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Abstract: We consider a newly introduced integral operator that depends on an analytic normalized
function and generalizes many other previously studied operators. We find the necessary conditions
that this operator has to meet in order to preserve convex meromorphic functions. We know that
convexity has great impact in the industry, linear and non-linear programming problems, and
optimization. Some lemmas and remarks helping us to obtain complex functions with positive real
parts are also given.
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1. Introduction and Preliminaries

This paper belongs to the so-called “geometric functions theory”, which is perhaps,
the most important field of complex analysis. This theory deals with normalized univalent
functions, p-valent functions, meromorphic functions, meromorphic p-valent functions,
harmonic functions, fractional regular functions, etc. The geometric function theory was
first originated by Riemann in 1850. In 1907, Koebe introduced the concept of univalent
functions in his monograph and a lot of important properties for different new classes of
univalent functions are stated. In 1957, the class of meromorphic functions started to attract
attention due to results from the work of Z. Nehari and E. Netanyahu [1]. Two years later, J.
Clunie came up with a simplified proof in [2]. Some twenty years later, S. S. Miller and P. T.
Mocanu revealed the theory of differential subordinations with the very useful method of
admissible functions, and many authors returned to the study of meromorphic functions,
as we can see from works [3–6]. Nowadays, although the class of meromorphic functions is
not as used as other classes of functions, there are many recent papers that have dealt with
its properties (see [7–10]).

The method of admissible functions, known for simplifying many proofs, is also used
by the authors to prove some lemmas necessary for the results of the paper. These lemmas
help us to obtain complex functions with positive real parts.

In this work, we use the integral operator (defined for the first time in [11]) to obtain
some results regarding the conservation of the class of convex meromorphic functions. We
chose to study the preservation of the class of convex meromorphic functions since convex-
ity is a fundamental concept in mathematics and plays an essential role in optimization,
programming, geometry, statistics, and many other fields.

We consider U = {z ∈ C : |z| < 1} as the unit disc, U̇ = U \ {0} as the punctured unit
disc, H(U) = { f : U → C : f is holomorphic in U}, N = {0, 1, 2, . . .}, and N∗ = N \ {0}.

For p ∈ N∗, we have Σp =
{

g/g(z) =
a−p

zp + a0 + a1z + · · · , z ∈ U̇, a−p 6= 0
}

the
class of meromorphic p-valent functions in U.
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We also use the following notations: ΣKp =

{
g ∈ Σp : Re

[
1 +

zg′′(z)
g′(z)

]
< 0, z ∈ U

}
,

ΣCp =

{
g ∈ Σp : there is ϕ ∈ ΣKp such that Re

[
g′(z)
ϕ′(z)

]
> 0, z ∈ U, and

g
ϕ

∣∣∣
z=0

= 1
}

,

H[a, n] = { f ∈ H(U) : f (z) = a + anzn + an+1zn+1 + . . .} for a ∈ C, n ∈ N∗, An =
{ f ∈ H(U) : f (z) = z + an+1zn+1 + an+2zn+2 + . . .}, n ∈ N∗, and, for n = 1, we denote A1
by A. This set is called the class of analytic functions normalized at the origin.

Since our results will use the “Open Door” function, we now give its defintion:

Definition 1 ([12], p. 46). Let c be a complex number such that Re c > 0, let n be a positive
integer, and let

Cn = Cn(c) =
n

Re c

[
|c|
√

1 +
2Re c

n
+ Im c

]
. (1)

If R(z) is the univalent function defined in U by R(z) =
2Cnz
1− z2 , then the “Open Door” function

is defined by

Rc,n(z) = R

(
z + b

1 + b̄z

)
= 2Cn

(z + b)(1 + b̄z)
(1 + b̄z)2 − (z + b)2 , (2)

where b = R−1(c).

Theorem 1 ([12]). Let p ∈ H[a, n] with Re a > 0. If ψ ∈ Ψn{a}, then

Re ψ(p(z), zp′(z); z) > 0, z ∈ U ⇒ Re p(z) > 0, z ∈ U.

We remember here that a function ψ : C2 ×U → C belongs to the class Ψn{a} (where
n ∈ N∗, a ∈ C, Re a > 0), when we have

Re ψ(ρi, σ; z) ≤ 0, for ρ, σ ∈ R, z ∈ U, with σ ≤ −n
2
· |a− iρ|2

Re a
.

For the results of the present paper, we will use the operator Jp,γ,h, introduced for the
first time in [11].

For p ∈ N∗, γ ∈ C with Re γ > p and h ∈ A, we have

Jp,γ,h : Σp → Σp, Jp,γ,h(g) =
γ− p
hγ(z)

∫ z

0
g(t)hγ−1(t)h′(t)dt. (3)

Theorem 2 ([11]). Let p ∈ N∗, γ ∈ C with Re γ > p and h ∈ A with
h(z)

z
· h′(z) 6= 0. Let

g ∈ Σp with

zg′(z)
g(z)

+
zh′′(z)
h′(z)

+ (γ− 1)
zh′(z)
h(z)

+ 1 ≺ Rγ−p,p(z), z ∈ U. (4)

If G = Jp,γ,h(g) is defined by (3), then G ∈ Σp with zpG(z) 6= 0, z ∈ U, and

Re
[

zG′(z)
G(z)

+ γ
zh′(z)
h(z)

]
> 0, z ∈ U.

All powers in (3) are principal ones.

2. Main Results

First, for p ∈ N∗, γ ∈ C with Re γ > p and h ∈ A with
h(z)

z
· h′(z) 6= 0, we denote by

Σp,γ,h the class of meromorphic functions g ∈ Σp satisfying subordination (4).
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It is clear that for h(z) = z, we have the class Σp,γ,h made of functions g ∈ Σp which
verify the following subordination

zg′(z)
g(z)

+ γ ≺ Rγ−p,p(z), z ∈ U.

Moreover, since Re γ > p, we have g(z) =
1
zp ∈ Σp,γ,h.

Remark 1. Using the fact that, from G = Jp,γ,h(g), we have the equality

γ · G · h′ + h · G′ = (γ− p) · g · h′,

it is easy to verify that for g of the form

g(z) =
a−p

zp + a0 + a1z + · · · , z ∈ U̇, a−p 6= 0,

we have G of the form

G(z) =
a−p

zp + b0 + b1z + · · · , z ∈ U̇.

This means that g
G

∣∣∣
z=0

= 1.

In order to prove the main results of this paper, we need the following lemma and
some of its particular cases.

Lemma 1. Let a ∈ C with Re a > 0 and n ∈ N∗. Let us consider the complex functions

A, B, C, D : U → C,

which verify the conditions:

• Re A(z) > 0, z ∈ U;
• n · Re A(z) + 2Re a · Re B(z) > 0, z ∈ U;
• [n · Im a− Re a · Im C(z)]2 ≤ [nRe A(z) + 2Re a · Re B(z)] · [n|a|2Re A(z) − 2Re a

·Re D(z)].

If p ∈ H[a, n], then

Re
[

A(z)zp′(z) + B(z)p2(z) + C(z)p(z) + D(z)
]
> 0, z ∈ U ⇒ Re p(z) > 0, z ∈ U.

Proof . To prove this result, we use the class of admissible functions. We consider the
function ψ(r, s; z) = A(z)s + B(z)r2 + C(z)r + D(z).

We need to show that Re ψ(ρi, σ; z) ≤ 0, when ρ, σ ∈ R, z ∈ U, with

σ ≤ −n
2
· |a− iρ|2

Re a
.

This means that we have ψ ∈ Ψn{a}.
We have

ψ(ρi, σ; z) = A(z)σ− B(z)ρ2 + C(z)ρi + D(z).

Therefore,

Re ψ(ρi, σ; z) = σ · Re A(z)− ρ2 · Re B(z)− ρ · Im C(z) + Re D(z). (5)
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Since σ ≤ −n
2
· |a− iρ|2

Re a
= − n

2Re a
·
(
|a|2 − 2ρ · Im a + ρ2

)
and Re A(z) > 0, z ∈ U, we

obtain from (5) that
Re ψ(ρi, σ; z) ≤

− n
2Re a

·
(
|a|2 − 2ρ · Im a + ρ2

)
· Re A(z)− ρ2 · Re B(z)− ρ · Im C(z) + Re D(z)

= ρ2
[
− n

2Re a
· Re A(z)− Re B(z)

]
+ ρ
[ n

Re a
· Im a− Im C(z)

]
+Re D(z)− n|a|2

2Re a
·Re A(z).

By using the notations:

• − n
2Re a

· Re A(z)− Re B(z) = α(z);

•
n

Re a
· Im a− Im C(z) = β(z);

• Re D(z)− n|a|2
2Re a

· Re A(z) = γ(z);

we have
Re ψ(ρi, σ; z) ≤ ρ2α(z) + ρβ(z) + γ(z), ρ ∈ R, z ∈ U.

If we consider

∆(z) = β2(z)− 4α(z)γ(z) =
[ n

Re a
· Im a−−IMC(z)

]2
−

4
[
− n

2Re a
· Re A(z)− Re B(z)

][
Re D(z)− n|a|2

2Re a
· Re A(z)

]
=

1
(Re a)2

{
[n · Im a− Re a · Im C(z)]2

−[nRe A(z) + 2Re a · Re B(z)] · [n|a|2Re A(z)− 2Re a · Re D(z)]
}

,

by using the last condition from the hypothesis, we obtain

∆(z) ≤ 0, z ∈ U.

We remark that, from the second condition of the hypothesis, we have α(z) < 0, z ∈ U.
Therefore, the sign of the equation (in ρ)

ρ2α(z) + ρβ(z) + γ(z)

is less than or equal to zero.
Thus, Re ψ(ρi, σ; z) ≤ 0, when ρ, σ ∈ R, z ∈ U, with

σ ≤ −n
2
· |a− iρ|2

Re a
.

This means that we have ψ ∈ Ψn{a}.
From Theorem 1, since ψ ∈ Ψn{a} and Re ψ(p(z), zp′(z); z) > 0, for z ∈ U, we obtain

Re p(z) > 0.

Particular cases of Lemma 1 may be found in different papers that have studied the
admissible functions.

We will consider the following particular cases:

Remark 2. (a > 0, A = B) Let a > 0 and n ∈ N∗. Let us consider the complex functions

A, C, D : U → C,

which verify the conditions:
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• Re A(z) > 0, z ∈ U;
• [a · Im C(z)]2 ≤ (n + 2a)Re A(z) · [n · a2Re A(z)− 2a · Re D(z)].

If p ∈ H[a, n], then

Re
[

A(z)(zp′(z) + p2(z)) + C(z)p(z) + D(z)
]
> 0, z ∈ U ⇒ Re p(z) > 0, z ∈ U.

We will need Remark 2 to prove Theorem 3.

Remark 3. (a > 0, D = 0) Let a > 0 and n ∈ N∗. Let us consider the complex functions

A, B, C : U → C,

which verify the conditions:

• Re A(z) > 0, z ∈ U;
• Re B(z) > 0, z ∈ U;
• [Im C(z)]2 ≤ n · Re A(z) · [nRe A(z) + 2a · Re B(z)].

If p ∈ H[a, n], then

Re
[

A(z)zp′(z) + B(z)p2(z) + C(z)p(z)
]
> 0, z ∈ U ⇒ Re p(z) > 0, z ∈ U.

Remark 4. (a > 0, D = B = 0) Let a > 0 and n ∈ N∗. Let us consider the complex functions
A, C : U → C, which verify the conditions:

• Re A(z) > 0, z ∈ U;
• |Im C(z)| ≤ n · Re A(z).

If p ∈ H[a, n], then

Re
[
A(z)zp′(z) + C(z)p(z)

]
> 0, z ∈ U ⇒ Re p(z) > 0, z ∈ U.

Considering in Remark 4 that C(z) = 1, we have the following result, which is
necessary to prove one of our theorems:

Remark 5. (a > 0, D = B = 0, C = 1) Let a > 0 and n ∈ N∗. Let us consider the complex
function A : U → C, with Re A(z) > 0, z ∈ U. If p ∈ H[a, n], then

Re
[
A(z)zp′(z) + p(z)

]
> 0, z ∈ U ⇒ Re p(z) > 0, z ∈ U.

Remark 6. For p ∈ N∗, γ ∈ C with Re γ > p, h ∈ A with
h(z)

z
· h′(z) 6= 0, z ∈ U, we will

consider some new functions defined as:

H(z) =
h(z)
h′(z)

,

P(z) = −1− zG′′(z)
G′(z)

, where G = Jp,γ,h(g), g ∈ Σp,γ,h,

Q(z) = zγ + zH′ − H(P + 1).
For Q with Q(z) 6= 0, z ∈ U, let be:

A(z) =
H(z)
Q(z)

,

C(z) =
zγ + 2zH′(z)− 2H(z)

Q(z)
,

D(z) =
zH′(z)− z2H′′(z)− H(z)

Q(z)
.

Theorem 3. Let p ∈ N∗, γ ∈ C with Re γ > p and h ∈ A with
h(z)

z
· h′(z) 6= 0.
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Additionally, let g ∈ Σp,γ,h and G = Jp,γ,h(g), with zp+1G′(z) 6= 0, z ∈ U.
We consider the functions A, C, D : U → C, defined as above, satisfying the conditions:{

Re A(z) > 0, z ∈ U
p[Im C(z)]2 ≤ (3p + 1)Re A(z) · [p(p + 1)Re A(z)− 2 · Re D(z)].

If g ∈ ΣKp, then G ∈ ΣKp with zpG(z) 6= 0, z ∈ U and

Re
[

zG′(z)
G(z)

+ γ
zh′(z)
h(z)

]
> 0, z ∈ U.

Proof . Since the hypothesis of Theorem 2 is fulfilled, we have G ∈ Σp with zpG(z) 6=
0, z ∈ U, and

Re
[

zG′(z)
G(z)

+ γ
zh′(z)
h(z)

]
> 0, z ∈ U.

Since G ∈ Σp and zp+1G′(z) 6= 0, z ∈ U, we have P ∈ H[p, p + 1].

We want to prove now that we have Re
(
−1− zG′′

G′

)
> 0, z ∈ U, meaning that

Re P(z) > 0, z ∈ U.

From P = −1− zG′′

G′
we obtain

zG′′ = −G′(P + 1), z2G′′′ = G′[(P + 1)(P + 2)− zP′]. (6)

On the other hand, from G = Jp,γ,h(g) =
γ− p
hγ(z)

∫ z

0
g(t)hγ−1(t)h′(t)dt, we have

γG + HG′ = (γ− p)g.

Therefore,

γG′ + H′G′ + HG′′ = (γ− p)g′ ⇒ zγG′ + zH′G′ + zHG′′ = z(γ− p)g′

and, from (6), we obtain

zγG′ + zH′G′ − HG′(P + 1) = z(γ− p)g′. (7)

From γG′ + H′G′ + HG′′ = (γ− p)g′ we have

γG′′ + H′′G′ + 2H′G′′ + HG′′′ = (γ− p)g′′ ⇒

z2γG′′ + z2H′′G′ + 2z2H′G′′ + z2HG′′′ = z2(γ− p)g′′

and, from (6), we obtain

−zγG′(P+ 1)+ z2H′′G′− 2zH′G′(P+ 1)+ HG′[(P+ 1)(P+ 2)− zP′] = z2(γ− p)g′′. (8)

Next, we divide (8) by (7), and we obtain

zg′′

g′
=
−zγ(P + 1) + z2H′′ − 2zH′(P + 1) + H[(P + 1)(P + 2)− zP′]

zγ + zH′ − H(P + 1)
,

so

−1− zg′′

g′
= −1− −zγ(P + 1) + z2H′′ − 2zH′(P + 1) + H[(P + 1)(P + 2)− zP′]

zγ + zH′ − H(P + 1)
(9)
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=
zP′H + P2H + (γz + 2zH′ − 2H)P + zH′ − z2H′′ − H

Q(z)

= A(z)(zP′ + P2) + C(z)P + D(z).

Therefore, we have

−1− zg′′

g′
= A(z)zP′ + A(z)P2 + C(z)P + D(z), z ∈ U. (10)

By using the fact that g ∈ ΣKp, which is equivalent to Re
(
−1− zg′′

g′

)
> 0, we obtain

from (10) that
Re
(

A(z)zP′ + A(z)P2 + C(z)P + D(z)
)
> 0, z ∈ U.

Since we have P ∈ H[p, p = 1], we see that the conditions from the hypothesis of Remark 2
are verified for a = p and n = p + 1.

Using now Remark 2, we obtain from

Re
(

A(z)zP′ + A(z)P2 + C(z)P + D(z)
)
> 0, z ∈ U,

that Re P(z) > 0, z ∈ U.

Since P = −1− zG′′

G′
we obtain G ∈ ΣKp with zpG(z) 6= 0, z ∈ U and

Re
[

zG′(z)
G(z)

+ γ
zh′(z)
h(z)

]
> 0, z ∈ U,

which means that the proof of the theorem is complete.

Before continuing with some corollaries of Theorem 3, we will show that the conditions
given in the hypothesis of the theorem are met for some particular cases. Taking h(z) = z,

γ ∈ R with γ > p and g(z) =
1
zp we have

H(z) = z, Q(z) = z(γ− p), A(z) =
1

γ− p
, C(z) =

γ

γ− p
, D(z) = 0.

This means that:

Re A(z) > 0⇔ γ > p (true),

p[Im C(z)]2 ≤ (3p + 1)Re A(z) · [p(p + 1)Re A(z)− 2 · Re D(z)]

⇔ 0 ≤ (3p + 1)p(p + 1)
(γ− p)2 (true).

Moreover, if we consider in Theorem 3 only that h(z) = z, we have Jp,γ,h = Jp,γ,
(introduced in [13]),

zh′(z)
h(z)

= 1, H(z) = z, Q(z) = zγ− zP,

A(z) =
H(z)
Q(z)

=
1

γ− P
, C(z) =

γ

γ− P
= γ · A(z), D(z) = 0

and
zh′′(z)
h′(z)

+ (γ− 1)
zh′(z)
h(z)

+ 1 = γ.
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It is obvious that we have Re A(z) > 0⇔ Re P(z) < Re γ and

[Im C(z)]2 ≤ (3p + 1)(p + 1)[Re A(z)]2 ⇔ |Im γP| ≤
√
(3p + 1)(p + 1)Re (γ− P).

Thus, we obtain:

Corollary 1. Let p ∈ N∗, γ ∈ C with Re γ > p, g ∈ Σp and G = Jp,γ(g) with

zp+1G′(z) 6= 0, z ∈ U.

We denote by P the function P(z) = −1− zG′′(z)
G′(z)

, z ∈ U.

Suppose that Re P(z) < Re γ, z ∈ U, and |Im γP| ≤ Re (γ− P).
If g ∈ ΣKp, such that

zg′(z)
g(z)

+ γ ≺ Rγ−p,p(z), z ∈ U, (11)

then G ∈ ΣKp with zpG(z) 6= 0, z ∈ U and

Re
[

zG′(z)
G(z)

+ γ

]
> 0, z ∈ U.

If we consider in Theorem 3 that h ∈ A satisfies the equality zγ + 2zH′ − 2H = 0,

where H =
h
h′

, we obtain:

C(z) = 0, D(z) = 0, Q(z) =
zγ

2
− HP,

so we may consider the next corollary:

Corollary 2. Let p ∈ N∗, γ ∈ C with Re γ > p and h ∈ A with

h(z)
z
· h′(z) 6= 0, z ∈ U, and zγ + 2zH′ − 2H = 0, where H =

h
h′

.

Let g ∈ Σp,γ,h and G = Jp,γ,h(g), with zp+1G′(z) 6= 0, z ∈ U. We denote by P the function

P(z) = −1− zG′′(z)
G′(z)

. Suppose that Re P(z) < Re
zγh′

2h
, z ∈ U.

If g ∈ ΣKp, then G ∈ ΣKp with zpG(z) 6= 0, z ∈ U and

Re
[

zG′(z)
G(z)

+ γ
zh′(z)
h(z)

]
> 0, z ∈ U.

In order to prove the next theorem, we need the following lemma:

Lemma 2. Let p ∈ H[a, n], where n ∈ N∗, a ∈ C with Re a > 0.
We have

Re
[

zp′(z)
p(z)

− 1
p(z)

]
> 0, z ∈ U ⇒ Re p(z) > 0, z ∈ U.

Proof . To prove this result, we use the class of admissible functions. We consider the

function ψ(r, s, t; z) =
s− 1

r
.
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We need to show that Re ψ(ρi, σ, µ + iν; z) ≤ 0, when ρ, σ, µ, ν ∈ R, z ∈ U, with

σ ≤ −n
2
· |a− iρ|2

Re a
, σ + µ ≤ 0.

We have

ψ(ρi, σ, µ + iν; z) =
σ− 1

iρ
=

(1− σ)i
ρ

.

Therefore,

Re ψ(ρi, σ, µ + iν; z) = Re
[
(1− σ)i

ρ

]
= 0,

for ρ ∈ R∗, σ ≤ −n
2
· |a− iρ|2

Re a
.

Thus, Re ψ(ρi, σ, µ + iν; z) ≤ 0, when ρ, σ, µ, ν ∈ R, z ∈ U, with

σ ≤ −n
2
· |a− iρ|2

Re a
, σ + µ ≤ 0.

This means that we have ψ ∈ Ψn{a}.
From Theorem 1, since ψ ∈ Ψn{a} and Re ψ(p(z), zp′(z), z2 p′′(z); z) > 0, for z ∈ U,

we obtain Re p(z) > 0.

For p ∈ N∗, γ ∈ C with Re γ > p and h ∈ A with
h(z)

z
· h′(z) 6= 0, let us define the

classes:
ΣKp,γ,h = ΣKp ∩ Σp,γ,h,

ΣCp,γ,h =

{
g ∈ Σp,γ,h/(∃)ϕ ∈ ΣKp,γ,h such that Re

g′

ϕ′
> 0, z ∈ U, and

g
ϕ

∣∣∣
z=0

= 1
}

.

Remark 7. Taking Remark 1 into account, it is not difficult to see that if we have g ∈ ΣCp,γ,h, then

Jp,γ,h(g)
Jp,γ,h(ϕ)

∣∣∣
z=0

= 1.

Theorem 4. Let p ∈ N∗, γ ∈ C with Re γ > p and h ∈ A with
h(z)

z
· h′(z) 6= 0, such that

Re
γz · h′(z)

h(z)
< 0, z ∈ U.

If Jp,γ,h

(
ΣKp,γ,h

)
⊂ ΣKp, then Jp,γ,h

(
ΣCp,γ,h

)
⊂ ΣCp.

Proof . Let g ∈ ΣCp,γ,h ⊂ Σp,γ,h and G = Jp,γ,h(g). Since the hypothesis of Theorem 2 is
fulfilled, we have G ∈ Σp with zpG(z) 6= 0, z ∈ U, and

Re
[

zG′(z)
G(z)

+ γ
zh′(z)
h(z)

]
> 0, z ∈ U.

From G = Jp,γ,h(g), we have γG + HG′ = (γ− p)g, where H(z) =
h(z)
h′(z)

. Therefore,

γG′ + H′G′ + HG′′ = (γ− p)g′. (12)
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Because g ∈ ΣCp,γ,h, we have from the definition of the class that there is a function
ϕ ∈∈ ΣKp,γ,h such that

Re
g′

ϕ′
> 0, z ∈ U, and

g
ϕ

∣∣∣
z=0

= 1. (13)

Since ϕ ∈∈ ΣKp,γ,h ⊂ Σp,γ,h, the hypothesis of Theorem 2 is fulfilled, so we have
Φ = Jp,γ,h(ϕ) ∈ Σp with zpΦ(z) 6= 0, z ∈ U, and

Re
[

zΦ′(z)
Φ(z)

+ γ
zh′(z)
h(z)

]
> 0, z ∈ U.

From Φ = Jp,γ,h(ϕ) we have γΦ + HΦ′ = (γ− p)ϕ. Therefore,

γΦ′ + H′Φ′ + HΦ′′ = (γ− p)ϕ′. (14)

Because we have in the hypothesis of our theorem Jp,γ,h

(
ΣKp,γ,h

)
⊂ ΣKp, we obtain that

Φ = Jp,γ,h(ϕ) ∈ ΣKp.

Let us denote P(z) =
G′(z)
Φ′(z)

, z ∈ U. First of all, we show that we have P ∈ H[1, p + 1].

It is not difficult to see, due to Remark 1, that

g
G

∣∣∣
z=0

= 1,
ϕ

Φ

∣∣∣
z=0

= 1

and, since
g
ϕ

∣∣∣
z=0

= 1, we obtain that
G
Φ

∣∣∣
z=0

= 1.

Using now the fact that G, Φ ∈ Σp, after a little computation, we obtain
G′(z)
Φ′(z)

∈ H[1, p + 1].

From P(z) =
G′(z)
Φ′(z)

, z ∈ U, we have

G′(z) = Φ′(z) · P(z) and G′′(z) = Φ′′(z) · P(z) + Φ′(z) · P′(z), z ∈ U. (15)

By replacing G′ and G′′ from (12) with the forms from (15), we obtain:

γΦ′P + H′Φ′P + HΦ′′P + HΦ′P′ = (γ− p)g′. (16)

Since from (14) we have γΦ′ + H′Φ′ + HΦ′′ = (γ− p)ϕ′, by replacing it in (16), we
obtain

(γ− p)ϕ′ · P + HΦ′ · P′ = (γ− p)g′.

Therefore,

P +
HΦ′ · P′
(γ− p)ϕ′

=
g′

ϕ′
,

which is equivalent to

P(z) + A(z) · zP′(z) =
g′(z)
ϕ′(z)

, z ∈ U, where A(z) =
HΦ′

(γ− p)zϕ′
.

From (13), we have Re
g′(z)
ϕ′(z)

> 0, z ∈ U. Thus, we obtain

Re
(

P(z) + A(z) · zP′(z)
)
> 0, z ∈ U. (17)

Next, we prove that we have Re A(z) > 0, z ∈ U.



Symmetry 2023, 15, 2079 11 of 12

We know that A =
HΦ′

(γ− p)zϕ′
. Thus, (γ − p)zϕ′A = HΦ′, and using now the

logarithmic differential and then multiplying the result by z, we obtain

1 +
zϕ′′

ϕ′
+

zA′

A
=

zH′

H
+

zΦ′′

Φ′
. (18)

On the other hand, from γΦ′+ H′Φ′+ HΦ′′ = (γ− p)ϕ′ (see (14)) and A =
HΦ′

(γ− p)zϕ′
,

we obtain that

1
A

=
(γ− p)zϕ′

HΦ′
=

zγΦ′ + zH′Φ′ + zHΦ′′

HΦ′
=

zγ

H
+

zH′

H
+

zΦ′′

Φ′
.

This means that we have
zH′

H
+

zΦ′′

Φ′
=

1
A
− zγ

H
. (19)

Using now (19) in (18), we find that

1 +
zϕ′′

ϕ′
+

zA′

A
=

1
A
− zγ

H
⇔

1 +
zϕ′′

ϕ′
+

zγ

H
=

1
A
− zA′

A
. (20)

Now, on one hand, since ϕ ∈ ΣKp, we have Re
(

1 +
zϕ′′

ϕ′

)
< 0.

On the other hand, from the hypothesis of our theorem, we have Re
zγ

H
= Re

zγh′

h
< 0.

Therefore, we obtain from (20) that

Re
(

1
A
− zA′

A

)
< 0⇔ Re

(
zA′

A
− 1

A

)
> 0, z ∈ U.

It is not difficult to remark, from the definition of A, that we have A ∈ H
[

1
γ− p

, 1
]

.

Since we have Re
1

γ− p
> 0, A ∈ H

[
1

γ− p
, 1
]

and Re
(

zA′

A
− 1

A

)
> 0, z ∈ U, we

may apply Lemma 2, and we obtain Re A(z) > 0, z ∈ U.
We use now Remark 5 since we have A : U → C, with Re A(z) > 0, z ∈ U, and

P ∈ H[1, p + 1], such that Re [A(z)zP′(z) + P(z)] > 0, z ∈ U (see (17)), and we obtain that

Re P(z) > 0, z ∈ U. This means that we have Re
G′

Φ′
> 0, z ∈ U, so, G = Jp,γ,h(g) ∈ ΣCp.

Finally, we proved that Jp,γ,h

(
ΣCp,γ,h

)
⊂ ΣCp.

3. Discussion

The new integral operator on meromorphic functions, denoted by Jp,γ,h, is used to
study the conditions that allow this operator to preserve the class of convex meromorphic
multivalent functions.

In addition, the integral operator used in our work depends on an analytic normalized
function h. In certain particular cases of the function h, we obtain operators that have been
used to study either properties related to subordination or conservation of special classes
of functions. We mention here the fact that the subordination relationship between two
functions can also be seen as an inclusion relationship between two domains.

The first result of the present paper is a lemma that helps us to obtain complex
functions with positive real parts. Of course, we need this lemma to prove the first theorem.
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This lemma is a generalization of other previous results, and some particular cases are
grouped under remarks. They also may be useful to prove some new theorems.

Examples were given as corollaries for particular cases of the function h. We mention
here that a result similar to Corollary 1 was proved in [13] (see Corollary 2 for β = 1
combined with Theorem 14 for α = 0); this is a result that has in the hypothesis fewer
conditions. This means that Theorem 1 can be improved.

In the last theorem, we will find out in which situation the conservation of the class of
convex meromorphic functions will attract the conservation of the class of close-to-convex
meromorphic functions. A useful lemma, dealing with complex functions with positive
real parts, is also stated to help with the proof of the theorem.

Of course, this new integral operator can be used to introduce other subclasses of
meromorphic functions, and, also, new properties of it can be investigated.

We could have presented our results using the class of meromorphic p-valent functions
normalized to one (which may be found in previous papers and is denoted by Σp,0), without
loss of generality, but we preferred to use the class Σp instead of Σp,0 because the notation
was simpler.

Author Contributions: Conceptualization, E.-A.T.; methodology, E.-A.T.; software, E.-A.T. and L.-I.C.;
validation, E.-A.T. and L.-I.C.; formal analysis, E.-A.T.; investigation, E.-A.T. and L.-I.C.; resources, E.-
A.T.; data curation, E.-A.T.; writing—original draft preparation, E.-A.T.; writing—review and editing,
E.-A.T.; visualization, E.-A.T.; supervision, E.-A.T. and L.-I.C.; project administration, E.-A.T.; funding
acquisition, L.-I.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by the project 38 PFE in the frame of the programme
PDI-PFE-CDI 2021.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest in this paper.

References
1. Nehari, Z.; Netanyahu, E. Coefficients of meromorphic schlicht functions. Proc. Am. Math. Soc. 1957, 8, 15–23 [CrossRef]
2. Clunie, J. On meromorphic schlicht functions. J. Lond. Math. Soc. 1959, 34, 215-216 [CrossRef]
3. Bajpai, S.K. A note on a class of meromorphic univalent functions. Rev. Roum. Math. Pures Appl. 1977, 22, 295–297.
4. Goel, R.M.; Sohi, N.S. On a class of meromorphic functions. Glas. Mat. Ser. III 1981, 17, 19–28.
5. Reddy, T.R.; Juneja, O.P. Integral operators on a class of meromorphic functions. C. R. Acad. Bulg. Sci. 1987, 40, 21–23.
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