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Abstract: The generative adversarial network (GAN) has recently emerged as a promising generative
model. Its application in the image field has been extensive, but there has been little research
concerning point clouds.The combination of a GAN and a graph convolutional network has been the
state-of-the-art method for generating point clouds. However, there is a significant gap between the
generated point cloud and the point cloud used for training. In order to improve the quality of the
generated point cloud, this study proposed multi-scale gradient point GAN (MSG-Point-GAN). The
training of the GAN is a dynamic game process, and we expected the generation and discrimination
capabilities to be symmetric, so that the network training would be more stable. Based on the concept
of progressive growth, this method used the network structure of a multi-scale gradient GAN (MSG-
GAN) to stabilize the training process. The discriminator of this method used part of the PointNet
structure to resolve the problem of the disorder and rotation of the point cloud. The discriminator
could effectively determine the authenticity of the generated point cloud. This study also analyzed
the optimization process of the objective function of the MSG-Point-GAN. The experimental results
showed that the training process of the MSG-Point-GAN was stable, and the point cloud quality
was superior to other methods in subjective vision. From the perspective of performance metrics,
the gap between the point cloud generated by the proposed method and the real point cloud was
significantly smaller than that generated by other methods. Based on the practical analysis, the point
cloud generated by the proposed method for training the point-cloud classification network was
improved by about 0.2%, as compared to the original network. The proposed method provided a
stable training framework for point cloud generation. It can effectively promote the development of
point-cloud-generation technology.

Keywords: generative adversarial network; point clouds generation; network training

1. Introduction

A generative adversarial network (GAN) [1] has been widely used in image generation,
style conversion, super-resolution, and other fields [2,3]. The quality of samples generated
by a GAN is significantly better than other methods. In essence, GAN optimizes the
Jensen—Shannon divergence (JSD). Therefore, the noise distribution is constantly close to
the real sample distribution, and the generated samples are more realistic. In 2016, Wu et
al. proposed a 3D GAN [4]. Since then, generating point clouds using GANs has attracted
widespread attention [5,6]. The excellent results related to 3D generation by other means
have already been published [7–9], and 3D generation technology has become a hotspot in
the research, at present. Furthermore, 3D generation technology is of great significance. It
is well known that generated point clouds can be used for 3D modeling, which has a wide
range of applications in film production, video games, industrial design, and other fields.
Another application is data augmentation for point-cloud classification. The generated
point cloud retains the characteristics of the origin point cloud. By adding the generated
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point cloud to the training dataset, the classification network can learn more features of the
point cloud, so the point-cloud classification accuracy can be improved.

A GAN is a neural network that takes random noise as input and outputs samples
with a similar distribution to those from a training set. A GAN usually consists of a
generator and a discriminator. The function of the generator is to convert input noise into
samples through a series of up-sampling and convolutional operations. The function of the
discriminator is to determine whether the input sample is real or generated. The generator
and discriminator of the GAN are then trained alternately and iteratively. When training
the discriminator, the discriminator determines that the expected results of the sample
generated by the generator is fake and the expected results of the real sample is real. Then
the generator is trained, and the discriminator determines that the samples generated by the
generator are expected to be true.It is clear that this is an adversarial process, in which the
quality of the generated samples is gradually improved. The generative and discriminative
capabilities of a GAN tend to be symmetric, which stabilizes the training. The high-quality
samples generated by the trained GAN are nearly identical to the genuine objects.

There are two main problems with GANs: One is model collapse, and the other is
training instability. Model collapse refers to a large number of repetitions of samples being
generated by the generator. This problem has been well resolved and is not be discussed
in this study [10]. Training instability means that the loss value of the network fluctuates
severely. The reason for training instability is that the training process of a GAN is a process
of game learning between generator and discriminator. The ultimate goal of game learning
is to achieve a dynamic balance. It is well known that the generator and discriminator
networks of a DCGAN [11] are symmetric in their structure and, therefore, so are their
generation and discrimination capabilities. The training process is stable, and the quality of
generated samples is higher than that of a GAN. The network structure of the MSG-GAN
also appears symmetric. There have been other methods designed with the expectation that
the network would be symmetric, so that the generation and discrimination capabilities
were symmetric, and they had good results. More methods have also achieved good
results by designing special network structures where the generator and discriminator
structures appeared asymmetric, but the generation and discrimination capabilities were
actually symmetric. The direct manifestation of the symmetry between generative and
discriminative abilities was that the training process was stable. In order to optimize this
process, many researchers have focused on this issue.The Wasserstein GAN (WGAN) [12]
made great contributions to solving this problem. In order to improve the stability of the
training process, a progressive growing of a GAN (ProGAN) [13] was proposed. However,
the network structure of ProGAN was complex, and it had too many hyper-parameters.
Based on the concept of progressive growth, a multi-scale gradient GAN (MSG-GAN) [14]
was proposed. The training process of the MSG-GAN was more stable, and this method
generated high-resolution samples. This study also proposed an MSG-Point-GAN based
on the concept of progressive growth.

A point cloud is a dataset of points in a certain coordinate system. It contains a wealth
of information, including 3D coordinates, color, classification value, intensity value, time,
and so on. An important step for a GAN to learn point cloud features is to accurately
describe the features of point clouds and classify them. The point cloud has the following
characteristics, which makes it difficult to process. The purpose of point cloud feature
extraction is that the feature vector calculated under the following conditions is unchanged.
In geometry, the order of points does not affect the shape representation in space. This is
the disordered characteristic of point clouds. The point cloud rotates, and the coordinates
change. This is the rotational characteristic of the point cloud. Therefore, the research
progress of convolutional neural networks for point cloud generation has been slow. In
order to solve these problems, Qi et al. proposed PointNet [15]. This method used a
transformation matrix to process point clouds. The point cloud rotated, and the extracted
features remain unchanged. This method solved the disorder problem of point clouds
through up-sampling and max-pooling operations. PointNet could complete point-cloud
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classification tasks. The discriminator of the GAN was essentially a classifier. A generative
PointNet used PointNet as a discriminator [16]. PointNet is not the state-of-the-art method
of point-cloud classification. However, its principle is simple, easy to implement, and its
classification ability is better. Therefore, this study used PointNet as the discriminator. The
proposed method only used part of the structure of PointNet, however.

In summary, this study adopted a progressive growth concept and network structure
of an MSG-GAN. At the same time, PointNet was used as the discriminator of the GAN.
Combining the advantages of the two methods, the MSG-Point-GAN was proposed. The
concept of progressive growth was used to stabilize the training process of the GAN. The
PointNet-based discriminator solved the problem of the disorder and rotation of the point
cloud, and the discriminator transmitted the gradient information to the generator. This
study analyzed the optimization process of the objective function of the MSG-Point-GAN
and conducted experiments to verify the effectiveness of the method. The contributions of
this study were the following:

• This study proposes MSG-Point-GAN. The training process of the MSG-Point-GAN is
stable and the generated point cloud is of good quality. At the same time, this study
analyzes the optimization process of objective function of the MSG-GAN.

• The concept of progressive growth was first proposed [13] and applied to images,
and then applied to point clouds in PcGAN [5]. MSG-GAN [14] based on the concept
of progressive growth is also applied to images. The MSG-Point-GAN proposed in
this study is applied to point clouds. Our experiments prove that the point cloud
generated by the proposed method is better than other methods, the training process
is stable, and the hyper-parameters are robust. This can prove the effectiveness of the
multi-scale gradient method based on the concept of progressive growth.

• This study analyzed the complexity of the proposed network, and the result was that
the amount of data of the network was huge. The proposed method used a large
number of fully connected networks to improve the fitting ability of the algorithm.
However, the proposed method could still be improved. If there were a better genera-
tor and discriminator, it could be used to replace the generator and discriminator of
the proposed method. Despite this, our method provided a stable training framework
for point cloud generation.

This study is organized as follows. Section 2 introduces the development process of
the GAN and the related work of the point cloud generation. Section 3 introduces the
method of this study. Section 4 introduces the experiment. Section 5 summarizes the work
of this study.

2. Related Work
2.1. Generative Adversarial Networks

In October 2014, Goodfellow et al. proposed a GAN. A GAN is a network framework
for estimating generative models through an adversarial process. It is one of the most
promising methods of unsupervised learning for complex distributions in recent years. A
GAN usually consists of a generator and a discriminator. Deep convolutional generative
adversarial networks (DCGAN) [11] combine a GAN and a convolutional network. This
method has effectively improved the quality o generated samples.

A GAN uses the JSD to measure the distance between the real sample and the gen-
erated sample. A WGAN uses the Wasserstein distance (also known as the Earth-mover
distance) instead of JSD to measure the distance between real and generated samples.
This method mainly optimizes the loss function of the GAN. The improved training of
Wasserstein GANs (WGAN-GP) applied Lipschitz continuity to the WGAN. The Lipschitz
constraint improved the generalization performance of the model by adding a gradient
penalty term to the discriminant function.

Self-attention GANs (SAGAN) [17] were significantly better than previous methods in
terms of image generation. A SAGAN applied the self-attention mechanism to a GAN and
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discovered multi-level dependencies. This method significantly improved the inception
score (IS) and Fréchet inception distance (FID) of the generated image.

A ProGAN increased the depth of the network, layer by layer, to generate high-quality
samples. At the beginning of the training, the network was small and could only learn
low-resolution samples. As the number of iterations increases, the number of layers of the
network increased, and the network could learn high-resolution samples.

The ProGAN needed to adjust the parameters at different stages of training. Its ro-
bustness was poor. The MSG-GAN did not require extra hyper-parameters and performed
better on most datasets under the same conditions. The discriminator of the MSG-GAN
calculated the gradient of the output of each layer of the generator. Then, the discriminator
transmitted the gradient to the middle layer of the generator. Therefore, the discriminator
could provide gradients for the generator on multiple scales. The MSG-GAN provided a
stable training method for the generation of high-resolution samples.

2.2. Point Cloud Generation

The research on point cloud generation using GANs has included the following. Xie
et al. proposed a generative PointNet [16]. This method used PointNet as the discriminator.
The model did not require any hand-crafted distance metric for the point cloud generation
because it synthesized point clouds by matching observed examples in terms of statistical
properties, as defined by the energy function. The method in this study used part of the
structure of PointNet as the discriminator. As compared to the generative PointNet, the
advantage of the method proposed in this study was that the network structure of this
method was better. The training process of the network in this study was more stable.
Shu et al. proposed a tree-structured graph convolution network (tree-GAN) [18]. This
method used a tree-structured graph convolution network (Tree-GCN) as the tree-GAN
generator for point cloud generation. Valsesia et al. proposed the graph-convolutional
GAN [6]. This method could learn the generation of the local features of the point cloud.
However, the graph convolution was too complicated. Ramasinghe et al. proposed the
spectral-domain generative adversarial network [19]. The spectral representation was
highly structured. It assisted in synthesizing and reconstructing high-quality point clouds.
Li et al. proposed a point cloud GAN (PC-GAN) [20], which combined the concepts
of hierarchical Bayesian modeling and implicit generative models. PC-GAN generated
point clouds with any number of points. Achlioptas et al. proposed a deep AutoEncoder
network [21]. The reconstruction quality and generalization ability of this network were
excellent. This method could generate high-quality point clouds, but it did not study the
same conditions as the Gaussian mixture models and the adversarially trained models. The
above methods could generate point clouds, and each had its own characteristics. However,
there was no literature available to study the stability of a point-cloud-generation network.

The following research on point cloud generation contributed little in terms of GAN
research. Mo et al. proposed StructureNet [22]. This method considered the relationship
between the parts of the point cloud and could generate new, diverse, and true 3D shapes.
Gadelha et al. proposed multi-resolution tree-structured networks [23]. This method was
used to generate high-quality point clouds and was also used for classification. Hertz et al.
proposed PointGMM [24], a neural network that learned to generate hGMMs, which were
characteristic of the shape class, and also coincided with the input point cloud. This method
was unable to generate clear details of the point cloud. Sun et al. proposed PointGrow [25].
This was a novel autoregressive model. This model operated recurrently, with each point
sampled according to a conditional distribution, given its previously generated points. This
allowed inter-point correlations to be exploited and the 3D-shape generative processes
to be better interpreted. This model performed better in conditional and unconditional
point cloud generation tasks. Yang et al. proposed pointFlow [26]. The invertibility of the
normalizing flows enabled the computation of the likelihood during training. The above
methods contributed little in terms of GAN research but could generate high-quality point
clouds. These methods were of great significance for our research.
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3. MSG-Point-GAN

In this part, we analyze the optimization process of the objective function of the MSG-
Point-GAN. Then, we introduce the overall network structure of the proposed method and
then each part of the network, in turn.

3.1. Theoretical Support

According to [1], the objective function of the original GAN is:

V(G, D) = Ex∼Pdata [logD(x)] + Ex∼PG [log(1− D(x))] (1)

The optimization process of the objective function of the GAN was the process of
calculating the optimal generator and discriminator. First, we fixed the generator G and
calculated the optimal discriminator D. The optimal discriminator D∗ is:

D∗(x) =
Pdata(x)

Pdata(x) + PG(x)
(2)

where Pdata(x) is the real data distribution, and PG(x) is the generated data distribution.
The optimal discriminator D was substituted into the objective function. The maximum
value of the objective function is:

max
D

V(G, D) = −2log2 + 2JSD(Pdata(x) ‖ PG(x)) (3)

where the JSD represents the difference between the two distributions. Its minimum value
is −2log2 and its maximum value is 0.

Then, we calculated the optimal generator G to minimize max
D

V(G, D). When PG(x)

was similar to Pdata(x), the generator G was optimal. The minimum value of objective
function of the GAN is −2log2.

In this study, the MSG-Point-GAN was composed of multiple sub-generators and
sub-discriminators. As shown in Figure 1, each sub-generator of the MSG-Point-GAN was
related to the others. The optimization process of the objective function of the MSG-Point-
GAN was the process of multiple discriminators jointly optimizing multiple generators.
Each sub-discriminator calculated the gradient value of its corresponding sub-generator.
The objective function of the MSG-Point-GAN could be approximated as:

V(G1,2,...,n, D1,2,...,n) =
n

∑
i=1
{Ex∼Pdatai

[logDi(x)] +Ex∼PGi
[log(1− Di(x))]} (4)

First, we fixed the generator G and calculated the optimal discriminator D. The above
formula could then be expressed as:

V =
n

∑
i=1

{ ∫
x

Pdatai
(x)logDi(x)dx +

∫
x

PGi (x)log(1− Di(x))dx
}

(5)

We divided the objective function into n sub-items. Each sub-item was the objective
function of an ordinary GAN:

Vi =
∫

x

{
Pdatai

(x)logDi(x) +PGi (x)log(1− Di(x))
}

dx (6)

In this way, each sub-item could be optimized using the optimization method of the
objective function of the ordinary GAN. The derivative of the sub-term was:

dVi
dDi(x)

=
Pdatai

(x)
Di(x)

−
PGi (x)

1− Di(x)
(7)



Symmetry 2023, 15, 730 6 of 20

Figure 1. Network structure of the MSG-Point-GAN. The structure of the MSG-Point-GAN generator
was a multi-level structure. The input of the first sub-generator g1 was 128-dimensional noise. The
input of the latter sub-generator was the middle feature vector of the previous sub-generator. In
addition, n, 2 ∗ n, ..., 2m−1 ∗ n were the dimensions of the middle feature vector. Each sub-generator g
generated point clouds with different densities. Then, k, 2 ∗ k, ..., 2m−1 ∗ k were the number of points
of the generated point cloud. The sub-discriminator d was independent. The average of the output of
each sub-discriminator was passed to the generator, and the generator was then optimized.

The derivative was equal to 0, and the optimal sub-discriminator could be obtained.
The optimal sub-discriminator D∗i was:

D∗i =
Pdatai

(x)
Pdatai

(x) + PGi (x)
(8)

We substituted the optimal discriminator into Formula (5) to obtain the maximum
value of the objective function:

max
D

V (G1,2,...,n, D1,2,...,n)

=
n

∑
i=1

∫
x

{
Pdatai

(x)log
Pdatai

(x)
Pdatai

(x) + PGi (x)

+PGi (x)log
PGi (x)

Pdatai
(x) + PGi (x)

}
dx

(9)

After simplification, the results were as follows:

max
D

V(G1,2,...,n, D1,2,...,n)

= −2nlog2 + 2
n

∑
i=1

JSD(Pdatai
(x) ‖ PGi (x))

(10)

Assuming that Pdatai
(x) approximated PGi (x), each generator was close to optimal.

The distribution difference was:
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max
D

V(G1,2,...,n, D1,2,...,n) = −2nlog2 (11)

In summary, the objective function of the method proposed in this study could be
effectively optimized. Furthermore, multiple generators were related to each other, which
could further optimize the results. The method in this study stabilized the training process
and improved the quality of the generated point cloud.

3.2. Network Structure

In this part, we introduce the proposed MSG-Point-GAN. The generator was based
on an MSG-GAN. It consisted of multiple interconnected sub-generators. During the
up-sampling process, the generator generated point clouds with different densities. The dis-
criminator was based on PointNet. It could solve the problem of the disorder and rotation
for the feature extraction of point clouds. The discriminator calculated the intermediate
gradient and transmitted it to the generator.

The proposed method combined the advantages of the two methods. However, we did
not copy it completely. An MSG-GAN has only one discriminator. The features extracted
from each generated sample are successively transferred in the discriminator. This approach
can be successful in the image, but not in the point cloud. This study designed multiple
discriminators to calculate the intermediate gradient. At the same time, this study did
not completely adopt the PointNet network but simplified the network. It fulfilled the
requirements of accurately determining the authenticity of the point cloud.

The network structure of the proposed method is shown in Figure 1. The generator
was composed of multiple sub-generators, and each sub-generator was related to each
other. The sub-generator included two non-linear fully connected layers, which could
generate point clouds of different densities. The discriminator was composed of multiple
sub-discriminators, and each sub-discriminator was independent of each other. The sub-
discriminator consisted of a spatial transformer network and a 1D convolutional layer.
Each sub-discriminator extracted the generated point cloud features and calculated the
intermediate gradient.

3.3. Components of the Network Structure
3.3.1. The Generator

The structure of the sub-generator is shown in Figure 2. The generator was composed
of multi-feature up-sampling layers and point-cloud-generation up-sampling layers. The
feature up-sampling layer included a fully connected layer and a ReLU layer. The point-
cloud-generation up-sampling layer included a fully connected layer and a Tanh layer. The
design concept of the network was as follows:

• The MSG-GAN processed images using convolution layers with a convolution kernel
size greater than 1. The convolution layer could process the neighborhood information
of pixels. However, the structure of point clouds is different from that of images. A
convolution layer could not be used, so the fully connected layer was used instead.
The fully connected layer could exploit the overall characteristics of the point cloud. At
the same time, the parameters of the fully connected layer were large, so the learning
ability of the model was strong.

• Different scales of point clouds were obtained from the original point cloud down-
sampling. It maintained the shape characteristics of the original point cloud. In the
training process, different scales of point cloud generators learned the characteristics of
different scales of point clouds. We used the fully connected layer to connect different
scales of point cloud generators. The fully connected layer had an obvious advantage
that it could learn the global information and the mutual location information shared
with the global.

• The ReLU layer was used in the process of feature ascending because it eliminated
gradient explosion and gradient disappearance and simplified the calculation process
at the same time.
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• The Tanh layer was used in the process of generating the point cloud because the
coordinates of the point in the point cloud were normalized to (−1, 1), which was
consistent with the value range of the Tanh layer. Furthermore, the Tanh layer provided
non-linear factors.

Figure 2. Sub-generator. The sub-generator consisted of two parts. The functions of the two parts
were calculating feature vectors and generating point clouds.

The generator was defined as:

GEN(z) = gk ◦ gk−1 ◦ · · · ◦ g2 ◦ ggen(z) (12)

where ◦ is the symbol connecting two sub-generators and ggen(z) is the first sub-generator.
It was composed of a feature up-sampling layer and a point-cloud-generation up-sampling
layer. The first sub-generator was defined as:

ggen(z) = Tz ◦ Fz2(gz
f ea) (13)

where gz
f ea = Rz ◦ Fz1(z), Tz is the Tanh operation, Fz2 is the fully connected operation in

the point cloud generation up-sampling layer, Rz is the ReLU operation, and Fz1 is the fully
connected operation in the feature up-sampling layer.

The k-th sub-generator was defined as:

gk = Tk ◦ Fk2(gk
f ea) (14)

where gk
f ea = Rk ◦ Fk1(gk−1

f ea ). The definition of variables is consistent with the formula (13).

3.3.2. The Discriminator

The structure of the sub-discriminator is shown in Figure 3.
The discriminator consisted of two parts. One part was the spatial transformer net-

work, which solved the problem of the rotation of the point cloud. The other part was the
classification network, which solves the problem of the disorder of the point cloud. The
classification network was composed of an up-sampling layer, a max-pooling layer, and a
fully connected layer.
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Figure 3. Sub-discriminator. The sub-discriminator consisted of two parts. The two parts were the
spatial transformer network and the feature extraction classification network.

The same point cloud experienced a certain rigid change in space, and the coordinates
changed. In the process of point-cloud classification, it was hoped that no matter how the
point cloud coordinates changed, the network could correctly identify it. In this study, the
problem of point cloud rotation was solved through a spatial transformer network. The
core of the spatial transformer network was the localization net. The parameters in the
localization net were the parts that needed to be trained in the spatial transformer network.
The second was the spatial transformer. The local network was designed according to the
requirements, and the corresponding spatial transformer coefficient θ was obtained. Then,
we transformed the input of the previous layer and input the transformed result into the
next layer.

Figure 4 shows the spatial transformer network. The variable U is the input point
cloud, V is the transformed point cloud, and the network between U and V is the spatial
transformer network. After localization net obtained the transform coefficient θ, we could
transform the input U to obtain V. The formula was as follows:

V = θ ∗U (15)

where ∗ is the symbol of matrix multiplication and θ = F(M(C(U))), C is the one-
dimensional convolutional layer for up-sampling, M is the max-pooling layer, and F
is the fully connected layer.

Figure 4. Spatial transformer network.

The point cloud was composed of a long series of points (n× 3 matrix, where n is the
number of points). Geometrically, the order of the points did not affect its overall shape in
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space. For example, the same point cloud could be represented by two completely different
matrices. In the process of point-cloud classification, it was hoped that the same results
could be obtained, regardless of the order of the point clouds. This study used the following
methods to solve the problem of the disorder of the point cloud.

The network structure of point cloud feature extraction and classification is shown in
Figure 5. The formula was as follows:

f (x1, x2, · · · , xn) = γ ◦ g(h(x1), h(x2), · · · , h(xn)) (16)

where h, g, γ represent the up-sampling layer, the max-pooling layer, and the fully con-
nected layer, respectively. Inputs (1, 2, 3), (1, 1, 1) · · · represent the coordinates of each
point. The function of the up-sampling layer h was to distribute the point cloud features
into higher dimensions. The function of the max-pooling layer g was to select the maximum
value in each dimensional vector as the feature value of the point cloud. The fully connected
layer γ was a classifier that classified the features of the point cloud. The discriminator
determined whether the point cloud was real or generated and fed the results back to
the generator.

Figure 5. Feature extraction and classification network.

3.4. Iterative Training

The discriminator and generator were optimized in turn. The discriminator was
optimized first. The input point cloud was down-sampled to obtain real samples at
different scales. These real samples were input into the discriminator to calculate the
probability that they were real samples. The negative log likelihood loss function was used
to calculate the loss value. Then, the samples at different scales were generated by the
generator, and these samples were also input into the discriminator to obtain the loss value.
The two loss values were jointly used for the optimization of the discriminator. Then, the
generator was optimized. The generated samples were obtained by the generator, and
these samples were input into the discriminator to obtain the loss value for optimization.

4. Experiments

This study used the Modelnet40 dataset for experiments. This dataset included 40
categories of objects, including airplanes, beds, bookshelves, tables, chairs, etc. In this
experiment, we showed the point clouds generated by the proposed method, including
chairs, tables, airplanes, and guitars, because these objects had distinct features. The points
clouds in each class were split as 85% training data, 5% testing, and 10% validation. The
computing platform had a 1080ti graphics card.

Except for the hyper-parameter robustness experiment, we set the generator for six
levels with six sub-discriminators accordingly for the experiment. The maximum number
of points in a single object point cloud generated was 2560. The hyper-parameter that had
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to be set was the learning rate of the generator and the discriminator, and the value of the
learning rate was set to 0.001. In the hyper-parameter robustness experiment, we explained
the adjustment of these parameters.

4.1. The Generated Point Cloud

We observed the point cloud generated by the proposed method and evaluated the
quality of the point cloud subjectively. The most straightforward method to evaluate
the effectiveness of the proposed method was to review the point clouds generated by
the proposed method. It was easy to determine the quality of the generated point cloud
according to whether the shape of the generated object was consistent with the shape of
the cognitive object. Furthermore, we used chairs, tables, etc., as these objects have obvious
features. It was easy to determine whether the positions of the table top, table legs, etc.
generated by the proposed method had defects. Therefore, we chose these objects for
display and then subjectively evaluate the point cloud quality. The proposed method was
based on the concept of progressive growth. Therefore, it was necessary to show the point
cloud generation process. We demonstrated chair point clouds with different densities at
different training stages and the point clouds of four objects generated by the proposed
method. Considering the limitations of the computing platform, this study did not generate
high-density point clouds.

Figure 6 shows chair point clouds with different densities at different training stages.
In the process of iteration, the quality of the generated point cloud was gradually improved.
When the number of iterations reached 1000 epochs, the MSG-Point-GAN could generate
high-quality point clouds.

Figure 6. Chair point clouds with different densities at different training stages.

Based on the leftmost column of the image, the optimization process of the point cloud
with a density of 80, this was regarded as the process of an ordinary GAN generating point
clouds. Because of the low density of the point cloud, it was a simple task that was easy
to complete for any GAN. If a standard GAN was directly used to generate high-density
point clouds, then it would be difficult for a standard GAN to complete the task. The
MSG-Point-GAN gradually increased the density of the point cloud, which was equivalent
to decomposing a difficult task into several simple tasks. Therefore, the MSG-Point-GAN
could complete the difficult task. This was also consistent with our theoretical conclusions.
The MSG-Point-GAN could effectively optimize the objective function, stabilize the training
process, and generate high-quality point clouds.
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Figure 7 shows the point cloud generated by the MSG-Point-GAN, including the table,
the chair, the airplane, and the guitar. The details of the point cloud were slightly flawed,
but the overall shape was similar to the real object. From a visual perspective, the result
was convincing. The generated objects were diverse, indicating that there was no model
collapse during the training process.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 7. Generated point clouds. (a–d) are generated chair point clouds, (e–h) are generated guitar
point clouds, (i–l) are generated table point clouds, (m–p) are generated airplane point clouds.

4.2. Training Stability and Network Robustness

The training process of a GAN is a dynamic game between the generator and the
discriminator. The generator generates a point cloud, and the discriminator determines
whether the point cloud is generated or real. The most ideal situation is when the training
process reaches a balanced state, the objective function value steadily converges, and the
generator generates high-quality samples. In this part, we showed the objective func-
tion value curve and the generated point clouds during the training process of the pro-
posed method.

Figure 8 shows the curve of the objective function value during the training process.
As shown in the figure, the curve oscillated severely at the beginning of the training. After
that, the curve gradually stabilized. The stable training process indicated that the generative
and discriminative capabilities of the proposed method were symmetric. Figure 9 shows
the process from noise to object. Figure 9a corresponds to the initial stage in Figure 8, and
the shape of the point cloud was irregular. Figure 9b,c corresponds to the oscillating and
progressive convergence stage in Figure 8, and the shape gradually changed to a guitar.
Figure 9d corresponds to the stable stage in Figure 8. The shape of the point cloud was
a guitar.

At the same time, we showed the point cloud generated when different noises were
input. By adjusting the input and observing the changes of the output, the robustness
of the network could be effectively tested. Using the weights obtained from the above
experiments, we input the uniform distribution noise and the standard normal distribution
noise to observe the generated point cloud. The point cloud generated by inputting different
noises also had diversity. In this step, we selected four chair point clouds with similar
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shapes for display. The point cloud generated by the input uniform distribution noise is
shown in Figure 10a,b. The point cloud generated by the input standard normal distribution
noise is shown in Figure 10c,d. It was obvious from the picture that the shapes of the chairs
did not differ significantly. This experiment proved that the network had good robustness,
and the generated point cloud was less affected by the input noise.

Figure 8. The curve of guitar training process using the proposed method.

(a) (b) (c) (d)

Figure 9. Generated guitar point clouds at different training stages. (a–d) are the point clouds
generated by 100, 400, 700, and 1000 iterations, respectively.

(a) (b) (c) (d)

Figure 10. Point cloud generated by different noises. (a,b) are point clouds generated by input uni-
form distribution noise. (c,d) are point clouds generated by input standard normal distribution noise.

4.3. Ablation Experiment

We tested the influence of two key factors in the network, which were the multi-scale
gradient network structure and the spatial transformer network. We showed the training
process curve and the generated point cloud after deleting these two factors.

In order to test the influence of the multi-scale gradient network based on the concept
of the progressive growth of the stability of the training, we simplified the network and
only retained the main structure of the network. The feature up-sampling layer, the last
point cloud generation layer, and the last sub-discriminator were retained in the network,
and the rest were deleted. In this way, a GAN without the multi-scale gradient network
structure was formed, as shown in Figure 11a. Figures 12 and 13 show the training process
curves without multi-scale gradient network and spatial transformer network respectively.
Figure 12 shows the objective function value curve without multi-scale gradient network.
As shown in the figure, the curve was in an oscillating state, which was consistent with
the training state of an ordinary GAN. Figure 14a,b shows the generated point clouds.
Obviously, the quality of the generated point cloud was low. When the number of iterations
reached about 1500, the curve tended to diverge. It was proved that when the value of the
objective function was too large, the quality of the generated point cloud would be low.
By comparing the training process curve and the generated point cloud in the experiment,
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we concluded that the progressive growth method had a positive effect on stabilizing the
training process and improving the quality of the point cloud.

(a)

(b)

Figure 11. Ablation experiment. (a) without the multi-scale gradient network. (b) without the spatial
transformer network.

In order to test the impact of the spatial transformer network on the performance of
the whole network, we deleted the spatial transformer network and observed the training
process curve and the generated point cloud. The spatial transformer network adjusted to
the attitude of the point cloud and did not change the dimension of the data, so the spatial
transformer network could be deleted directly, as shown in Figure 11b. Figure 13 shows
the training process without curve spatial transformer network. As shown in the figure,
the curve was always in a state of oscillation. Figure 14c,d show the generated point cloud.
The quality of the generated point cloud was obviously worse than that of the original
network. We concluded that the spatial transformer network played an important role
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in the discriminator. The spatial transformer network could result in the discriminator
determining the point cloud more accurately.

Figure 12. The curve of the chair training process without the multi-scale gradient network structure.

Figure 13. The curve of the chair training process without the spatial transformer network.

(a) (b) (c) (d)

Figure 14. Chair point clouds. (a,b) are the experimental results without the multi-scale gradient
network structure. (c,d) are the experimental results without the spatial transformer network.

4.4. Comparison with Other Methods

This study selected the methods that had received widespread attention and per-
formed well, for comparison. The most representative method was a progressive condi-
tional GAN (PcGAN) [5], which could generate the color of the point cloud while generating
the point cloud. Another method was the graph-convolutional GAN (GcGAN) [6], which
used graph convolutional network to generate point clouds and achieved better results.

The point clouds generated by the three methods, PcGAN, GcGAN, and MSG-Point-
GAN, are shown in Figure 15. The characteristics of the point cloud obtained by each
method were different. For each method, we showed two tables and two chairs. Where (a)
(e) (i) and (c) (g) (k) were chairs and tables with relatively consistent styles, respectively,
and (b) (f) (J) and (d) (h) (l) were chairs and tables with relatively inconsistent styles,
respectively. This comparison better reflected the characteristics of point cloud generated
by each method. As shown in the figure, the defects of the point cloud generated by
PcGAN were obvious, and the quality of the point cloud was obviously inferior to the
other two methods. The shape of the point cloud generated by GcGAN and MSG-Point-
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GAN was similar. However, in the details, the shape of the point cloud generated by the
MSG-Point-GAN was more standard.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 15. Table and chair point clouds. (a–d) are point clouds generated by PcGAN. (e–h) are point
clouds generated by GcGAN. (i–l) are point clouds generated by the MSG-Point-GAN.

Table 1 shows the comparison of objective evaluation indicators of the generated
point cloud. The evaluation indicators were the Jensen-–Shannon divergence (JSD) and
the minimum matching distance (MMD). MMD was used to obtain two different metrics,
the Earth-mover’s distance (EMD) and the chamfer distance (CD) [6]. These indicators
evaluated the gap between the generated point cloud and the real point cloud. The smaller
the value, the higher the quality of the generated point cloud.

As shown in Table 1, the JSD and the MMD of the point cloud generated by PcGAN
were significantly higher than the other two methods. This indicated that the quality of the
point cloud generated by the PcGAN was worse. The evaluation index was consistent with
the visual results. The JSD and the MMD of the point cloud generated by the GcGAN and
the MSG-Point-GAN had a smaller difference, and the MSG-Point-GAN was lower. This
indicated that the point cloud generated by the method in this study was of higher quality.

4.5. Analysis of the Proposed Method
4.5.1. Robustness of Hyper-Parameters

Robustness refers to the characteristic that the system could maintain good perfor-
mance under the condition of disturbance or uncertainty. The hyper-parameters that
needed to be adjusted were the learning rate of the generator and the discriminator, and
the levels of the network. When we adjusted the learning rate, the levels of the network
were set to 6, and when we adjusted the levels of the network, the learning rate was set to
0.001. We observed the objective function curve in the training process and recorded the
number of iterations when the curve reached the steady state. We used table, chair, and
guitar point clouds to conduct experiments, and the experimental results were averaged.
The results are shown in the table.
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Table 1. Quantitative comparison.

Class Model JSD MMD-CD MMD-EMD

Chair
PcGAN 0.227 0.0034 0.141
GcGAN 0.104 0.0030 0.113
Proposed 0.112 0.0029 0.096

Table
PcGAN 0.182 0.0042 0.134
GcGAN 0.135 0.0023 0.129
Proposed 0.133 0.0025 0.122

Guitar
PcGAN 0.174 0.0023 0.095
GcGAN 0.128 0.0022 0.075
Proposed 0.113 0.0019 0.071

Airplane
PcGAN 0.236 0.0045 0.126
GcGAN 0.142 0.0032 0.109
Proposed 0.137 0.0035 0.113

The bold refers to the minimum value in each item, indicating that the indicator value is optimal.

As shown in Table 2, when the learning rate was adjusted within a certain range, it
had little effect on the network convergence and the generated point cloud. The more levels
of the MSG-Point-GAN, the slower the convergence. As the level of the MSG-Point-GAN
increased, the density of the generated point cloud increased accordingly, and the number
of iterations also increased.

Table 2. Robustness analysis of hyper-parameters.

Parameters
Learning Rate of the GAN Level of the GAN

0.002 0.001 0.0005 5 6 7

Iterations 800 600 900 600 800 1200
JSD 0.163 0.225 0.237 0.177 0.125 0.237
EMD 0.172 0.156 0.138 0.105 0.145 0.201

The experimental results showed that the robustness of the hyper-parameters of the
method in this study was good. When tested with different learning rates and different
levels, the training could reach a steady state. Because of this feature, the method in this
study was easy to implement and had good practicability.

4.5.2. Complexity Analysis

Since the network used in this study was a cascaded network, the analysis of the
network complexity was critical. If the computing power of the computing platform was
known, then the maximum number of stages of the network could be effectively determined
through the complexity of the network, which could improve the utilization rate of the
computing platform.

The generator network used in this study was mainly a non-linear fully connected
layer, which could be regarded as a special convolutional layer. The size of the convolution
kernel was the same as the size of the input matrix. The output feature map of each
convolution kernel was a scalar point. The time and space complexity of convolutional
networks were as follows:

Time ∼ O(12 · X2 · Cin · Cout) (17)

Space ∼ O(X2 · Cin · Cout + 12 · Cout) (18)

where X is the size of the input matrix, and Cin, Cout is the number of input and output
channels, respectively. From the above formula, we obtained the complexity of the network
by calculating the total number of parameters. Because the loss function did not affect the
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calculation of the complexity of the entire network, the complexity of the loss function was
not considered here.

The generator in this study was a cascade structure, and the complexity of the gen-
erators at all levels needed to be calculated and then summed. The input dimension of
the first-level generator was 128, the intermediate dimension was n, the output dimension
was 3k, and the number of parameters was 384nk. The variable k was the number of
points of the generated point cloud. The input dimension of the m− th level generator
was 128, the intermediate dimension was 2m(m−1)/2nm, the output dimension was 3k2m−1,
and the number of parameters was 384knm2m(m+1)/2. In summary, the total number of
parameters of the generator was 384k ∑t

m=1 nm2m(m+1)/2. The variable t was the level of
the MSG-Point-GAN. The time complexity and the space complexity of the generator of
the MSG-Point-GAN were both O(nt).

The discriminators in this study were independent, so the complexity of each discrimi-
nator needed to be calculated and then summed. The first half of the discriminator was the
spatial transformer network. According to the structure of the network, the number of pa-
rameters was k2(1.25n2 + 3n). The main component of the second half was a non-linear fully
connected layer. The number of parameters was k2(n2 + 0.74n + 0.625) + 0.625n2 + 0.5n,
where n = 32 · 2m − 1. In summary, the time complexity and the space complexity of the
discriminator of the MSG-Point-GAN were both O(n2).

In summary, when the levels of the GAN increased, the complexity of the network
also increased by multiples. Therefore, the levels of the network in this study could not be
set too large, as otherwise, the calculation time would increase to a length the computing
platform would not be able to support, given its high number of parameters.

From the analysis of complexity, the method in this study used a large number of
non-linear fully connected layers, so the method in this study could still be improved. By
improving the nonlinear fully connected layer, the space and time complexity was reduced.

4.5.3. Practical Analysis

The analysis of applications that generated point clouds was an important issue. The
generated data had two main roles in the object classification task. The first was that the
data generated were used to test the performance of the object classification algorithm.
In this experiment, the performance of the classification algorithm was not tested, but
the quality of the generated point cloud was evaluated by the performance of the test
algorithm. Secondly, the generated data were used as training data for the training of the
object classification algorithm.

The experimental procedure was as follows. PointNet++ was trained using the Mod-
elNet40 dataset. The point cloud generated by the proposed method was used to test
the classification accuracy. The generated point clouds were a table, a chair, an airplane
and a guitar, each with 120 point clouds. Then we used the testing set of the ModelNet40
and 100 real point clouds from each of the above 4 categories to test the accuracy of the
classification. The purpose was to compare with the classification model trained with the
generated point cloud. A total of 120 point clouds in each of the 4 categories were added to
the training data. The classification algorithm was trained under the same conditions as
the hyper-parameters set in the first step. The same data tested the classification accuracy.
The classification accuracy is shown in the table below.

As shown in Table 3, the classification accuracy of the generated data was good, and
it could be proved that the characteristics of most of the point clouds generated by the
proposed method conformed to the characteristics of the real point clouds and could be
correctly classified. From the comparison of the classification accuracy of the generated
point clouds before and after training, the classification accuracy of PointNet++ was im-
proved by about 0.2%. PointNet++ achieved a decent performance on the ModelNet40
dataset. It was difficult to improve its performance through technical means. However, the
point cloud generation technology is typically used for data augmentation, which could
then improve the classification performance of PointNet++. The reason for this was easy to
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explain. Because we added more data for training, the classification network learned more
features of the point cloud and thus performed better. Therefore, the point cloud generated
by this method was practical.

Table 3. Object classification accuracy.

First Weight Second Weight

Generated Data Real Data Real Data

chair 69.17% 97.00% 96.00%
table 61.00% 91.00% 93.00%

guitar 67.50% 98.00% 99.00%
airplane 79.17% 100.00% 100.00%

ModelNet40 testset - 92.28% 92.45%

5. Conclusions

This study proposed the MSG-Point-GAN. It used the progressive growth method
to stabilize training, and its discriminator used PointNet to accurately determine the
authenticity of the generated point cloud. This study analyzed the optimization process of
the objective function of the MSG-Point-GAN. The experiments proved that the training of
this method was stable, and the point cloud generated by the proposed method was better
than the point cloud generated by the state-of-the-art methods. The multi-scale gradient
method based on the concept of progressive growth was effective in the GAN. The ablation
experiments showed that the proposed method needed both a multi-scale gradient network
and a spatial transformation network; otherwise, the performance of the network was
significantly degraded. In addition, different parameters were used to test the performance
of the network, and the network could still converge quickly, indicating that the proposed
method had good robustness. Finally, the point clouds generated by the proposed method
could be used to train the classification network and improve its performance. This proved
that the characteristics of the point clouds generated by the proposed method had the
characteristics of real data. This further indicated that the point cloud generated by the
proposed method was effective.
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