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Abstract: Symmetry is presented in the frame structure, modeling, and disturbance analysis of the
three-axis inertially stabilized platform (ISP), which affects the control performance of the ISP. To
realize high-performance control for the ISP, a nonlinear dynamic model based on the geographic
coordinates and a compound control method based on the adaptive extended state observer (ESO)
and adaptive back-stepping integral sliding mode control (SMC) are proposed. The nonlinear
dynamic model based on geographic coordinates could avoid the degradation of measurement and
control performance due to complex coordinate transformations. An adaptive ESO (AESO) has been
developed to estimate the unknown disturbances of ISP. With the information from the ISP system, the
adaptive bandwidth of AESO can deal with the peaking phenomenon without introducing excessive
noise. Furthermore, based on the integral sliding mode, the adaptation laws of parameter uncertainty
and disturbance estimation compensation have been developed for the back-stepping integral SMC
method, which can reduce the estimation burden and improve the disturbance estimation accuracy of
AESO. The asymptotic stability of the compound control method has been proven by the Lyapunov
stability theory. Through a series of simulations and experiments, the effectiveness of the compound
method is validated.

Keywords: inertially stabilized platform; nonlinear dynamic model; adaptive extended state observer;
back-stepping integral sliding mode control; disturbances

1. Introduction

The three-axis inertially stabilized platform (ISP) is the middle mechanism between
the remote sensing loads and the aircraft. To realize a high-performance attitude control for
the load line of sight (LOS) in the flight process [1], the ISP is used to isolate the non-ideal
attitude perturbation of the airplane. Therefore, it has become a common key equipment in
aerial remote sensing systems [2].

However, the mechanism of the three-axis ISP is so complex that it is difficult to
achieve high control performance in a real application. Due to the coupling between the
aircraft and the ISP gimbal, the dynamic model has a strong coupling characteristic [3]. At
the same time, a nonlinear mapping relationship exists among the control signals and the
measurement information of high-precision attitude measurement systems, gyroscopes,
and encoders [4]. Furthermore, the dynamic unbalance torque has a strong time-varying
characteristic [5]. Moreover, during the flight process, multiple disturbances for ISP exist,
including the non-ideal angular motion and linear motion interferences generated by
the strong random wind disturbance, the base angular motion disturbances caused by
aircraft engine vibration, the coupling torques and friction interference torques caused by
mechanical and electrical structure imperfections, and the measurement errors of gyros
and accelerometers [6]. The disturbances have asymmetry, non-Gaussian, norm-bounded,
and other complex structural characteristics.
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With its simple structure, PID control methods have been widely proposed for ISP.
However, they have poor anti-interference abilities in a complex environment [7]. Based on
the imprecise model, robust control methods have shown high adaptability to parameter
uncertainty. With the robust control and predictive control method, Rezaei D. Mahdy [8]
achieved a high control performance for ISP. However, it has corresponding conserva-
tive characteristics with the improvement of the system’s robustness. The back-stepping
control method can deal with the system nonlinearity by using a step-by-step recursive
process [9]. Steoodeh [10] developed the back-stepping control to stabilize the LOS of a
boat-board camera. However, the parameters’ uncertainty and disturbances reduce the
control performance [11]. Sliding mode control (SMC) can deal with nonlinear systems with
external disturbances and uncertainty effectively [12,13], and the high-order SMC method
has been proposed for ISP [14,15]. However, the control performance will be deteriorated
largely by the unknown cross coupling and external disturbance [16]. Moreover, there is a
certain chattering phenomenon in SMC [17]. Due to its universal generalization ability, the
neural network control method can suppress the influence of nonlinear disturbances after
enough training [18,19]. However, it is difficult to obtain sufficient sample data in the ISP
work environment. Without offline training, the adaptive neural network control method
combined with the SMC is constructed [20]. However, the upper bound of the residual
approximation error can influence the control performance easily.

An extended state observer (ESO) can consider the system uncertainty and external
disturbances as lumped disturbances, and extend them as the incremental state to be
estimated and compensated directly [21,22]. Yao [23] proposed a compound method based
on the ESO and adaptive control for DC motors. Structural uncertainty can be dealt
with effectively by adaptive control. Furthermore, the ESO is constructed to deal with
unstructural uncertainty. A. H. M. Sayem [24] proposed a compound control method for
servo motor control that is composed by the linear ESO-based model repetitive control
(MRC) method. In order to compensate for the friction of omnidirectional mobile robots
(OMRs), Chao proposed a compound control method based on the SMC and a reduced-
order ESO [25]. However, if the system’s initial state does not match the estimated state of
ESO, increasing the observation bandwidth will bring about the peaking phenomenon [26].
At the same time, the system input delay will have a greater impact on the dynamic tracking
error of the ESO [27].

In this paper, to realize a high-performance control for the three-axis ISP, a compound
control method is proposed, which consists of the adaptive ESO (AESO) and adaptive
back-stepping integral SMC. The main contributions of this paper are listed as:

(1) For the three-axis ISP system, a nonlinear dynamic model based on geographic
coordinates is constructed, which uses the attitudes of the LOS as the criteria of the ISP.
It can avoid the degradation of measurement and control performance due to complex
coordinate transformations.

(2) Based on the adaptive bandwidth, the AESO was developed to estimate the un-
known disturbances of the ISP. With the information from the ISP system, the adaptive
bandwidth of AESO can deal with the peaking phenomenon without introducing exces-
sive noise.

(3) The adaptive back-stepping integral SMC is proposed to handle the ISP system’s
nonlinearity, parameter variations, and disturbances. The adaptation laws based on the
integral sliding mode for parameter uncertainty and disturbance estimation compensation
have been developed, which can reduce the estimation burden and improve the distur-
bance estimation accuracy of AESO. With the introduction of the lumped disturbance
estimation, the chattering problem of SMC has been effectively reduced to improve the
control performance.

The outline of the paper is organized as follows: In Section 2, the dynamic model of
the three-axis ISP is constructed. In Section 3, the compound control method based on the
AESO and the adaptive back-stepping integral SMC is proposed to improve the control
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performance. The effectiveness of the proposed control method is validated by a series of
simulations and experiments in Section 4, followed by the conclusions in Section 5.

2. The Dynamic Model of the Three-Axis ISP

The schematic diagram of the three-axis ISP is shown in Figure 1, which is composed
of the roll gimbal, pitch gimbal, and yaw gimbal. The roll gimbal is located at the outermost
gimbal, fixed on the base by the shock absorbers. The pitch gimbal is adjacent to the
roll gimbal, and the yaw gimbal is located in the innermost gimbal, carrying the remote
sensing load. The frame structure of the ISP is symmetrically distributed from the inside
to the outside, which ensures the stability of the LOS in the mechanical structure. The
high-performance micro-guidance navigation control (MGNC) unit is installed on the
top of the remote sensing load, which has the same base as the remote sensing load.
Therefore, it can sample the pointing accuracy of the LOS of the remote sensing load in the
geographic coordinate system and generate the corresponding control commands to isolate
non-ideal disturbances. In order to achieve a high precision and a fast response control,
the driving mechanisms of ISP are mainly composed of the brushless DC motors and wire
gear drive systems. Based on the commands of the MGNC unit, the remote sensing load is
adjusted correspondingly.
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Figure 1. The schematic diagram of the three-axis ISP system. 
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The coordinates used in the three-axis ISP system are shown in Figure 2. The xb, yb, zb,
xr, yr, zr, xp, yp, zp and xa, ya, za are the base coordinates, roll coordinates, pitch coordinates,
and yaw coordinates, respectively. Moreover, the attitude and angular velocity of the ISP

are defined as θ =
[
θp θr θa

]T and
.
θ =

[ .
θp

.
θr

.
θa

]T
with respect to the base coordi-

nate obtained by the roll-pitch-yaw sequence of rotations. Define B = p, r, a, b as the pitch
coordinates, the roll coordinates, the yaw coordinates, and the base coordinates, respec-

tively;ωB
iB =

[
ωB

iBx ωB
iBy ωB

iBz

]T
as the angular velocity of the B coordinate with respect

to the inertial coordinate expressed in the B coordinate;ωB
tB =

[
ωB

tBx ωB
tBy ωB

tBz

]T
as the

angular velocity of the B coordinate with respect to the geographic coordinate expressed

in the B coordinate; ωt
it =

[
ωt

itx ωt
ity ωt

itz

]T
as the angular velocity of the geographic

coordinate with respect to the inertial coordinate expressed in the geographic coordinate;
CB

t as the transformation matrix from the geographic coordinates to the B coordinates.
Moreover, Cr

b, Cp
r , and Ca

p represent the transformation matrixes from base coordinates
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to roll coordinates, roll coordinates to pitch coordinates, and pitch coordinates to yaw
coordinates, respectively. According to Figure 2, Cr

b, Cp
r , and Ca

p can be expressed as.

Cr
b =

cos θr 0 − sin θr
0 1 0

sin θr 0 cos θr

, Cp
r =

1 0 0
0 cos θp sin θp
0 − sin θp cos θp

, Ca
p =

 cos θa sin θa 0
− sin θa cos θa 0

0 0 1
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Referring to the previous work [20], the dynamic model of the ISP can be defined
as follows:
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Rm

+(NTdm + Tda) + N(N − 1)Jm
.

ω
a
ibz − N2 Jm

.
ω

a
iaz

(1)

[(
Jpx + Jax

)
ω

p
ipx

]′
= −

(
Jpx + Jax

) .
ω

r
irx + Jazωa

iazω
p
ipy

+
(

Jpz + Jaz − Jpy − Jay
)
ω

p
ipyω

p
ipz + NKt

up−Ke N
(

ω
p
ipx−ω

p
ibx

)
Rm

+
(

NTdm + Tdp

)
+ N(N − 1)Jm

.
ω

p
ibx − N2 Jm

.
ω

p
ipx

(2)

[Jryωr
iry + cos θp(Jay + Jpy)ω

p
ipy − sin θp(Jaz + Jpz)ω

p
ipz − sin θp Jazωa

iaz]
′

+(Jrx − Jrz)ωr
irxωr

irz + (Jax + Jpx)ω
p
ipxωr

irz − sin θp(Jay + Jpy)ω
p
ipyωr

irx

− cos θp(Jaz + Jpz)ω
p
ipzωr

irx − cos θp Jazωa
iazωr

irx = NKt
ur−Ke N(ωr

iry−ωr
iby)

Rm

+(NTdm + Tdr) + N(N − 1)Jm
.

ω
r
iby − N2 Jm

.
ω

r
iry

(3)

where ωa
ibz,

.
ω

a
ibz, ω

p
ibx,

.
ω

p
ibx, ωr

iby, and
.

ω
r
iby can be obtained by ωb

ib,
.
ω

b
ib and the trans-

formation matrices Cr
b, Cp

r , and Ca
p. Jp = diag(Jpx, Jpy, Jpz), Jr = diag(Jrx, Jry, Jrz) and

Ja = diag(Jax, Jay, Jaz) are the moment of inertia of pitch, roll, and yaw gimbal in three
directions, respectively, and they are all symmetric matrices. Jm is the moment of inertia
of the motor. Kt is the torque sensitivity. Ke is the back EMF constant. Rm is the motor
resistance. The N is the gear ratio of motor. up, ur, and ua are the voltage inputs applied
on the pitch, roll, and yaw gimbal motor armatures, respectively. Tdp, Tdr, and Tda are the
torque disturbances imposed on the pitch gimbal, roll gimbal, and yaw gimbal, respectively.
Tdm is the torque disturbance imposed on the motor of ISP.

The attitudes of the LOS are the criteria of the ISP system, which are defined in the
geographic coordinates. However, it is obvious that the θ and

.
θ of the ISP of [20] are

measured in the inertial coordinates. The process of converting from inertial coordinates to
geographic coordinates is complicated, which will increase the computational burden of
the MGNC unit and reduce the measurement and control performance. In order to solve
the above problem, a nonlinear dynamic model based on the geographic coordinates is
proposed. The θ and

.
θ of the ISP with respect to geographic coordinates is expressed as



Symmetry 2022, 14, 1848 5 of 21

θ =
[
θ

p
tp θr

tr θa
ta

]T
and

.
θ =

[
ω

p
tpx ωr

try ωa
taz

]T
, and the corresponding values can be

measured by the MGNC unit. The parameters coordinates can be unified:

ωB
iB = CB

t ω
t
it +ω

B
tB, B = p, r, a, b (4)

Sinceωt
it is relatively small.

ωB
iB ≈ωB

tB, B = p, r, a, b (5)

To facilitate the application in practical engineering, based on (1)–(5), the nonlinear
dynamic model of the three-axis ISP based on the geographic coordinates can be obtained
as follows, and the detailed information on the dynamic model is shown in the Appendix A.

.
ω

a
tax = f1(t) + b1u1 + g1d1 = b1u1 + D1 (6)

.
ω

a
tay = f2(t) + b2u2 + g2d2 = b2u2 + D2 (7)

.
ω

a
taz = f3(t) + b3u3 + g3d3 = b3u3 + D3 (8)

where:

f1(t) = −(KtKe N2

J2Rm
+ (s1 −

.
θa) tan θa)ωa

tax + (KtKe N2

J2Rm
tan θa − s1 cos θp)ωa

tay

+
s1 J2 sin θp+Jazω

p
tpy

J2 cos θa
ωa

taz +
KtKe N2ω

p
trx+N(N−1)Rm Jm

.
ω

p
trx

J2Rm cos θa
− s1

cos θa

−
(Jpz−Jpy−Jay)ωr

trz
2 sin θp cos θp+J2(ω

a
tay sin θa)′

J2 cos θa

.
θa sin θp

f2(t) = −(KtKe N2

J3Rm
tan θa + s2 tan θa +

(Jax+Jpx)ωr
trz

J3 cos θp
)ωa

tax − (KtKe N2

J3Rm
+ s2

− (Jax+Jpx)ωr
trz

J3 cos θp
tan θa)ωa

tay +
(KtKe N2+J3Rms2) tan θp+JazRmωr

trx
J3Rm cos θa

ωa
iaz

+
KtKe N2ωr

tby+N(N−1)JmRm
.

ω
r
tby

J3Rm cos θa cos θp
− (KtKe N2

J3Rm
+ s2)

tan θp
cos θa

.
θa

+
(Jay+Jpy) sin2 θp+Jpz cos2 θp−Jrx+Jrz

J3 cos θa cos θp
ωr

trzωr
trx

− [(Jay+Jpy−Jaz−Jpz)ωr
trz cos θp sin θp−sin θp Jaz

.
θa ]′

J3 cos θa cos θp

−
(ωa

tax sin θa cos θp−ωa
taz sin θp+

.
θa sin θp)′+ωa

tay(cos θa cos θp)′

cos θa cos θp

f3(t) =
KtKe N2(ωa

tbz−ωa
taz)

J1Rm
+ N(N−1)Jm

.
ω

a
tbz

J1
, b1 = NKt

J2Rm cos θa
, b2 = NKt

J3Rm cos θa cos θp
, b3 = NKt

J1Rm
,

u1 = up, u2 = ur, u3 = ua, g1 = 1
J2 cos θa

, g2 = 1
J3 cos θa cos θp

, g3 = 1
J1

, d1 = NTdm + Tdp + ∆1,
d2 = NTdm + Tdr + ∆2, d3 = NTdm + Tda + ∆3, ∆i denotes the unknown uncertainties of
fi(t) and di, i = 1, 2, 3, Di = fi(t) + gidi, i = 1, 2, 3 denotes the lumped disturbance, which
contains nonlinearities and various unmodeled disturbances of the ISP system.

3. Control System of the ISP

Since Di, i = 1, 2, 3 are nonlinear and time variant functions, it is difficult to express
them accurately in the actual control system, which will affect the control performance
of the ISP. Therefore, a compound control method based on the AESO and the adaptive
back-stepping integral SMC is proposed. The adaptive back-stepping integral SMC method
is proposed to handle the ISP system nonlinearity, parameter variations, and disturbances.
Furthermore, the sign function is replaced by the lumped disturbance estimation of AESO,
which can reduce the chattering problem and improve the control performance.

Since the pitch, roll, and yaw gimbals have the same control structure, take the roll
gimbal as an example, and let θ = θr, ω = ωa

tay, J = 1/b = 1/b2, u = u2, D = D2, the
control flowchart is shown in Figure 3.



Symmetry 2022, 14, 1848 6 of 21

Symmetry 2022, 14, x FOR PEER REVIEW 6 of 23 
 

 

bx

by ry

rx px ax

py

ay
bz

pz
rzaz

rθ
pθ

rθ

pθ

aθ

aθ

O
rθ

pθ

aθ

 
Figure 2. Coordinates of the three-axis ISP system. 

3. Control System of the ISP 
Since iD , 1,2,3i =  are nonlinear and time variant functions, it is difficult to express 

them accurately in the actual control system, which will affect the control performance of 
the ISP. Therefore, a compound control method based on the AESO and the adaptive back-
stepping integral SMC is proposed. The adaptive back-stepping integral SMC method is 
proposed to handle the ISP system nonlinearity, parameter variations, and disturbances. 
Furthermore, the sign function is replaced by the lumped disturbance estimation of AESO, 
which can reduce the chattering problem and improve the control performance.  

Since the pitch, roll, and yaw gimbals have the same control structure, take the roll 
gimbal as an example, and let rθ θ= , a

tayω ω= , 21/ 1/J b b= = , 2u u= , 2D D= , the con-
trol flowchart is shown in Figure 3. 

Sliding mode ISP

AESO

Back
stepping

Adaptive
KF

Bandwidth
adaptation 

law

-

θ ω

-
- u

θ3x̂

1z 2z1dx 2dx

Parameter 
adaptation law

ESO 
Compensation 

adaptation Law
s

Ĵ
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3.1. The Traditional Linear ESO

For the ISP, let
[
x1 x2 x3

]T
=
[
θ ω D

]T , where xi(t), i = 1, 2, 3 are the state
variables.

Assumption 1. The D(t) and its first derivative
.

D(t) = h(t) are bounded, satisfying |D(t)| ≤ H,
|h(t)| ≤ δh(t).

From (7), the expansion state equation of ISP can be obtained as:
.
x1 = x2.
x2 = bu + x3.
x3 = h

(9)

For the (9), design the linear ESO (LESO).
e1 = x̂1 − x1.
x̂1 = x̂2 − 3ωoe1.
x̂2 = x̂3 + b0u− 3ω2

o e1.
x̂3 = −ω3

o e1

(10)

where x̂1, x̂2 and x̂3 are the estimation value of x1, x2 and x3, e1 is the error between x̂1 and
x1, ωo is the fixed bandwidth of LESO. At the same time, b0 is the estimation value of b.

Based on the (10), we can obtain:

x̂1 =
(3ωos2 + 3ω2

o s + ω3
o)x1 + bsu

s3 + 3ωos2 + 3ω2
o s + ω3

o
(11)

x̂3 =
ω3

o(s2x1 − bu)
s3 + 3ωos2 + 3ω2

o s + ω3
o

(12)

According to (9), one has:

D = x3 =
.
x2 − bu =

..
x1 − bu (13)

Combining (13) and (12), the lumped disturbance observation transfer function can be
defined as follows:

GD(s) =
x̂3

D
=

ω3
o

s3 + 3ωos2 + 3ω2
o s + ω3

o
=

(
ωo

s + ωo

)3
(14)

The frequency response of GD(s) is shown in Figure 4. It can be seen that as the
frequency of the disturbance increases, the estimation of the disturbance by LESO exhibits
obvious phase lag and amplitude attenuation. The decrease in the disturbance estimation
accuracy will result in a decrease in the control performance. Although increasing the obser-



Symmetry 2022, 14, 1848 7 of 21

vation bandwidth ωo can improve the estimation ability of LESO, it will also introduce more
high-frequency noise, which will weaken the system’s resistance to high-frequency noise.
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Moreover, define:

~
x =

[
x̃1 x̃2 x̃3

]
, x̃i(t) = xi(t)− x̂i(t), i = 1, 2, 3 (15)

By subtracting (10) from (9), the error model of the LESO is:

.
x̃1(t) = x̃2(t)− 3ωo x̃1(t).
x̃2(t) = x̃3(t)− 3ω2

o x̃1(t).
x̃3(t) = h(t)−ω3

o x̃1(t)

(16)

According to (16), one has:

x̃3(t) =
.
x̃2(t) + 3ω2

o(t)x̃1(t) (17)

when there are certain errors between the real states x1 and x2 of the system and the
observation states x̂1 and x̂2 of LESO, the disturbance estimation error makes the corre-
sponding increment due to the high observation bandwidth. Therefore, it will cause a great
peaking phenomenon.

3.2. The AESO

To overcome the problem of LESO, we propose an AESO.
e1 = x̂1 − x1.
x̂1 = x̂2 − 3ωAESO(

~
x)e1.

x̂2 = x̂3 + b̂u− 3ω2
AESO(

~
x)e1.

x̂3 = −ω3
AESO(

~
x)e1

(18)

where b̂ is the input gain value estimated by the
.
Ĵ, and

.
Ĵ is the parameter adaptation law to be

synthesized later. ωAESO(
~
x) = ω0 exp(−~

x
T
o δ

~
xo)with

~
xo =

[
x̃1 x̃2

]T, δ =

[
1/δ 0

0 1/(ω2
0δ)

]
,

is the bandwidth of AESO, which is composed by the observation errors of x1 and x2, and
the constant δ > 0 needs to be designed.

Remark 1. The input gain b̂ and observation bandwidthωAESO(
~
x) of AESO are adaptive values,

which are different from LESO. Adaptive variation of b̂ can reduce the estimation burden of
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AESO [28]. In addition, through the data input of the observation errors
~
xo =

[
x̃1 x̃2

]T , the
observation bandwidth ωAESO(

~
x) can deal with the peaking phenomenon, improving the estimation

accuracy of AESO without introducing excessive high-frequency noise. In order to further ensure
the reliability of AESO, define:

ωAESO(
~
x) =

{
ω0 exp(−~

x
T
o δ

~
xo) ωAESO(

~
x) ≥ ωmin

ωmin ωAESO(
~
x) < ωmin

Convergence Proof. Let ζi(t) = (x̃i(t))/(ωi−1
0 ), i = 1, 2, 3, from (16) and (18), one has

.
ζ = ω0 Aζ(ζ)ζ+ Bζ

h(t)
ω2

0
(19)

where ζ = [ζ1 ζ2 ζ3]
T ∈ R3, Aζ(ζ) =

−3 exp(−(ζ2
1 + ζ2

2)/δ) 1 0
−3 exp(−(ζ2

1 + ζ2
2)/δ) 0 1

− exp(−(ζ2
1 + ζ2

2)/δ) 0 0

 and Bζ =

[
0 0 1

]T . �

Theorem 1. For (18), if δ > m2/0.9 (m > 0) andVζ(ζ(0)) ≤ m2/(3ω0), there exist a constant
σi > 0 and a finite time T1 > 0, satisfying

|x̃i(t)| ≤ σi, σi =
8δh(t)

ω4−i
0

, i = 1, 2, 3, ∀t ≥ T1 (20)

Proof. The autonomous system of (19) is:

.
ζ = ω0 Aζ(ζ)ζ (21)

For (21), define the Lyapunov function Vζ(ζ) = (1/ω0)ζ
T P0ζwith AT

0 P0 + P0 A0 = −I3,

where A0 =

−3 1 0
−3 0 1
−1 0 0

 and P0 =

 1 −0.5 −1
−0.5 1 −0.5
−1 −0.5 4

. Then, the
.

Vζ(ζ) is.

.
Vζ(ζ) = ζ

T(Aζ(ζ)
T P0 + P0 Aζ(ζ))ζ (22)

If δ > m2/0.9 and Vζ(ζ(0)) ≤ m2/(3ω0) are achievable, then ‖ζo‖2 ≤ m, ζo =
[
ζ1 ζ2

]
,

Aζ(ζ)
T P0 + P0 Aζ(ζ) < 0, and ζ = 0 of (21) are locally exponentially stable (Theorem 1

of [29]).
Based on the Assumption 1 and the exponential stability of (21), for (19), there exists

an invariant set:

B0 ,

{
ζ ∈ R3: ‖ζ‖2 ≤

2λmax
(

P0Bζ

)
δh(t)

ω3
0

=
8δh(t)

ω3
0

}
(23)

for any ζ /∈ B0 and Vζ(ζ) ≤ m2/(3ω0), we can obtain.

.
Vζ(ζ) = ζ

T
(

Aζ(ζ)
T P0 + P0 Aζ(ζ)

)
ζ+ 2ζT P0Bζ

δh(t)

ω3
0

< 0 (24)
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then, for all t ≥ T1, considering ζi(t) = (x̃i(t))/(ωi−1
0 ), i = 1, 2, 3 and (24), one has

|x̃i(t)| ≤ ωi−1
0 ‖ζ‖2 ≤

8δh(t)

ω4−i
0

= σi (25)

�

3.3. The Compound Control Method Based on the AESO and the Adaptive Back-Stepping
Integral SMC

To facilitate the design of adaptation laws, for (9), we can obtain:{ .
x1 = x2
J

.
x2 = u + DJ

(26)

where J = 1/b, DJ = D/b.

Assumption 2. Define the unknown parameter J ∈ ΩJ , {J ∈ R : Jmin ≤ J ≤ Jmax}, and the
Ĵ = 1/b̂ is the estimation value of J. Moreover, define the lumped disturbance estimation error
ε = DJ − Ĵ x̂3,ε ∈ Ωε , {ε ∈ R : εmin ≤ ε ≤ εmax} and the lumped disturbance estimation
compensation ε̂ is the estimation value of ε.

Let the estimation error J̃ = Ĵ − J, ε̃ = ε̂− ε. Combining Assumption 2, the adaptation

law
.
Ĵ and

.
ε̂, with Jmin ≤ Ĵ(0) ≤ Jmax and εmin ≤ ε̂(0) ≤ εmax, can be defined as [28].

.
Ĵ = Proj Ĵ(τĴ) =


0, i f Ĵ ≥ Jmax and τĴ > 0
0, i f Ĵ ≤ Jmin and τĴ < 0
τĴ otherwise

(27)

.
ε̂ = Projε̂(τε̂) =


0, i f ε̂ ≥ εmax and τε̂ > 0
0, i f ε̂ ≤ εmin and τε̂ < 0
τε̂ otherwise

(28)

where τĴ and τε̂ are the adaptation functions to be synthesized later; for any adaption function,

the projection mapping used in (27) and (28) guarantees Ĵ ∈ Ω Ĵ ,
{

Ĵ ∈ R : Jmin ≤ Ĵ ≤ Jmax
}

,

ε̂ ∈ Ωε̂ , {ε̂ ∈ R : εmin ≤ ε̂ ≤ εmax}.
Define the desired attitude angle x1d, the virtual control law x2d and the state error as:

z1 = x1 − x1d z2 = x2 − x2d (29)

and the derivative of z1 is obtained by:

.
z1 = x2 −

.
x1d (30)

For the virtual control law x2d, define:

x2d = −k1z1 +
.
x1d (31)

where the constant k1 > 0 ∈ R is the virtual control law coefficient.
Define the first Lyapunov function V1 = 1

2 z2
1, then the

.
V1 is.

.
V1 = z1

.
z1 = z1

(
x2 −

.
x1d
)
= z1(x2 − x2d − k1z1) = z1z2 − k1z2

1 (32)

It is obvious that if z2 converges to zero, z1 is asymptotically stable, and x1 can
asymptotically track x1d.

Based on (26) and (29), the differentiation of z2 is.

J
.
z2 = u + DJ − J

.
x2d (33)
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Define the integral sliding surface s as.

s = z2 + k2

∫
z2dτ (34)

where k2 ∈ R is a positive constant. Then, the control law u, the adaptation functions τĴ
and τε̂ can be designed as.

u = u0 − ( Ĵ x̂3 + ε̂) = Ĵ(
.
x2d − k2z2)− kss− ( Ĵ x̂3 + ε̂) (35)

τĴ = −γJs(
.
x2d − k2z2) (36)

τε̂ = γεs (37)

where ks ∈ R is a positive constant, γJ ∈ R and γε ∈ R are the learning rates.

Stability analysis: Define the second Lyapunov function V2 = 1
2 Js2 + 1

2γJ
J̃2 + 1

2γε
ε̃2,

then the
.

V2 is.

.
V2 = Js

.
s + 1

γJ
J̃

.
Ĵ + 1

γε
ε̃

.
ε̂ = s(J

.
z2 + Jk2z2) +

1
γJ

J̃
.
Ĵ + 1

γε
ε̃

.
ε̂

= s(u + DJ − J(
.
x2d − k2z2)) +

1
γJ

J̃
.
Ĵ + 1

γε
ε̃

.
ε̂

(38)

Taking (35)–(37) into (38).

.
V2 = s( Ĵ(

.
x2d − k2z2)− kss− ( Ĵ x̂3 + ε̂) + DJ − J(

.
x2d − k2z2)) +

1
γJ

J̃
.
Ĵ + 1

γε
ε̃

.
ε̂

= s( J̃(
.
x2d − k2z2)− kss− ( Ĵ x̂3 + ε̂) + DJ) +

1
γJ

J̃
.
Ĵ + 1

γε
ε̃

.
ε̂

= s( J̃(
.
x2d − k2z2)− kss− ε̃) + 1

γJ
J̃

.
Ĵ + 1

γε
ε̃

.
ε̂

= −kss2 + J̃(s(
.
x2d − k2z2) +

1
γJ

.
Ĵ) + ε̃(−s + 1

γε

.
ε̂)

= −kss2 ≤ 0

(39)

Then, based on the x2d and u, the sliding surface s = 0 is reachable. Meanwhile, the x1
can track the x1d effectively.

Remark 2. It is obvious that the control law u does not contain symbolic function sgn(s), which can
reduce the chattering problem for the switching action of sgn(s) and decrease the loss of actuators
in the control system. Moreover, the estimation compensation ε̂ in u can improve the estimation
accuracy of AESO.

Remark 3. The projection mapping adaptation law (27) and (28) can guarantee

J̃(s(
.
x2d − k2z2) +

1
γJ

.
Ĵ) ≤ 0 and ε̃(−s + 1

γε

.
ε̂) ≤ 0 , thus guaranteeing

.
V2 ≤ 0 . Since

V2 ≥ 0,
.

V2 ≤ 0 , when t→ ∞ ,V2 is bounded, and it can be shown that Ĵ is bounded. However,
due to

.
V2 = −kss2 , when s = 0 ,

.
V2 = 0 , and V2 is not decreasing, which does not guarantee

J̃ → 0 . However,
.
Ĵ can still reduce the error between the estimation value b̂ and the real input

gain b.

4. Simulations, Experiments and Discussion

The three-axis ISP is shown in Figure 5. Its length, width, and height are 0.33 m,
0.255 m, and 0.115 m, respectively. With the camera, the total weight reaches 13 Kg. Based
on the MGNC unit, ISP can get attitude errors and make corresponding control commands.
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4.1. Simulations

Table 1 shows the parameters of ISP. The battery voltage of the ISP system is 24 V, and
the relationship between the input voltage uvoltage of the ISP and the output value ucontroller

of the controller is uvoltage =
24V
1000 ucontroller.

Table 1. Parameters of the ISP.

Parameter Value Unit

Kt 0.175 Nm/Amp
Ke 0.143 V/rad/s
Rm 4.15 Ohms
Jm 1.4× 10−4 Kg m2

N 106.2 Kg m2

Jp diag(0.20, 0.267, 0.46) Kg m2

Jr diag(0.30, 0.25, 0.71) Kg m2

Ja diag(0.54, 0.453, 0.184) Kg m2

With the analysis of disturbances in the ISP system [30], the corresponding asymmetri-
cal disturbances have been added in simulations.

For the ISP system, the maximum mass imbalance distance is 5 mm, the maximum
weight of the loads is 30 kg, and the amplitude of the wind disturbance is 1.5. Therefore,
the torque disturbance TdL(L = p, r, a) can be obtained as:

TdL = (2× 30× 9.8× 0.005 + 1.5)× (rand(t)− 0.5) (40)

The sliding friction coefficient of the ISP system is µ = 0.1. The weight and the radius
of the motor gear in the ISP system are 0.5 Kg and 0.1 m, respectively, and the amplitude of
the residual periodic vibration disturbances is 0.9. Therefore, the torque disturbance Tdm
can be defined as:

Tdm = (0.1× 0.5× 9.8× 0.1 + 09)× (sin(ωdmt) + sin(2ωdmt)) (41)

where ωdm is the residual vibration frequency.
Moreover, the mean and standard deviation of the measurement noise are 0 and 0.01,

so one has:
dnoise = normrnd(0, 0.01) (42)

In the simulation section, take the roll gimbal as an example, and the simulation time as
10 s. Let x1d = 5◦, the initial ISP system state values x1(0) and x2(0) are −5◦ and −0.15◦/s
respectively, and the initial AESO state values

[
x̂1(0) x̂2(0) x̂3(0)

]T
=
[
0 0 0

]T .
In order to verify the control performance of the proposed method, the following three

control algorithms are selected in the simulation part:
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(1) The proposed method: the control law in (35) with k1 = 20, k2 = 50, ks = 0.1,
ω0 = 50, δ = 0.01, ωmin = 10, b̂(0) = 1.3, ε̂(0) = 0,

[
Jmin Jmax

]
=
[
0.5 1

]
,
[
εmin εmax

]
=[

−300 300
]
, γJ = 2.7× 10−7, γε = 2.5. We test the disturbance estimation performance of

LESO with ωo = 70, b0 = 1.3.
(2) The back-stepping control (BSC): uBSC = −−

.
x2d+k2z2

b0
with k1 = 20, k2 = 50,

b0 = 1.3.
(3) The back-stepping integral sliding mode control (BSSMC): uBSSMC =

−−
.
x2d+k2z2+kss+ηsgn(s)

b0
with k1 = 20, k2 = 50, ks = 0.1, η = 100, b0 = 1.3.

Figure 6 shows the comparison of the attitude angles generated by the three control
methods. When the simulation time reaches 0.3 s, the attitude angles of the three control
methods can all track the desired attitude angles, and there exists a peaking value in the
initial stage of the BSSMC, which reaches 5.1609◦. Compared with the other two control
methods, the proposed control method has the best performance both in terms of response
speed and robustness to disturbances, and the angle velocity of the proposed control
method can reach 50◦/s. In order to intuitively reflect the control performance of the
three control methods, the root mean square error (RMSE), the integral of time-multiplied
absolute-value of error (ITAE), and the maximum deviation of error (MAXE) are used as
the performance indicators of the tracking error.
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Table 2 shows the comparison of the control performances of the three control methods.
It can be seen that the proposed control method has the best control performance under
multiple disturbance environments. Compared with the BS and the BSSMC, the RMSE
value, ITAE value, and MAXE value of the proposed method are improved by at least
48.1%, 51.0%, and 34.6%, respectively.

Table 2. The comparison of the control performances of the three control methods.

RMSE ITAE MAXE

BS 0.0289 0.2204 0.0771
BSSMC 0.0210 0.1693 0.0541

The proposed method 0.0109 0.0831 0.0402
Improvements: BS 62.3% 62.3% 47.8%

Improvements: BSSMC 48.1% 51.0% 34.6%

Figure 7 shows the comparison of the control voltages generated by the three control
methods. Compared with the other two control methods, BSSMC has an obvious chattering
problem, which is very disadvantageous to the actuator of the ISP system. The proposed
control solves the chattering problem, and the peak voltage is only 1/4 of that of the BSSMC,
which will keep the ISP system running longer.
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Figures 8–10 show the simulation results for LESO and AESO. When the simulation
time reaches 0.15 s, the disturbance estimations can track the real disturbance. Compared
with LESO, there is no peaking phenomenon in AESO, and the disturbance estimation
curve is more convergent. The maximum peak of estimation of AESO is only 8.09% of that
of the LESO. In addition, the maximum disturbance estimation error of AESO is only 40%
of that of the LESO. It can be seen from Figure 10 that the bandwidth variation of AESO
guarantees the accuracy of AESO disturbance estimation.
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According to Figure 11, the estimation of input gain b̂ gradually approached the
real input gain b = 1.7569 with the parameter adaptation law Ĵ, and finally b̂ = 1.7652.
Compared with the b0 = 1.3, the parameter uncertainty of b̂ reduced by 98.2%, which
greatly reduced the estimation burden of AESO.
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4.2. Experiments
4.2.1. Case 1: Vehicle Experiment

To validate the control performance of the ISP system under the real disturbance
environment, a vehicle experiment was carried out. The roll gimbal was chosen as an
example, and let x1d = 0◦. In order to verify the control performance of the proposed
method, the adaptive neural network and sliding mode control (ANNSMC) method in [20]
is also used in this part under the same experimental conditions. The parameters of the
proposed method were set to the same as those used in the simulation.

Figure 12 shows the experimental devices of the vehicle experiment. The ISP system
was connected to the vehicle by the transitory bracket. The data logger was used to
record the experimental data. Figures 13–15 show the experimental results in the vehicle
experiment. As can be seen from Figures 13–15, both control methods can ensure the stable
operation of the ISP system in the disturbance environment.

Table 3 shows the comparison of the control performances of the two control methods
in the vehicle experiment. It can be seen that the proposed control method has the best
control performance in the vehicle experiment. Compared with the ANNSMC, the RMSE
value, ITAE value, and MAXE value of the proposed method are improved by 33.4%, 30.0%,
and 51.4%, respectively.
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vehicle experiment.
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Table 3. The comparison of the control performances of the two control methods in the vehicle experiment.

RMSE ITAE MAXE

ANNSMC 0.0939 4.1240 0.5278
The proposed method 0.0625 2.8966 0.2567

Improvements 33.4% 30.0% 51.4%
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Figure 15. The comparison of the disturbance estimations generated by the two control methods of
the vehicle experiment.

4.2.2. Case 2: Unmanned Helicopter Flight Experiment

To test the control performance of the proposed method in actual flight, a series of
airport pavement inspections have been conducted in Tianjin city from August 2020 to
February 2021. The unmanned helicopter inspection system is shown in Figure 16. Due to
the consideration of counterweight, the ISP system was hung by four carbon fiber columns
at the front abdomen of the unmanned helicopter.
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Figure 16. Flight experiment system.

With the consideration of camera index and the task requirement, the flight speed
and flight height of the unmanned helicopter inspection system were set as 8 m/s and 20 m,
respectively. Based on the MGNC system, the ISP adjusted the gimbals to keep the sight axis of

load perpendicular to the ground, and the desired attitude angle θd =
[
θ

p
tpd θr

trd θa
tad

]T
was

set to
[
0◦ 0◦ 90◦

]T. Under the same flight experiment conditions, the same controllers
were chosen as in Case 1. The roll, pitch, and yaw angles of the ISP system generated
by the proposed control method and ANNSMC are shown in Figure 17. Since the wind
speed was 11.2 m/s, there were large wind disturbances in the flight test. The ISP could
isolate non-ideal disturbances effectively to get high performance ground defect photos,
and Table 4 shows the comparison of the control performances of the two control methods
in the flight experiment.

As can be seen from Table 4, compared with the ANNSMC, the RMSE values and ITAE
values of the proposed method are improved by at least 32.3% and 32.9%, respectively.
However, the MAXE value of the roll gimbal of the proposed method is increased by
14.0%. Additionally, the MAXE values of the pitch gimbal and yaw gimbal of the proposed
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method are improved by 0.36% and 36.3%, respectively. Therefore, the proposed method
has strong robustness against disturbances, which can achieve better control performance
than ANNSMC.
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Figure 17. (a) Roll angle, (b) Pitch angle, (c) Yaw angle. The comparison of the attitude angles
generated by the two control methods of the flight experiment.

Table 4. The comparison of the control performances of the two control methods in the flight experiment.

Roll Pitch Yaw

RMSE ITAE MAXE RMSE ITAE MAXE RMSE ITAE MAXE

ANNSMC 0.3121 26.7158 0.8489 0.3909 33.7795 0.9207 0.1126 7.0267 0.8317
The proposed method 0.2049 15.2741 0.9678 0.1479 10.6145 0.9174 0.0762 4.7119 0.5301

Improvements 34.3% 42.8% −14.0% 62.2% 68.6% 0.36% 32.3% 32.9% 36.3%

The inspection photos of the proposed method and ANNSMC are shown in
Figures 18 and 19. Compared with the ANNSMC, the 1 mm crack and 1.5 mm hexagon
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tool could be located in the photo of the proposed method clearly. The ISP system based
on the proposed method could isolate different disturbances effectively to locate airport
pavement diseases.
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5. Conclusions

This paper proposed a nonlinear dynamic model based on the geographic coordi-
nates and a compound control method based on the AESO and adaptive back-stepping
integral SMC for the high-performance control of the three-axis ISP system. The dynamic
model described in this paper can avoid complex coordinate transformation and improve
the measurement and control performance. In the proposed compound control method,
the adaptation laws based on the integral sliding mode for parameter uncertainty and
disturbance estimation compensation are developed, which can improve the disturbance
estimation accuracy of AESO. The chattering problem of SMC has been effectively reduced
by introduction of lumped disturbance estimation. A series of simulation and experimen-
tal results show that the proposed control method can ensure high control precision for
ISP under multiple disturbance environments. In our future work, the robustness of the
proposed method will be discussed under various design parameters.
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Appendix A

Based on (1)–(5), the dynamic model with respect to geographic coordinates is defined
as follows:
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try)+N(N−1)Rm Jm
.

ω
r
tby

J3Rm

+
((Jay+Jpy) sin2 θp+Jpz cos2 θp−Jrx+Jrz)ωr

trzωr
trx

J3

− [(Jay+Jpy−Jaz−Jpz)ωr
trz cos θp sin θp−sin θp Jaz

.
θa ]′

J3
+ NTdm+Tdr

J3
+ NKt

J3Rm
ur

(A3)

where J1 = Jaz + N2 Jm,J2 = Jpx + Jax + N2 Jm,
J3 = Jry + (Jay + Jpy) cos2 θp + (Jaz + Jpz) sin2 θp + N2 Jm.
In the ISP system, each frame is driven by a motor, that is, each frame has only one

degree of freedom, and the pitch and roll angles of the yaw frame are indirectly generated

by the pitch and roll frames, so
.
θ

a
tax = ω

p
tpx and

.
θ

a
tay = ωr

try hold if, and only if, θp = 0
and θa = 0. Since in the actual ISP system, the control target and the measurement datum

are both on the yaw coordinate,
.
θ should become

.
θ =

[
ωa

tax ωa
tay ωa

taz

]T
, so it is also

necessary to transform the formulas (A2) and (A3):

.
ω

a
tax = −(KtKe N2

J2Rm
+ (s1 −

.
θa) tan θa)ωa

tax + (KtKe N2

J2Rm
tan θa − s1 cos θp)ωa

tay

+
s1 J2 sin θp+Jazω

p
tpy

J2 cos θa
ωa

taz +
NKt

J2Rm cos θa
up +

NTdm+Tdp
J2 cos θa

+
KtKe N2ω

p
trx+N(N−1)Rm Jm

.
ω

p
trx

J2Rm cos θa
− s1

cos θa

−
(Jpz−Jpy−Jay)ωr

trz
2 sin θp cos θp+J2(ω

a
tay sin θa)′

J2 cos θa

.
θa sin θp

(A4)

.
ω

a
tay = −(KtKe N2

J3Rm
tan θa + s2 tan θa +

(Jax+Jpx)ωr
trz

J3 cos θp
)ωa

tax − (KtKe N2

J3Rm
+ s2

− (Jax+Jpx)ωr
trz

J3 cos θp
tan θa)ωa

tay +
(KtKe N2+J3Rms2) tan θp+JazRmωr

trx
J3Rm cos θa

ωa
iaz

+ NKt
J3Rm cos θa cos θp

ur +
NTdm+Tdr

J3 cos θa cos θp
+

KtKe N2ωr
tby+N(N−1)JmRm

.
ω

r
tby

J3Rm cos θa cos θp

−(KtKe N2

J3Rm
+ s2)

tan θp
cos θa

.
θa +

(Jay+Jpy) sin2 θp+Jpz cos2 θp−Jrx+Jrz
J3 cos θa cos θp

ωr
trzωr

trx

− [(Jay+Jpy−Jaz−Jpz)ωr
trz cos θp sin θp−sin θp Jaz

.
θa ]′

J3 cos θa cos θp

−
(ωa

tax sin θa cos θp−ωa
iaz sin θp+

.
θa sin θp)′+ωa

tay(cos θa cos θp)′

cos θa cos θp

(A5)
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where s1 =
(Jpz−Jpy−Jay)(2ωr

trz cos 2θp−ωr
try sin 2θp)

2J2
,

s2 =
2Jaz

.
θp+(Jpz−Jay−Jpy)(ωr

trx+2
.
θp)

2J3
sin 2θp.
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