Xk ĝk

∥∥∥∥2

2
+ λ

2 ‖wk‖2
2 +

γ
2

∥∥∥∥M̂s
k−1 −

^
Xk ĝk

∥∥∥∥2

2
s.t. ĝk =

√
N(ID ⊗ FBH)wk

, (3)

where the variable with the superscript ˆ represents the signal that has been Fourier
transformed, ĝk ∈ CDN×1 represents the parameters introduced for further optimization,
M̂s

k−1 represents the discrete Fourier transform of the shifted signal that can be regarded as
a constant signal.

Next, the augmented Lagrangian equation of Equation (3) is iteratively solved with
the alternative direction method of multipliers (ADMM), that is, by converting it into the
form of solving two sub-problems of w∗k+1 and ĝ∗k+1, the correlation filter of (k + 1)th video
frame is calculated. The solution results of w∗k+1 and ĝ∗k+1 are

w∗k+1 = (λ + µN)−1(
√

N(ID ⊗BFH)ξ̂ + µ
√

N(ID ⊗BFH)ĝk) = (
λ

N
+ µ)

−1
(ξ + µgk), (4)

ĝk+1(n)
∗ = γ∗(x̂k(n)ŷ(n) + γx̂k(n)M̂

s
k−1 − ξ̂(n) + µŵk(n))

−γ
x̂k(n)

b (
^
Sxk(n)ŷ(n) + γ

^
Sxk(n)M̂

s
k−1

^
Sξ(n) + µ

^
Swk(n))

(5)
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Subsequently, the Lagrangian parameters are updated by

ξ
(i+1)
k+1 = ξ i

k+1 + µ(ĝ∗(i+1)
k+1 − ŵ∗(i+1)

k+1 ), (6)

where the superscript i and (i + 1) represent the ith and (i + 1)th ADMM optimization
iterations respectively, ĝ∗(i+1)

k+1 represents the solution of ĝ∗k+1 in the (i + 1)th iteration, ŵ∗(i+1)
k+1

represents the solution of w∗k+1 in the (i + 1)th iteration, ŵ∗(i+1)
k+1 = (ID ⊗ FBH)w∗(i+1)

k+1 .
Finally, ARCF updates the appearance model by

x̂M
k+1 = αx̂M

k + βx̂k+1, (7)

where k and k + 1 represent the kth frame and the (k + 1)th frame respectively, α and β
represent the learning rate of the appearance model.

4. Improved ARCF (IARCF) Tracker
4.1. Preprocessing of Infrared Personnel Video

Infrared video mainly relies on the thermal radiation effect of objects for imaging.
Tracking humans based on infrared videos can effectively overcome the influence of non-
uniform lighting conditions in underground mines. However, the infrared video has
shortcomings such as obvious noise, low contrast, blurred edges, etc., which directly affect
the accuracy of human tracking without the complement of color features. Therefore, in
order to improve the visual effect of the infrared human videos in underground mines, this
paper uses preprocessing methods to enhance the image features of infrared video, which
includes un-sharp masking for edge sharpening, edge sensing for local contrast adjustment,
and NL-means for denoising.

As shown in Figure 1, after the original infrared human image is sharpened by the
un-sharp filter operation, the blurred boundary pixels in the image are sharpened. Then,
the local contrast adjustment operator focusing on edge perception further improves the
brightness of the boundary contour in the infrared human image, which helps to identify
the human target and background in the image more clearly. In addition, since the infrared
human video will bring degradation factors during the imaging process, mainly including
thermal noise generated by imaging equipment and environmental noise generated by
underground dust particles, so the NL-means operator is used to denoise at the end, which
can effectively improve the quality of infrared human video images.
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Figure 1. Preprocessing of infrared human video.

4.2. Abnormal Location Identification

For the traditional discriminant correlation filter (DCF) trackers, the important basis
for locating the target in each frame is the maximum confidence of the response map,
that is, the highest peak point Rp of the response map. Ideally, the DCF tracker considers
the position box in the video frame corresponding to Rp as the positioning result of the
tracked target. However, the underground environment is special, the space available for
human activities is limited, and the production equipment is widely distributed. And so,
the human is easily disturbed by the occlusion problem during tracking, including the
occlusion between human and the occlusion between human and other objects.
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As shown in the first column of Figure 2a, if the human is not disturbed by other
similar thermal objects or occlusion during movement, an obvious sharp peak will appear
in the response map, and the confidence at the peak is relatively large. In this case, the red
positioning box at frame #20 corresponding to Rp is basically consistent with the actual
human location. On the contrary, as shown in the second column and third column of
Figure 2a, if the human is disturbed by other similar thermal objects or occlusion during
the movement, multiple peaks will appear in the response map, the confidence at the main
peak is relatively small and the shape of the main peak is blunt. In this case, the main peak
at frame #34 is a pseudo peak, and the red positioning box at frame #34 and frame #70
corresponding to their Rp is basically not consistent with the actual human location.

Symmetry 2022, 14, x FOR PEER REVIEW 7 of 21 
 

 

Unsharp 
Masking

Edge 
Sensing NL-MeansOriginal 

video image
Preprocessed 
video image

 
Figure 1. Preprocessing of infrared human video. 

4.2. Abnormal Location Identification 
For the traditional discriminant correlation filter (DCF) trackers, the important basis 

for locating the target in each frame is the maximum confidence of the response map, that 
is, the highest peak point 

pR  of the response map. Ideally, the DCF tracker considers the 
position box in the video frame corresponding to 

pR  as the positioning result of the 
tracked target. However, the underground environment is special, the space available for 
human activities is limited, and the production equipment is widely distributed. And so, 
the human is easily disturbed by the occlusion problem during tracking, including the 
occlusion between human and the occlusion between human and other objects. 

As shown in the first column of Figure 2a, if the human is not disturbed by other 
similar thermal objects or occlusion during movement, an obvious sharp peak will appear 
in the response map, and the confidence at the peak is relatively large. In this case, the red 
positioning box at frame #20 corresponding to 

pR  is basically consistent with the actual 
human location. On the contrary, as shown in the second column and third column of 
Figure 2a, if the human is disturbed by other similar thermal objects or occlusion during 
the movement, multiple peaks will appear in the response map, the confidence at the main 
peak is relatively small and the shape of the main peak is blunt. In this case, the main peak 
at frame #34 is a pseudo peak, and the red positioning box at frame #34 and frame #70 
corresponding to their 

pR  is basically not consistent with the actual human location. 

   
(a) 

   
(b) 

Figure 2. Human location and response map. (a) Human location result; (b) Peak shape of the re-
sponse map. 

From the above analysis, it can be seen that the traditional method of locating the 
target based on pR  is not completely suitable for tracking underground humans. So, af-
ter testing and analyzing a large number of infrared mine video sequences, we find that 
once the human is disturbed by environmental factors during the tracking, the response 
map of the current frame will be significantly different in PSLR and the peak shapeRs
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From the above analysis, it can be seen that the traditional method of locating the
target based on Rp is not completely suitable for tracking underground humans. So, after
testing and analyzing a large number of infrared mine video sequences, we find that once
the human is disturbed by environmental factors during the tracking, the response map of
the current frame will be significantly different in PSLR and the peak shape Rs compared
with the previous historical frames. The calculation method of PSLR [24] is defined as

PSLR =
m− a

d
, (8)

where m represents the maximum peak of the response map, a and d represent the mean
and standard deviation of all response values, respectively.

It can be seen from Figure 2a that the tracker shows obvious drift at frame #34,
correspondingly, the PSLR value decreased at frame #34 compared with frame #20 in
Figure 2b, besides, the Rs appears multi-peaked and the main peak becomes obviously
thicker at frame #34 and frame #70 compared with frame #20 in Figure 2.

Figure 3 shows the change curve of the PSLR value and its historical average multiplied
by a fixed factor with human tracking sequences corresponding to Figure 2, it can be seen
that PSLR almost drops to the lowest compared with the previous historical frames and is
below the historical average at frame #34. Figure 4 shows the two-dimensional forward
plan of the response map, where the red point is the highest peak Rp, the yellow point is
the second highest peak Rs. Draw horizontal lines l1 and l2 through Rp and Rs respectively,
and record the height difference between them as h. Draw vertical lines l3 and l4 through
the intersection points p1 and p2 obtained from the outermost contour of the main peak Rp
where l2 is located, and record the width difference between them as w. In this paper, Rs is
defined as the ratio of h to w, that is, Rs = h/w. Based on the above discussion, it can be
seen that the larger Rs is, the better the peak shape of the response map is, and the higher
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the positioning accuracy of human tracking is. On the contrary, the smaller Rs is, the worse
the peak shape of the response map is, and the lower the positioning accuracy of human
tracking is. Figure 5 shows the change curve of Rs value with human tracking results in the
video sequence corresponding to Figure 2, similar to Figure 3, the Rs drops to the lowest
value at frame #34 compared with the previous historical frames.
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In summary, the conditions for judging the abnormal human positioning in this paper
are defined as {

Rpk < χ1mean(Rph)
Rsk < T

, (9)
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where Rpk represents the PSLR value of the current frame, χ1 represents the factor, mean(·)
represents the averaging function, Rph represents the historical average of PSLR value
before kth frame, Rsk represents the Rs of the current frame, T represents a fixed threshold.

4.3. Human Relocation

If the two indicators of Rpt and Rst in current frame meets the judgment conditions
for abnormal positioning, it means that the human box Pc in the frame corresponding to
Rp of the current response map is not the actual human location, and a more accurate
human positioning box Ra needs to be relocated in the current frame. Human relocation is
completed based on the Pc through two links of positioning box translation and positioning
box filtering, as shown in Figure 6.
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Combining with the human positioning at frame #34 in Figure 2a, it can be seen that
even if there appears to be abnormal positioning, the location of the positioning box will
not deviate too far from the actual human position, and it is basically located in the vicinity
of the actual human position. Therefore, positioning box translation is to move Pc along the
horizontal and vertical directions with a certain step size, where the horizontal step size
and the vertical step size are consistent with the aspect ratio of Pc, so that a series of virtual
candidate boxes Pv can be generated. In addition, due to the cramped space for human
activities, the dangerous environment, and the complex road conditions in underground
mines, human movement speed is relatively slow, and the changes of human characteristics
between two consecutive frames are very tiny. So, positioning box filtering is to calculate
the similarity between the sub-image Ip of Ra in the previous frame and the sub-image Ic
of Pv in the current frame, and filter out the Ic with the highest similarity with Ip, then Ra
in the current frame can be obtained.

The filtering basis of Ra in this paper is composed of three parts: the histogram cosine
operator Hc, the hash operator Ha, and the Hu moment. Among them, the feature similarity
Sc and Da of Hc and Ha is represented by the similarity value of Ip and Ic respectively, and
the feature similarity Sm of Hu moment is represented by the absolute difference between
the Hu moment features of Ip and Ic.

First, the calculation process of Hc is as follows:

1. Get the grayscale image histograms hp and hc of Ip and Ic;
2. Divide hp and hc into 64 intervals hi

p and hi
c (i = 1, 2, · · · , 64), where hi

p and hi
c contain

four consecutive gray levels;
3. Sum up the four gray levels in hi

p and hi
c, and get the 1 × 64 fingerprint vectors Ip and

Ic of Vp and Vc;
4. Calculate the cosine similarity Sc of Vp and Vc (the smaller Sc, the greater the im-

age similarity).

Then, the calculation process of Ha is as follows:

1. Resize Ip and Ic into 8 × 8 or 32 × 32, and convert them to grayscale images;
2. Calculate Ip and Ic through discrete cosine transform (DCT) compression to obtain It

p
and It

c;
3. Compare the grayscale values of It

p and It
c with the average DCT value, and obtain

the 1 × 64 hash codes Cp and Cc corresponding to Ip and Ic, respectively;
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4. Calculate the Hamming distance Da of Cp and Cc (the smaller the Da, the greater the
image similarity).

Finally, the computational principle of Hu moment [41] is as follows:
For the image f, whose pixel coordinates can be defined as two-dimensional random

variables (x, y), and f can be further expressed as the two-dimensional density function
f (x, y), its (p + q) order geometric moment is defined as

mpq =
A

∑
x=1

B

∑
y=1

xpyq f (x, y), (10)

µpq =
A

∑
x=1

B

∑
y=1

(x− x0)
p(y− y0)

q f (x, y), (11)

where the A and B represent the width and height of the grayscale image respectively,
and x0 and y0 represent the centroid coordinates of the grayscale image respectively. The
normalized center distance is defined as

ηpq = µpq/(µρ
00
), ρ = (p + q)/2 + 1. (12)

Seven invariant moments M1~M7 are formed by the second-order and third-order
normalized central moments to describe the contour of f, which are defined as

M1 = η20 + η02

M2 = (η20 − η02)
2 + 4η2

11

M3 = (η30 − 3η12)
2 + (3η21 − η03)

2

M4 = (η30 + η12)
2 + (η21 + η03)

2

M5 = (η30 − 3η12)(η30 + η12)
(
(η30 + η12)

2 − 3(η21 + η03)
2
)
+ (3η21 − η03)(η21 + η03)

(
3(η30 + η12)

2 − (η21 + η03)
2
)

M6 = (η20 − η02)
[
(η30 + η12)

2 − (η21 + η03)
2
]
+ 4η11(η30 + η12)(η21 + η03)(η21 + η03)

M7 = (3η21 − η03)(η30 + η12)
[
(η30 + η12)

2 − 3(η21 + η03)
2
]
+ (3η21 − η30)(η21 + η03)

[
3(η30 + η12)

2 − (η21 + η03)
2
]

(13)

In this paper, the Sm of Ip and Ic is defined as

Sm = abs(
7

∑
i=1

(Mp
i −Mc

i )), (14)

where Mp
i and Mc

i represent the i-order moment of Ip and Ic, and abs(·) represents the
function to get the absolute value.

To sum up, for each Pv participated in the similarity calculation of the current frame,
a set of feature vectors Qj(j = 1, 2, · · · , N) composed of three elements of Sc, Da, and Sm

will be obtained, that is, Qj =
〈

Sj
c, Dj

a, Sj
m

〉
, N is the number of Pv. In this paper, the Ic

with the smallest sum of Qj is selected as the optimal similar human sub-image, and the
corresponding Pv is the accurate result of human relocation.

4.4. Adaptive Appearance Model Update

For the visual tracking, the establishment and update of the target appearance model
also plays an important role for the tracker performance. Currently, the strategy of linearly
updating the target appearance model via Equation (7) is commonly used. It can be
considered as the superposition result of the original appearance model and the new
appearance model, so that the DCF filters can be updated in real time with the change in
the target appearance characteristics, so as to improve the tracking effect.

Nevertheless, updating the human appearance with Equation (7) is not sufficient for
application in the underground mine. Specifically, Equation (7) updates the appearance
model of each frame, in fact, for different appearance changes, the update requirement
is not the same. For example, when the tracked human is occluded by equipment or
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there is interference by other humans, the tracker does not need to update the appearance
model, otherwise the filter will learn more background-independent information, which
will eventually lead to tracking failure. On the contrary, when the tracked human has
undergone significant morphological changes in the two frames before and after, the tracker
needs to update the appearance model in time to locate the human more accurately.

Figure 7 shows the change curve of Rp and its historical average multiplied by a fixed
factor, with human tracking sequences corresponding to Figure 2. Similarly, it can be seen
that Rp almost drops to its lowest value compared with the previous historical frames and
is below the historical average at frame #34.
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Combined with the above discussion, for the improved ARCF tracker in this paper,
the PSLR and Rp of the response map are used as the reference indicators to update the
appearance model [42]. The calculation method of model update is{

Rpk < χ1mean(Rph)
R f k < χ2mean(R f h)

, (15)

where R f k represents the Rp value of the current frame, χ2 represents a coefficient, R f h

represents the historical average of Rp value before kth frame.
Only when the values of Rpk and R f k satisfy Equation (15) at the same time, is it

considered that the response map conforms to the unimodal characteristic and the model
can be updated by Equation (7), otherwise it will not be updated. Figure 8 shows the
update schematic of the appearance model in this paper.
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In Figure 8, the initial human positioning box represented by x̂1(x̂M
1 ) is known, x̂M

2
consists of x̂1 and the estimated sample x̂2 where the human location in the first frame is
located in the second frame, x̂M

3 consists of x̂1, x̂M
2 and x̂3 where the human location in the
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second frame is located in the third frame. By analogy, it can be inferred that the template
x̂M

k+1 of the (k + 1)th frame consists of x̂1, accumulated positioning sample x̂M
k of the kth

frame, and estimated sample x̂k+1 where the human location in the kth frame is located in
the (k + 1)th frame.

5. Results
5.1. Dataset and Evaluation Indicators

The dataset of infrared human video at underground mine (IHV-UM) used in this
paper was collected from the Shuangma No. 1 Mine of Ningxia Coal Group. It mainly
includes a total of 50 groups of video sequences in multiple scenes such as underground
alleys, fully mechanized faces, working face ends, substations, refuge chambers and elec-
tromechanical rooms, which involve common tracking challenges such as human scale
changes, posture change and occlusion, etc. The specific situation is as follows: IHV-UM
contains eight groups of videos in the alley, eleven groups of videos in the fully mechanized
mining face, nine groups of videos in the substations, twelve groups of videos in the refuge
chamber, and ten groups of videos in the electromechanical chamber. The alley videos are
accompanied by a change of human scale and slight human occlusion, the fully mechanized
mining face videos are accompanied by a change of human posture and severe occlusion,
the substation videos are accompanied by a change of human scale, the refuge chamber
videos are accompanied by a change of human scale and angle changes, the electromechani-
cal chamber videos are accompanied by human occlusion and angle changes. To verify and
analyze the tracking performance of the IARCF tracker with the humans in underground
mines, this paper compares the IARCF with KCF [26], DSST [27], ECO [43], BIT [44] and
ARCF on the IHV-UM dataset.

For the preprocessing of IHV-UM dataset, the three indicators of peak signal-to-noise
ratio (PSNR), mean square error (MSE) and energy of gradient (EOG) were used to evaluate
the dataset quality in terms of noise, contrast and sharpness, whose calculation methods are

PSNR = 10× log10(

L
∑

x=1

W
∑

y=1
(255)2

MSE
), (16)

MSE =
1

L×W

A

∑
x=1

B

∑
y=1

( f (x, y)− g(x, y))2, (17)

EOG =
L

∑
x=1

W

∑
y=1

{
[ f (x + 1, y)− f (x, y)]2 + [ f (x, y + 1)− f (x, y)]2

}
. (18)

where L and W represent the length and width of the image, f (x, y) and g(x, y) represent
the gray value at (x, y) of the original image and the preprocessed image, respectively.

In this paper, two common indicators of precision and success rate are used to evaluate
the human tracking performance of all trackers.

The precision means that the ratio of the frames number in which the difference
between the human position predicted and the actual human position does not exceed a
fixed threshold to the total number of frames. Different thresholds are set to obtain different
ratios, so the precision of the trackers can be described by the change curve. The calculation
method of precision is 

precision =
Nt
∑

i=1

fp
Nt

s.t. fp =

{
0, CLE ≤ Tp
1, CLE ≥ Tp

CLE = Eucl(p1, p2)

, (19)

where fp represents the video frame, Nt represents the total number of frames in the
video, Tp represents the fixed threshold, Eucl(·) represents the Euclidean distance function
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between two points of p1 and p2, p1 and p2 represent the human center position predicted
by the tracker and the actual human center position, respectively.

The success rate means that the ratio of frames number in which the overlapping pixel
area of the human position box predicted, and the actual human position box does not
exceed a fixed threshold to the total number of frames. In the same way, different ratios
can be obtained by setting different thresholds, so the success rate of the tracker can be
described by the change curve. The calculation method of success is

success =

Nt
∑

i=1
fs

Nt

s.t. fs =

{
0, S ≤ Ts
1, S ≥ Ts

S = Area(a∩b)
Area(a∪b)

, (20)

where fs represents the video frame, Nt represents the total number of frames in the video,
Ts represents the fixed threshold, Area(·) represents the pixel area function about personnel
position box, S represents the proportion of Area(·) about the intersection of a and b and
the union of a and b, a and b represent the human position box predicted by the tracker and
the actual human position box, respectively.

5.2. Experimental Parameters

The IARCF tracker in this paper is implemented with Matlab2021a, and the PC
equipped with Intel (R) Core (TM) i5-1035G1 CPU, 4 GB RAM, 64-bit Windows10. In
the experiment, the regularization coefficient λ is set to 0.0001, the aberrance penalty pa-
rameter γ is set to 0.71, the number of ADMM iterations is set to 5, the learning rate α is set
to 0.03, and the learning rate β is set to 0.07, χ1 is set to the range between 0.65–0.87, χ2 is
set to 0.55.

The average EOG of the original IHV-CM dataset is 1.6495607 × 107, after being
preprocessed, the average EOG rise to 2.574393 × 107, and the average PSNR and MSE is
27.7328 and 109.5971, respectively.

5.3. Qualitative Experiments and Discussion

Figure 9 shows the qualitative experimental results of different trackers on the al-
gorithm performance of four video sequences in the IHV-UM dataset. The first video
sequence in Figure 9a contains a total of 360 frames, the human target is interfered with
by a thermal radiation from an object. The second video sequence in Figure 9b contains
a total of 192 frames, the human target is interfered with by human occlusion. The third
video sequence in Figure 9c contains a total of 180 frames, the human target is lightly
interfered with by human occlusion. The fourth video sequence in Figure 9d contains a
total of 187 frames, the human target is interfered with by thermal radiation from an object
and human occlusion.

For the first video sequence, there is a thermal interference source from the shearer
cantilever, the scale of the human target changes from small to large and is accompanied
by posture changes in the latter. ARCF and IARCF can locate the human target accurately
by introducing a regularization term that suppresses aberrance tracking, and IARCF is
little better than ARCF when using the human relocation strategy and adaptive appearance
model update. Although the BIT tracker can more accurately locate the human position in
each frame, the tracking area does not change with the scale of human target. The overall
tracking effect of ECO is good, but when the human has an obvious posture change at
the 360th frame, the tracking result of ECO appears to drift. The tracking effect of KCF
and DSST on the human target is relatively poor; they have shown a certain deviation in
tracking the human target at the 26th frame, and in the subsequent frame sequence, as the
scale of the human target increases. The tracking area has not been extended accordingly,
so the tracking error is more obvious. In addition, it can be seen from the tracking results
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of the 360th frame that when the human pose changes significantly, the localization and
coverage of the human target by the IARCF tracking box is the best among all trackers, it
shows that the IARCF tracker has stronger adaptability than the other trackers in dealing
with sudden abnormal localization of the human.
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For the second video sequence, there is a serious occlusion problem, and the human
posture changes relatively quickly. The six trackers can basically track the human accurately
at the 28th frame, but from the 42nd frame to the 192th frame, the tracking effects of the six
trackers gradually show differences. ARCF and IARCF are relatively stable and accurate,
and the IARCF is better than ARCF. The other four trackers of KCF, ECO, BIT and DSST
show different degrees of tracking errors from the 89th frame because of the difficulty
in identifying the tracked human and other humans, and even mistaking other humans
as the tracked human. In terms of the overall tracking effect, the IARCF tracking box
performs better than other trackers in both the positioning accuracy and the area coverage
accuracy of the tracked human target. This is because the human relocation function of
the IARCF tracker can correct abnormal human positioning in time, and at the same time,
the IARCF tracker can update the appearance model according to the actual demand by
using the adaptive model update strategy, which effectively avoids the accumulation of
tracking errors.

For the third video sequence, the human walks from near to far, and the target scale
changes from large to small, accompanied by angular rotation changes. Since the scene
conditions where the human is located are ideal, the ARCF, IARCF and ECO trackers show
uniform stability and accuracy during the whole process, and the tracking scales of ARCF
and IARCF are more suitable than other trackers. For the DSST, it shows a significant
tracking drift phenomenon during the whole process. Although the other two trackers
of KCF and BIT can locate the human target more accurately, their tracking area is much
larger than the human scale. Since there are few environmental disturbance factors in this
scene, the trackers of ARCF and IARCF that with better tracking performance than other
trackers don’t show obvious difference in visual effect. However, it can be seen from the
details that the IARCF tracking box has a more accurate positioning than ARCF, which
reflects the feasibility of improving ARCF for underground human tracking in this paper,
and thereby, effectively improves the quality of human tracking.

For the fourth video sequence, the human also moves from near to far, and the target
scale changes from large to small correspondingly. The five trackers of ARCF, IARCF,
ECO, BIT and KCF can basically track the human accurately all the time, and in contrast,
the tracking scales of ARCF and IARCF are still more accurate than the trackers of ECO,
BIT and KCF. Similar to the third video sequence, DSST shows a significant tracking drift
phenomenon during the whole process, and its tracking area basically does not change
with the change of human scale. Similarly, the tracking results of IARCF and ARCF are
basically the same as that of the third video sequence. Overall, the tracking effects of IARCF
and ARCF are the best among all trackers, this is because the scene conditions are ideal
and there is no obvious human pose change. But careful observation shows that in terms of
the tracking box, positioning accuracy and coverage accuracy, IARCF still has a tracking
effect that is closer to the actual position of humans than ARCF, which further illustrates
that the location discrimination strategy of IARCF can play a powerful role in enhancing
the human tracking performance.

On the whole, from the above analysis and discussion, it can be seen that for the four
groups of human video sequences in different scenarios, the tracking effect of IARCF is
always better than the other five trackers of KCF, DSST, ECO, BIT and ARCF, which shows
that IARCF has the most excellent tracking performance. Meanwhile, it also confirms
the necessity of considering the human anomaly localization in each frame and adaptive
updating of the human appearance model according to actual needs. Additionally, it can
be seen from Figure 9 that the tracking effect of IARCF in the first two complex scenarios is
better than that in the last two simple scenarios, which also proves that IARCF has stronger
robustness for human tracking in difficult underground scenes.

5.4. Quantitative Experiments and Discussion

Figure 10 shows the quantitative experimental results of different trackers on the
algorithm performance of four video sequences in the IHV-UM dataset, and the two
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indicators of precision and success rate are selected to evaluate first. In order to compare the
tracking performance of different trackers more intuitively, the score when the location error
threshold is 20 pixels is selected as the representative precision value, and it is presented in
the legend of the precision figure, the score of the area under the success rate curve is selected
as the representative success value; it is presented in the legend of the success figure.

Symmetry 2022, 14, x FOR PEER REVIEW 17 of 21 
 

 

#124

   

#187

 
(d) 

 
Figure 9. Comparison of qualitative results with different trackers. (a) The first video sequence; (b) 
The second video sequence; (c) The third video sequence; (d) The fourth video sequence. 

5.4. Quantitative Experiments and Discussion 
Figure 10 shows the quantitative experimental results of different trackers on the al-

gorithm performance of four video sequences in the IHV-UM dataset, and the two indi-
cators of precision and success rate are selected to evaluate first. In order to compare the 
tracking performance of different trackers more intuitively, the score when the location 
error threshold is 20 pixels is selected as the representative precision value, and it is pre-
sented in the legend of the precision figure, the score of the area under the success rate curve 
is selected as the representative success value; it is presented in the legend of the success 
figure. 

  
(a) 

  
(b) 

  
(c) 

Symmetry 2022, 14, x FOR PEER REVIEW 18 of 21 
 

 

  
(d) 

Figure 10. Comparison of quantitative results with different trackers. (a) The first video sequence; 
(b) The second video sequence; (c) The third video sequence; (d) The fourth video sequence. 

For the first video sequence shown in Figure 10a, the IARCF tracker achieves a preci-
sion of 98% and a success rate of 65%, respectively, which is 0.02% and 0.01% higher than 
that of ARCF tracker, and reaches the highest value of all trackers. For the second video 
sequence shown in Figure 10b, the IARCF tracker achieves a precision of 82% and a success 
rate of 66%, respectively, which is 0.08% and 0.04% higher than that of the ARCF tracker, 
and also reaches the highest value of all trackers. For the third video sequence shown in 
Figure 10c, the IARCF tracker achieves a precision of 100% and a success rate of 80%, re-
spectively, which is 0.01% and 0.03% higher than that of the ARCF tracker. Since the scene 
conditions where the human target is located in the video sequence are relatively ideal, 
the three comparison trackers of KCF, BIT, and DSST also reach a precision of 100%, and 
only the IARCF reaches the highest success rate. For the fourth video sequence shown in 
Figure 10d, the IARCF tracker achieves a precision of 77% and a success rate of 52%, respec-
tively, which is 0.03% and 0.02% higher than that of the ARCF tracker, BIT tracker also 
reaches the highest precision of 77%, and still only the IARCF reaches the highest success 
rate. 

For the comprehensive indicator values of precision and success rate for the above four 
video sequences, the IARCF achieves the highest among all trackers. It means that 
IARCF’s tracking results of human targets in underground mines are closer to the actual 
location of human targets, which again proves the effectiveness and feasibility of correct-
ing abnormal human location based on the morphological characteristics of the response 
map. Apart from this, it is shown that the precision and success rate of the IARCF tracker 
are the highest in the third video sequence. This is because the human in the third video 
sequence is less disturbed by other humans and environmental objects, and the human 
appearance is basically stable in terms of angle and posture. In addition, as shown in Sec-
tion 5.1, the human tracking in the second video sequence is the most complicated and 
difficult, and there is serious human occlusion interference. Despite this, IARCF’s im-
provements in the precision and success rate perform best in the second video sequence 
compared to the ARCF tracker, this fully demonstrates that the IARCF tracker has strong 
robustness and adaptability in dealing with the human tracking problems in complex un-
derground scenes. 

Furthermore, to test and evaluate the tracking performance of all trackers on the 
whole IHV-UM dataset, Table 1 shows the global index values for the six trackers under 
five scenarios of alley, fully mechanized face, substation, refuge chamber and electrome-
chanical room. The penultimate column in the table is the average index values under 
each scenario, and the last column is the improvement of IARCF compared to ARCF. 

 
 
 
 

Figure 10. Comparison of quantitative results with different trackers. (a) The first video sequence;
(b) The second video sequence; (c) The third video sequence; (d) The fourth video sequence.



Symmetry 2022, 14, 1750 17 of 20

For the first video sequence shown in Figure 10a, the IARCF tracker achieves a precision
of 98% and a success rate of 65%, respectively, which is 0.02% and 0.01% higher than that of
ARCF tracker, and reaches the highest value of all trackers. For the second video sequence
shown in Figure 10b, the IARCF tracker achieves a precision of 82% and a success rate of
66%, respectively, which is 0.08% and 0.04% higher than that of the ARCF tracker, and also
reaches the highest value of all trackers. For the third video sequence shown in Figure 10c,
the IARCF tracker achieves a precision of 100% and a success rate of 80%, respectively, which
is 0.01% and 0.03% higher than that of the ARCF tracker. Since the scene conditions where
the human target is located in the video sequence are relatively ideal, the three comparison
trackers of KCF, BIT, and DSST also reach a precision of 100%, and only the IARCF reaches
the highest success rate. For the fourth video sequence shown in Figure 10d, the IARCF
tracker achieves a precision of 77% and a success rate of 52%, respectively, which is 0.03% and
0.02% higher than that of the ARCF tracker, BIT tracker also reaches the highest precision of
77%, and still only the IARCF reaches the highest success rate.

For the comprehensive indicator values of precision and success rate for the above four
video sequences, the IARCF achieves the highest among all trackers. It means that IARCF’s
tracking results of human targets in underground mines are closer to the actual location of
human targets, which again proves the effectiveness and feasibility of correcting abnormal
human location based on the morphological characteristics of the response map. Apart
from this, it is shown that the precision and success rate of the IARCF tracker are the highest
in the third video sequence. This is because the human in the third video sequence is
less disturbed by other humans and environmental objects, and the human appearance
is basically stable in terms of angle and posture. In addition, as shown in Section 5.1, the
human tracking in the second video sequence is the most complicated and difficult, and
there is serious human occlusion interference. Despite this, IARCF’s improvements in
the precision and success rate perform best in the second video sequence compared to the
ARCF tracker, this fully demonstrates that the IARCF tracker has strong robustness and
adaptability in dealing with the human tracking problems in complex underground scenes.

Furthermore, to test and evaluate the tracking performance of all trackers on the whole
IHV-UM dataset, Table 1 shows the global index values for the six trackers under five
scenarios of alley, fully mechanized face, substation, refuge chamber and electromechanical
room. The penultimate column in the table is the average index values under each scenario,
and the last column is the improvement of IARCF compared to ARCF.

Table 1. Performance comparison of different tracking algorithms.

Indicators Scenes KCF ECO BIT DSST ARCF IARCF Average Improved

alley 0.9453 0.8515 0.9802 0.4594 0.9124 0.9647 0.8523 0.0523
fully mechanized face 0.3625 0.3178 0.6464 0.6297 0.7028 0.7918 0.5752 0.0890

precision substation 0.6452 0.7235 0.8800 0.3851 0.9255 0.9436 0.7505 0.0181
refuge chamber 0.7984 0.4710 0.5227 0.7838 0.8819 0.9094 0.7279 0.0275

electromechanical room 0.8554 0.4211 0.7339 0.4316 0.8358 0.8829 0.6934 0.0471

alley 0.6124 0.7538 0.6242 0.4778 0.8057 0.8278 0.6836 0.0221
fully mechanized face 0.5878 0.5696 0.5719 0.6255 0.5634 0.6116 0.5883 0.0582

success substation 0.4616 0.5041 0.5321 0.5439 0.6994 0.7325 0.5789 0.0331
refuge chamber 0.4449 0.5805 0.4818 0.7412 0.7298 0.7514 0.6216 0.0216

electromechanical room 0.6284 0.6628 0.5262 0.4202 0.6518 0.6684 0.5930 0.0166

Horizontal observation of the data in the columns of KCF, ECO, BIT, DSST, ARCF,
and IARCF shows that the IARCF tracker has the highest precision and success rate for the
five scenarios, which illustrates that IARCF successfully improves the tracking quality by
introducing a human relocation strategy and adaptive model update mechanism, and its
tracking performance is not affected by the characteristics of underground scenes.

Longitudinal observation of the average data show that for the five tracking scenarios
in the IHV-UM dataset, the tracking performance of alley, substation, refuge chamber and
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electromechanical room is better than that of fully mechanized face. This is because the
spatial environmental conditions of the previous four scenarios is relatively good, and the
human is less disturbed by the background objects. However, what is worth mentioning
more is that from the data in the improved column, it can be seen that the improvement
of the precision and success rates of the fully mechanized face are significantly higher than
that of other scenarios, which indicates that the IARCF tracker in this paper can not only
track humans in complex underground scenes, but is also more suitable for dealing with
situations where humans are heavily occluded.

6. Conclusions

In this paper, an improved ARCF tracker based on thermal infrared videos is proposed
to track the humans in underground mines, which can be embedded in machine vision
systems for human security monitoring and personnel identification based on human
symmetric biometrics. First, the preprocessing method for infrared videos is used to
improve the accuracy of human location. Next, by analyzing the shape of the response
map and the change characteristics of the PSLR, the positioning accuracy of the human
is measured, and the way of relocating humans by calculating the image similarity is
specified. Then, according to the numerical relationship of the highest peak point and the
PSLR between the previous frames and current frame, the adaptive update strategy of the
appearance model is formulated. Finally, the experiments are performed on the IHV-UM
dataset, the results show that the average precision and success rate of the IARCF tracker
in the five underground scenarios reach to 0.8985 and 0.7183 respectively, which is 0.1771,
0.3415, 0.1459, 0.3606, 0.0468 higher than the average precision and 0.1713, 0.1041, 0.1711,
0.1566, 0.0283 higher than the average success rate of the KCF, DSST, ECO, BIT and ARCF
trackers. This proves the effectiveness and feasibility of the IARCF applied to underground
human tracking. In future, the algorithm calculation amount of the relocation link can
be compressed and refined, to further improve the tracking speed without sacrificing the
tracking performance.
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