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Abstract: Voronoi mosaics inspired by seed points placed on the Archimedes Spirals are reported.
Voronoi (Shannon) entropy was calculated for these patterns. Equidistant and non-equidistant
patterns are treated. Voronoi tessellations generated by the seeds located on the Archimedes spiral
and separated by linearly growing radial distance demonstrate a switch in their chirality. Voronoi
mosaics built from cells of equal size, which are of primary importance for the decorative arts, are
reported. The pronounced prevalence of hexagons is inherent for the patterns with an equidistant
and non-equidistant distribution of points when the distance between the seed points is of the
same order of magnitude as the distance between the turns of the spiral. Penta- and heptagonal
“defected” cells appeared in the Voronoi diagrams due to the finite nature of the pattern. The ordered
Voronoi tessellations demonstrating the Voronoi entropy larger than 1.71, reported for the random
2D distribution of points, were revealed. The dependence of the Voronoi entropy on the total number
of seed points located on the Archimedes Spirals is reported. Voronoi tessellations generated by the
phyllotaxis-inspired patterns are addressed. The aesthetic attraction of the Voronoi mosaics arising
from seed points placed on the Archimedes Spirals is discussed.

Keywords: Archimedes Spiral; Voronoi tessellation; Voronoi entropy; surface patterns; aesthetic
attraction; phyllotaxis; golden ratio; chirality

1. Introduction

Quantification of order in 2D patterns remains the challenging task [1-13]. In our paper
we address quantification of ordering in spiral patterns. A spiral is a curve which emanates
from a point, which moves farther away as it revolves around an origin point. Spirals
inspiring wonder and curiosity abound in nature, mathematics, art, and decoration [6-8].
A spiral-like curve was found in Mezine, Ukraine, as part of a decorative object dated
to 10,000 BCE. Spiral motifs resembling an evergreen shrub appear on an altar found in
the Temples of Malta (3000 BC), also, they are inherent in the Celtic megalithic culture.
They are often seen on Minoan pottery in Egypt. Many famous spirals were created by
Leonardo da Vinci. Spirals are inspiring modern artists such as Robert Smithson and
Francisco Infante-Arana. On a microscopic scale, DNA molecules twist around in the form
of two helices, whereas on the largest possible scale, the arms of galaxies curl around in the
form of logarithmic spirals [9]. The physical world exhibits a startling repetition of spiral
patterns [6-8]. Biological patterns often demonstrate spiral-like structures. In particular,
geometric models of phyllotaxis were used to generate realistic images of flowers and fruits
with spiral patterns [14].

In our paper, we focus on patterns generated by the Archimedes (or Archimedean)
spiral, used for generating Voronoi partitions. The Archimedean spiral (abbreviated for

brevity AS) is a spiral with the polar equation r = a6, where r is the radial distance, 0 the
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polar angle, and 7 is a constant which determines how tightly the spiral is “wrapped” [15].
When this constant n = 1, the resulting spiral is given by r = af. In this case, any ray from
the origin of coordinates crosses successive turnings of the spiral at points with constant
separation (which equals 27 if 6 is measured in radians), which is why this spiral is also
called the “arithmetic spiral”.

There are numerous natural and technological exemplifications of the AS. For example,
the drawing of an AS (spirography) is commonly used in the evaluation of patients with
pathologic tremors and other movement disorders [16]. Interlocked AS supplied a relief-
cutting method to turn rigid planar surfaces into flexible ones using meander patterns [17].
Archimedes’ spiral grooves produced on silver films supplied a selective chirality to surface
plasmons [18]. Artistic space-filling designs based on spiral packing were reported [19-21].

We exploited AS for generating Voronoi partitions, demonstrating interesting mathe-
matical properties and aesthetic appeal. Voronoi partitions (or tessellations) enable quan-
tification (the expression or measurement) of ordering in sets of points [2,22,23]. The idea
of what is now called the Voronoi tessellation was proposed by Johannes Kepler and Rene
Descartes [10,24]. Descartes used these tessellations to verify that the distribution of matter
in the universe forms vortices centered at fixed stars [10,24]. The idea was developed by
Dirichlet in the context of his works on quadratic forms [11].

Let us explain the idea of the Voronoi diagram (tessellation). The tessellation or tiling
of a plane is the arrangement of figures that fill the plane with no overlaps and no gaps.
A Voronoi tessellation shows the partitioning of a plane into cells based on the distance
to a specified discrete set of points (called seeds, nuclei, or generators) [2,23]. For each
nucleus, there is a corresponding region consisting of all points closer to that seed than
to any other [2,23]. The Voronoi polyhedron of a point nucleus in space is the smallest
polyhedron formed by the perpendicularly bisecting planes between a given seed and
all the other seeds [2,23]. The Voronoi tessellation divides a region into a space-filling,
non-overlapping convex polyhedral. Voronoi diagrams represent planar graphs [2,23]. The
topological properties of Voronoi diagrams are surveyed in Ref. [23].

The Voronoi tessellation enables quantification of the ordering of a 2D structure by the
calculation of the so-called Voronoi entropy, defined as:

Svor = _Zi PilnP; (1)

where i is the number of polygon types, and P; is the fraction of polygons possessing # sides
(edges) inherent for a given Voronoi diagram (also called the coordination number of the
polygon) [2,12,22,23]. The Voronoi entropy becomes zero for a perfectly ordered structure
(when we have polygons of only a single kind), and it is increased with the number of types
of polygons. For a typical case of fully random 2D distribution, the value of Sy, = 1.71 was
reported [25,26]; six types of polygons are inherent in these patterns. Equation (1) is similar
in its form to the statistical measure of information and entropy in statistical mechanics [27].
That is why it was called “the Voronoi entropy”, which is also labeled in the literature as the
Shannon entropy. We also address the aesthetic appeal of the Voronoi patterns generated
by Archimedes’ spiral [28].

Consider some simple exemplifications of the Voronoi tessellation (see Figure 1).
Figure 1A represents a regular array of points (left) that leads to a regular array of square
tiles (right) with the Voronoi entropy Sy,r which equals zero (indeed P; = 1;/nP; = 0in
Equation (1)). Figure 1B represents the pattern (left) giving rise to the Voronoi tessellation
built from irregular (distorted) hexagons (right). The corresponding Voronoi entropy of
the tessellation, demonstrated in Figure 1B also equals zero (again P; = 1;InP; = 0 is true
for this pattern). Figure 1C, in turn, depicts a semi-regular set of points (left) resulting
in a twin-tile tessellation (i.e., regular hexagons and smaller squares, right). The Voronoi
entropy of the tessellation shown in Figure 1C (left) is Syor = %ln% + %ln% = 0.6365 (two
hexagons per one square). Figure 1D demonstrates the pattern emerging from 75 randomly
placed points (left) and the Voronoi tessellation (right) arising from this pattern. The
Voronoi entropy of this pattern Syor = 1.6959 is close to the value Sy, = 1.71 established
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for the randomly distributed sets of points [25,26]. We will demonstrate that tessellations
with Syr > 1.71 are possible. Figure 1E exemplifies a regular pattern of 80 points (left),
giving rise to the Voronoi tessellation (right) with an entropy larger than that inherent for
randomly distributed points.

(A)

(B)

Figure 1. Cont.
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Figure 1. Exemplifications of the Voronoi tessellation. (A). A regular array of points (left) leads to a
regular array of square tiles (right) with the resulting Voronoi entropy Syor which equals zero. (B). A
pattern containing 66 points (left) giving to rise the Voronoi tessellation built of the hexagons only
(right); the Voronoi entropy of the pattern is zero. (C). A pattern containing 108 points (left) gives rise
to the Voronoi diagram built of regular hexagons and smaller squares (right). The Voronoi entropy of
the pattern is Syor = %ln% + %ln% = 0.6365. (D). A pattern emerged from 75 randomly located points
(left) and the corresponding Voronoi diagram (right). (E). The pattern arising from 7 x 7 translation of
the fragment highlighted with red square is shown (left). The Voronoi tessellation (right) is built from
eight types of polygons and the Voronoi entropy corresponding to the tessellation is Svor = 1.9327.

The topological argument, arising from the Euler equation for the Voronoi diagrams is
that in the limit of a large system, the average number of edges surrounding a cell is six.
This leads to the prevalence of hexagons in Voronoi diagrams emerging from large, random
sets of points [23].

2. Voronoi Partitions Generated by the AS

MATLAB software was used for the calculation of the coordinates of points on an AS
and the subsequent generation and processing of the corresponding Voronoi patterns. To
create the Voronov diagrams, we used moduli of the program developed at the Department
of Physics and Astronomy at the University of California (Department of Physics and
Astronomy University of California, Irvine) (https:/ /www.physics.uci.edu/~foams/do_
all.html, accessed on 1 January 2022).

The AS with various parameters (points density and quantity) was generated with
MATLAB software Version 9.6, (See Appendix A and Figures A1-A3 for detailed explana-
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tion). Coordinates of points on the AS in a rectangular coordinate system were defined by
the following equations:
x =r-cos(@),
y = r-sin(g).

Consider first the equidistant distribution of the points along the given AS. Parameters
r and ¢ were varied in a way providing a given distance between the neighboring points
along the spiral (p) and the coils of the spiral (g) (See Appendix A, Figure A3). The Voronoi
tessellations and Voronoi entropy were established for the aforementioned points. In the
case of a linear increase of distance between neighboring points (abbreviated in the text
NP) on the spiral, Formulae (2) were transformed into Equation (3) (see Appendix A,
this transformation was made to obtain a finite set of points and for the convenience of
further calculations):

()

Xy = ty-cos(ty),

Yn =ty -sin(ty,), ®)

where x; and y, are the coordinates of a single point on the spiral. The variable f is an
array of values that alter discretely from b to d with a step of c. Parameters b, ¢, and d
determine a finite set of coordinates for developing different AS. Parameter b sets a value
for the spiral starting point coordinates. For the sake of simplicity, we adopt b = 0 for all of
the studied patterns; this assumption corresponds to spirals starting from the coordinates’
origin. Modification of the parameters ¢ and d enables the generation of points located on
the AS with controlled distances between them. The aforementioned parameters p and gq
denoting linear dimensions were given in millimeters, and parameters b, ¢, d, and t were
dimensionless. Note that from the “physical point of view”, the dimensionless parameter
¢ = % appears. The ratio £ controls the shape of the spiral and defines the distribution of
points on it. Thus, the value of ¢ influences the properties of the Voronoi tessellation, as
demonstrated below.

Consider first the tessellations where the distance between the seed points and the
distance between the turns of the spiral are of the same order of magnitude (in other words,
the condition ¢ = 1 takes place). Voronoi tessellations arising from the AS with constant
and linearly increasing p, and the different total points number of 60, 200, and 600 are
displayed in Figure 2. It is seen that for the equidistant distribution of points on a spiral
(depicted in Figure 2A,C,E,G), the type of pattern does not change with an increase in
the total number of points N. The configuration of external (boundary) polygons changes
with the growth in the total number of points N on the spiral for the patterns with a linear
increase of NP distance.

(A) (B)

Figure 2. Cont.
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Figure 2. Voronoi diagrams arising from points located on the AS are shown. (A,C,E) depict Voronoi
diagrams for 60, 200, and 600 points, respectively, placed equidistantly on the AS; (B,D,F) depict
Voronoi diagrams arising from 60 points (c = 0.5 d = 30), 200 points (c = 0.5 d = 100), and 600 points
(c =0.5d =300) located on the AS with linearly increasing distances between them. (G,H) depict
Voronoi diagrams arising from 600 points located on Phyllotactic (sunflower) spirals [29-31]. Green
solid lines mark clockwise twisted spirals; red solid lines mark counterclockwise twisted spirals.
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Perhaps, the most surprising observations, emerge from the analysis of the pattern,
depicted in Figure 2F-H, in which both clockwise and counterclockwise twisted spirals
are distinctly recognized. Figure 2H demonstrates the Voronoi diagram resulting from
the seeds separated by the linearly increasing distance. In this case, the counterclockwise
oriented spirals (shown with red solid lines) appear along with the clockwise oriented
spirals (shown with green solid lines). Recall, that the pristine pattern is generated by the
points located on the clockwise-oriented Archimedes spiral. Thus, the increasing distance
between the seed points results in the generation of spirals with different chirality. This is
exactly the case inherent for the location of the sunflower seeds [29-31]. The appearance
of spirals with opposite chirality for the spiral with the constant radial shift of successive
points was reported in ref. [32]; the same is true for the Voronoi tessellations emerging from
such patterns, shown in Figure 2H. The ratio of the number of spirals x = % (where N4
and N_ are the number clockwise twisted spirals correspondingly) for the pattern depicted
in Figure 2F equals x = 1.923, which is close but not equal to the Fibonacci number (also

known as the golden ratio) ® = # = 1.618.

Figure 2G,H, in turn, depict the Voronoi tessellations arising from Phyllotactic spirals
based on a simple mathematical model of sunflower seed rows [29-31]. Phyllotactic spirals
emerge from Equation (2), when ¢ = 27N®, @ is the golden ratio and r = N*, « = 0.5 in
Figure 2G and « = 1 in Figure 2H. The numbers of clockwise and counterclockwise spirals in
Figure 2G,H are 55/89 and 21/34, correspondingly. These numbers appear as consequent
ones in the Fibonacci sequence.

Now we address the Voronoi (Shannon) entropy calculated for the tessellations pre-
sented in Figure 2. The distinct prevalence of hexagons is obvious for the patterns with an
equidistant distribution of points. This is an immediate consequence of Euler’s equation in
two dimensions [31]. Let us introduce the number (abbreviated NR) and the area ratios (ab-
breviated AR) of polygons on the pattern as follows: NR = % x 100%; AR = 4 x 100%,
where N, and A, are the number and area of polygons with e edges respectively, and N and
A are the total number and area covered by polygons correspondingly.

The area ratio AR of hexagons increases with the increase in the number of points from
73% for 600 points pattern to 94% for 12,000 points pattern (as illustrated in
Figures 3A,B and 4A,B). For the tessellations based on spirals with linearly increasing
distance between NP, hexagons also occupied most of the area of the pattern. For example,
for the 600 points pattern (c = 0.5, d = 300) hexagons cover up to 60% of the area, as shown in
Table 1. The AR of the hexagons increases with an increase in the total number of polygons
forming the mosaic (Figures 3C,D and 4C,D).

Figure 3. Cont.
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(D)

Figure 3. Voronoi diagrams with colored polygons are shown (grey polygons are hexagons, yellow—
pentagons, blue—heptagons, and green—tetragons). (A) A 600-points AS, equidistant points distri-
bution along the curve, (p = 1, g = 1); (B) A 12,000-points AS, equidistant points distribution along
the curve, (p =1, g = 1); (C) A 600-points AS, linear NP distance increase, (c = 0.5, d = 300); (D) A
fragment of 12,000-points AS, linear NP distance increase, (c = 1, d = 12,000).

0.8

p=1, g=1, 600 points

N
I 5
<
4 5 6 7 8 9 10
Number of Sides
(A)
¢=0.5, d=300
X
i <

3 4 5 6 7 8 9 10
Number of Sides

©

1.0
0.8
0.6

0.4
0.2
0.0

0.8
0.6
0.4
0.2

p=1, g=1, 12,000 points

4 5 6 7 8 9 10
Number of Sides
(B)
c=1, d=12,000
3 4 5 6 7 8 9 10
Number of Sides
(D)

Figure 4. The relative area occupied by different types of polygons in the tessellations is shown.
(A) the pattern shown in Figure 2A (p = 1, g = 1, 600 points), (B) the pattern shown in Figure 2B, (p = 1,
g =1,12,000 points). (A) and (B) correspond to the equidistant location of neighboring points on the
spiral. (C) the pattern shown in Figure 2C, (c = 0.5, 4 = 300), (D) the pattern shown in Figure 2D,

(c=1,d=12,000). (C,D) correspond to a linear increase of the distance between neighboring points
on the spiral.
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Table 1. Polygon distribution characteristics and Voronoi entropy.

NR, % AR, %

Number of . Figure 2B, Figure 2C, Figure 2D, . Figure 2B, Figure 2C, Figure 2D,
Polygon Figure 24, 12,000 600 Points 12,000 Figure 24, 12,000 600 points 12,000
Sides, e (ZO=01P (;11:; Points (c=0.5, Poults: (f =0, (ZO=01P (;11:; Points (p =1, (c=0.5, Points (c=1,

’ p=14g=1) d = 300) e 12’0’00) ’ g=1 d = 300) d =12,000)
3 0 0 0 0 0 0 0 0
4 0 0.01 2.15 0.01 0 3.25 x 1072 6.522 2.63 x 1076
5 13.73 3.21 16.52 455 13.73 321 18.1123 8.5875
6 73.31 93.61 67.68 92.36 73.07 93.56 61.5241 89.8156
7 12.77 3.17 13.46 3.09 12.85 3.18 13.8391 1.5969
8 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0
10 0.19 0.01 0.18 0 0.35 1.55 x 1072 2.41 x 1073 0
Svor 0.775 0.283 0.926 0.322 0.785 0.256 1.099 0.307

Equation (1) enabled the calculation of the Voronoi entropy for a given pattern. The
Voronoi entropy values were obtained for spirals with different densities of N points. The
Voronoi entropy Sy depended markedly on the entire number of points for both the
equidistant and linearly increasing distance points distribution. Consider first the patterns
arising from spirals with equidistant NP shown in Figures 2B and 3A,B demonstrates that
the Voronoi entropy Syor is mainly determined by the contributions of the blue heptagons
bordering yellow pentagons (which may be called “the defects”). Indeed, the contribu-
tion of closely packed hexagons too Syor is negligible. Hence, the value of Sy, mainly
results from the secondary spiral-like pattern created by the pairs of heptagons bordering
pentagons, as illustrated in Figure 3A,B.

Similar Voronoi mosaics, arising from the analysis of the Benard-Marangoni cells,
were reported, and discussed in Ref. [33] by Rivier et al. It was noted in ref. [33] that
penta- and heptagonal cells represent positive or negative disclinations (corresponding
to rotational dislocations, well-known in crystallography) and that they are topologically
defined objects which are structurally stable; in other words, they keep their identity under
small deformation. Rivier et al. related their appearance to the finite nature of the studied
pattern. The defects are a necessary ingredient of the finite mosaic [33]. The reported finite
mosaics are necessarily restricted by the origin (the area adjacent to the origin is “defected”,
as shown in Figure 2A,B) and the boundary points. Thus, the boundary conditions are
crucial for the formation of the resulting pattern [33]. In our case, the boundary conditions
are prescribed by the location of the seeds on the AS, given by Equations (2) and (3). Indeed,
it is recognized from Figure 3B that the larger the pattern is, the smaller the number and
area ratios of the defects. It is also seen from Figure 3A-D that pentagons attract heptagons,
as reported in Ref. [33].

Consider now the dependence Sy, (N). In the case of the equidistant location of the
seed points along the spiral (p = const), the Voronoi entropy is decreasing monotonously
with the increase of the total number of points N, with the exception of the initial part of
the curve Syor(N) as can be seen in Figure 5. For the pattern with p = 3, g = 3, we calculated
Svor (10%) 22 0.3, Spor (2.5 x 10%) = 0.2. The initial jump in the curve Sy (N) is due to the
large density of “defects” (presented as yellow pentagons and blue heptagons in Figure 3A)
appearing at the initial stage of spiral formation. The density of these “defects” decreases
with the growth of the total number of points N, leading to the monotonic decrease in the
resulting Voronoi entropy of the pattern.
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Voronoi entropy, S,
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0

1000 2000 3000 4000 5000 6000
Number of points on the Archimedes spiral, N

Figure 5. The dependence of the Voronoi entropy calculated for patterns arising from the equidistant
distribution of points located on the AS on the total number of points N is shown (p =3, 9=3, N
varies from 20 to 6000 with a step of 20).

The Voronoi entropy for the patterns based on a spiral with the linear increase of dis-
tance between neighboring points demonstrates a saw-like pattern, depicted in Figure 6A,
while tending to decrease with the increase of the entire number of points N. The saw-like
behavior of the curve Syo,(N) is reasonably explained as follows: the bordering heptagons
and pentagons form the ring-like secondary pattern, contributing markedly to the Syor(N).
The appearance of these rings (introducing geometrical disorder into the pattern) increases
the value of Syor(N), resulting in the saw-like dependence of the function Syor(N).

We relate the origin of these peaks’ appearance to the appearance of irregularities
on the Voronoi diagrams. Two kinds of irregularities (defects) inherent in AS-inspired
Voronoi diagrams should be distinguished, the first of which is the fringe of a Voronoi
pattern formed by open (incomplete) polygons. The fringe effect on the Voronoi entropy
is essential for patterns consisting of a small number of points (polygons, respectively).
The second type of irregularity is represented by the aforementioned “defected areas” of
a pattern (colored blue and yellow in Figure 3D). These irregularities appear as circles of
pentagons bordering heptagons recognized on the background filled with hexagons [33].
The well-ordered nature of the defective areas are noteworthy. With an increase in the
number of points, the distance between irregular circles is growing, as shown in Figure 3B.
The growth of the distance between blue/yellow circles leads to a consequent decrease in
the Voronoi entropy of the entire pattern.

It is also noteworthy that in the case of linearly increasing distance between the
adjacent seed points, it is possible to select values of parameters ¢ and d (for example
consider the case of ¢ = 20, d = 40,000) resulting in the disappearance of irregularities built
of pentagons and heptagons (this occurs for N > N*, where N* is the threshold value of
points, corresponding to two or three central rings). In this case, the value of the Voronoi
entropy falls faster and asymptotically tends to zero. When N — co the role of the central
area of the spiral becomes negligible and Sy, — (0 + 1/00). Consequently, the Voronoi
entropy Syor(N) does not show the saw-like behavior when the “defected circles” are absent,
as shown in Figure 6B. This possibility to fill a plane with cells of equal size is of primary
importance for phyllotaxis (leaf or floret arrangement) and for decorative arts [33].
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Figure 6. Voronoi entropy changes with the increasing number of points Syor(N) for the AS with
e linearly increasing distance between neighboring points is shown. (A) Parameters of the pattern:
¢ =1, d varies from 20 to 11,000 with a step of 20. (B) Parameters of the pattern: ¢ = 20, d varies from
20 to 400 with a step of 20, from 400 to 1000 with a step of 50 and from 1000 to 7000 with a step of 200.

3. The Aboav and Lewis Laws for the Patterns Inspired by the Archimedes Spiral

The Aboav law validity for the mosaics generated by AS was verified. This law, which
was obtained empirically first for grains in polycrystals, has also been shown to be valid
for soap froth and some living cells [1,5,34,35]. It describes the regularities of the mutual
arrangement of the different polygons on a two-dimensional plane. The Aboav law states
that the mean number of sides of polygons (labeled ;) bordering the polygon with n-edges
is given by Equation (4) [1]:

8
my =5+ P 4)

In other words, the few-edged cells have a remarkable tendency to be in contact with
many-edged cells and vice versa. The critics, derivation, and consequences of the Aboav
law are discussed in Refs [1,24,30,31]. The values of m, were calculated for the pattern with
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a linear increase of distance between NP (c = 1, d = 500) and the pattern with equidistant
points distribution (p = 3, g = 3, N = 500). All of the obtained m, values were lower than
those calculated with Formula (4) as shown in Figure 7. Thus, the Aboav law, supplied
by Equation (4) does not work for the Voronoi patterns inspired by AS. We relate this
observation to the non-random distribution of points on the studied mosaics.

7 o

6.5

/
»

m,
(@)
>
(<3

® 0
o

*®

o

5.5

n

Figure 7. Variation of m, with the number of polygon sides n is shown. Black circles—values of 1,
calculated with the Aboav law (Equation (4)); red triangles are the average values of 1, obtained
for the pattern with linearly increasing NP distance (c = 1, d = 500), blue diamonds are the average
values of m;,, obtained for the pattern with equidistant points distribution (p = 3, ¢ = 3, N = 500).

On the other hand, the mean values of m,, for the AS-inspired patterns tend to decrease
with the increase in the number of sides of the corresponding polygon, as qualitatively
predicted by the Aboav law [1,5,23,35].

Another important statistical law, established for 2D patterns, is the Lewis law, re-
ported for natural and artificial patterns [5,36,37]. The Lewis law predicts a linear relation-
ship between the average area of a typical n-cell, A, and 7 in a random pattern:

Ap=a(n —2), ©)

where a is a proportionality constant, whose meaning and precise value can be found in
Ref. [35]. The Lewis law quite expectably does not work for mosaics generated by AS when
p ~ g. For the patterns based on equidistant NP distribution, polygon areas have a constant
mean value of 9.0 + 0.01 mm? all over the pattern. In the case of patterns with linearly
increasing NP distance, the areas of polygons on spiral coils grow with the distance from
the origin of a spiral.

4. Patterns Generated by Archimedes Spirals and the Maximal Voronoi Entropy

Consider patterns with an equidistant distribution of points, in which the NP distance
p is much greater (an order of magnitude) than the distance between the turns of a spiral
g. When p >> g and correspondingly ¢ > 1 takes place, we assume ¢ = k7r + Ap, where
k is a positive integer. Two examples of such patterns are shown in Figure 8A,B. Such
patterns contain more kinds of polygons than patterns, where p = g and correspondingly
¢ = 1is adopted. Eight types of polygons constituting these mosaics were registered, when
¢ > 1. It should be emphasized that hexagons do not prevail when ¢ >> 1 takes place (see
Figure 8A,B,E,F).
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Figure 8. Patterns containing N = 400 points for which p >> g takes place are shown. (A) p = 24.52,
g =3, N =1000, Spor = 1.825; (B) p =25, g = 3, N = 1000, Syor = 1.688. Color mapping: magenta
polygons are triangles, green—tetragons, yellow—pentagons; grey—hexagons, blue—heptagons;
brown—octagons, teal—nonagons, and red—decagons. (C,D) figures depict the location of the seed
points. (E,F) figures depict the distribution of polygon kinds in the patterns shown in Figure 8A,B
correspondingly.
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The patterns, where p >> g, are interesting because while not being random, they show
high Voronoi entropy values that are close to the value of 1.71, which is considered as maxi-
mum inherent for a random pattern [25,26]. Figure 8A depicts the pattern demonstrating
the Voronoi Entropy Syor = 1.825. The maximal value of the Voronoi entropy Syor = 1.888
was registered for the pattern (p = 24.6131, g = 3, N = 80), presented in Figure 9A, which
is markedly higher than the value reported for random patterns [25,26]. The value of the
Voronoi entropy may even be extended to larger values. Consider the pattern arising from
the seven-fold X and sevenfold Y translation of the pattern shown in Figure 9A. Such
a procedure gave rise to the Voronoi diagram shown in Figure 9B built from 8 types of
polygons and characterized by the Voronoi entropy Syor = 1.9327, which is much larger
than that, established for random point patterns [25,26].
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Figure 9. 80 points pattern (p = 24.6131, g = 3, N = 80) (A) giving rise to the Voronoi tessellation
including 7 types of polygons demonstrating the Voronoi Entropy Sy = 1.8878 is shown (B). (Color
mapping: magenta polygons are triangles, green are tetragons, yellow are pentagons; grey are
hexagons, blue are heptagons; brown are octagons, teal are nonagons). (C). Voronoi tessellation
arising from 7 x 7 translation of the pattern shown in Figure 9A is shown. The Voronoi tessellation
is built from eight types of polygons and the Voronoi entropy corresponding to the tessellation is
Sypor = 1.9327.
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This finding poses the following fundamental question: it is well-accepted that the
Voronoi Entropy quantifies ordering in 2D patterns [2,10,22,23]. It is reasonable to conjecture
that the maximal disorder corresponds to the random distribution of seed points over
the plane. Hence, the maximal possible Voronoi Entropy is expected for the random
distribution of points. At the same time, patterns depicted in Figure 9 are ordered, however
possessing the Voronoi Entropy markedly higher than S,,, = 1.71, established for the
random patterns [25,26]. How is this possible? This question calls for additional theoretical
insights. Actually, it is well-known that the Voronoi entropy may be larger than 1.71. The
maximal value of the Voronoi entropy for the mosaics built from n kinds of polygons
corresponds to a pattern at which equipartition of polygons takes place (their appear % of
all kinds of n-polygons in the pattern) [27]. In this case, the maximal value of the Voronoi
entropy is given by St = In(n) [27], and it obviously may be larger than Sy, = 1.71,
inherent for a random 2D pattern [25,26]. Table 2 displays the typical distributions of
polygons in the tessellations discussed in the text, where the Voronoi entropy ranges from
0.64 to 1.93.

Table 2. Typical distributions of the polygons for tessellations considered in the text Syor < 1.71,
Svor &= 1.71 m Syor > 1.71 are considered.

Distribution of Polygons for the Considered Patterns Total Number of
Sovor (“3” Denotes Triangles, “4”—Quadrangles, etc.) Polygons in the
3 4 5 6 7 8 9 10 Given Pattern.
0.6365 25 50 75
1.6959 1 9 14 11 10 3 2 50
1.7104 3 10 20 22 17 7 2 81
1.8878 6 10 9 10 7 6 3 51
19327 301 532 855 684 463 588 219 84 3726

We also have checked the validity of the Lewis law [5,36,37] for the patterns char-
acterized by the p >> g interrelation (see Figure 10). In this case, the dependence An(n)
demonstrates the linear part, predicted by the Lewis law (see Equation (5)), as shown in
Figure 10.

140 ¢
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0 1 1 1 1 1 1 1 1 J
2 3 4 5 6 7 8 9 10 11

Polygon sides quantity, n

Mean Area, mm?>

Figure 10. Variation of mean area A, on the number of polygon sides n for the pattern depicted in
Figure 8A is shown.

5. Voronoi Diagrams Arising from Archimedes Spirals Demonstrating an
Aesthetic Appeal

The Voronoi diagrams depicted in Figure 11A-D demonstrate definite aesthetic ap-
peal. The aesthetic attractiveness of the AS was already known to Neolithic artists [38].
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Remarkably AS holds its aesthetic appeal in the XXI century [3]. The very question is why
do the spirals demonstrate obvious aesthetic appeal. The true answer could not be covered
by physics and mathematics only, but also enrooted in psychology [20]. We allow ourselves
to put forward the following hypothesis: the aesthetic appeal and abundance of spirals in
nature are probably related to their simplicity and self-similarity (the equation describing
AS is one of the simplest possible). Simplicity and self-similarity are not synonymous
but bordering notions [19,21,28,39]. Mathematicians have customarily regarded a proof
as beautiful if it conformed to the classical ideals of brevity and simplicity [39]. Similarly,
Michael Atiyah claims that “elegance is more or less synonymous with simplicity” [39].
We are quoting from Ref. [19] “The mathematical concept of similarity holds one of the
keys to understanding the processes of growth in the natural world. As a member of a
species grows to maturity, it generally transforms in such a way that its parts maintain
approximately the same proportion concerning each other, and this is probably a reason
why nature is often constrained to exhibit self-similar spiral growth”. AS and AS-inspired
Voronoi mosaics exemplify simple, self-similar structures. This at least partially explains
their aesthetic appeal. The concept of “beauty as simplicity” was strongly criticized re-
cently [39]; thus, additional insights into the understanding of the aesthetic appeal of
spiral-inspired patterns are necessary.

T
NSV Y
A

95 % \
) @s
el =ay,
,"‘;" =57

(A)

(B)

Figure 11. Cont.
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©

Figure 11. Voronoi tessellations demonstrating definite aesthetic appeal are shown. The tessellations
were built on equidistant points distribution on AS for which p >> g takes place. (A) p =19.75,9 = 3;
(B)p=66,q9=23;(C) p="72.5, g =3. Color mapping: green polygons are tetragons, yellow—are pen-
tagons, grey—hexagons, blue—heptagons, brown—octagons, teal—nonagons, and red—decagons.

6. Discussion

Patterns, depicted in Figures 10 and 11 create a sense of inherent “order”. In our
discussion, we address the following fundamental question: how orders may be quantified?
In other words: which of n given patterns is more ordered? It turns out, that an answer
to this question has a fine structure, and different measures of order appearing in 2D
patterns were already suggested. Between these measures are the Voronoi (Shannon)
entropy, continuous measure of symmetry [40,41], the areal disorder factor [42] and the
shape factor [42-45]. For example, the shape factor of the i-th Voronoi cell is defined as:

2
R
Yi= fon (6)

where p; is the circumference of the i-th cell and A; is its area [42—45]. The shape factor is a
dimensionless quantity that describes the shape of the cell, independently of its size (which
is sensitive to the inter-particle distance) and characterizes the circularity of a cell because
y; = 1 for a circle and ; > 1 for any other polygonal shape [42-45].

It was already demonstrated that the continuous measure of symmetry and the Voronoi
(Shannon) entropy is not necessarily correlated [46,47]. Moreover, they may demonstrate
anti-correlation [46,47]. The very question is: what is the correlation between the shape
factor, Voronoi entropy and continuous measure of symmetry? We plan to address this
question in our future research. Meanwhile, we conclude that the ordering of 2D patterns
has a fine structure and could not be quantified with a single numerical parameter.

7. Conclusions

We conclude that the Voronoi diagrams generated by seed points located on the
Archimedes Spirals demonstrate non-trivial mathematical properties and aesthetic at-
traction. Equidistant seed point distribution and points separated by linearly increasing
distance generated very different Voronoi diagrams. Voronoi entropy calculated for the
equidistant seed points located on the Archimedes Spiral decreased monotonously with
the increase in the number of seeds. The Voronoi entropy calculated for points separated
by linearly increasing distance demonstrated a saw-like behavior. It is possible to fill a
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plane with Voronoi mosaics built from cells of equal size which is of primary importance
for phyllotaxis and the decorative arts.

The properties of the Voronoi tessellation are, too much extent, governed by the
parameter ¢ = % where p and g are the distance between the points neighboring the spiral
and the separation between the coils of the spiral, respectively. When the condition § = 1 is
assumed, hexagons dominate the mosaic; whereas eight types of polygons were registered
when the condition ¢ > 1 was prescribed. For the patterns characterized by ¢ >> 1 the
ordered patterns were revealed, demonstrating Voronoi entropy markedly larger than that
of 1.71, reported for the random distribution of points [25,26].

The situation becomes more interesting for non-equidistant patterns, in which seed
points are separated by the linearly growing radial distance. In this case, the switch of
chirality of spirals constituting the pattern was observed; both clockwise and counterclock-
wise spirals were observed. Thus, patterns resembling phyllo-tactic (sunflower-like) ones
were generated [29-31].

Archimedes Spirals can generate Voronoi diagrams that fill a plane with equal size cells.
This possibility is also of primary importance for phyllotaxis (as exemplified by leaf or floret
arrangement) [33]. Voronoi tessellations generated by the phyllotaxis-inspired patterns
are addressed. The Aboav and Lewis laws generally do not hold for the Voronoi mosaics
generated by the Archimedes Spirals. We explain this observation by the non-random
distribution of seed points inherent in the studied patterns. The presented analysis applies
to a diversity of soft matter problems, in which Archimedes Spirals appear. In particular, it
was demonstrated, that confined chemical garden patterns formed an Archimedean spiral
structure [48]. Propagating Archimedes spiral waves, form as a result of this strong complex
light-matter interaction in anisotropic soft matter systems [49]. Non-point nature of real
physical objects, such as sunflower grains impose limitations on the Voronoi tessellations
analysis [50-52].

The Voronoi mosaics inspired by Archimedes’ Spirals demonstrate definite aesthetic
appeal [3,20,28,38]. We relate, at least partially, the aesthetic attraction of the reported
mosaics to their simplicity and self-similarity [16,21]. In our future work, we plan to
consider symmetry considerations applied to the analysis of Voronoi diagrams inspired by
the Archimedes Spirals.
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Appendix A

Coordinates of points on AS in a rectangular coordinate system can by defined by the
following equations:

x =r-cos(),

y =r-sin(g).

In the case of a linear increase of distance between NP we increased parameters r

and ¢ discretely from b (which was equal to O for all the studied patterns) to d with a

step of c. Thus, the magnitude of the r increment was constant and equal to ¢ in each of

(A)
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the subsequent steps (See Figure A1). The magnitude of the angle ¢ increment was also
constant and equal to ¢ (See Figure A2). These parameters were matrixes of the same size
varied in the same way. Therefore, in our MATLAB routine, parameters r and ¢ were
substituted by a single parameter denoted ¢ as follows:

(A2)

Figure A1. The change in r is shown.

Figure A2. The change in ¢ is shown.
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Figure A3. Parameters p and q of the points’ distribution along the Archimedean spiral are shown.

In the case of equidistant points’ distribution prescribed along the Archimedean spiral,
we increased r and ¢ in a way to keep parameters p and g constant. To achieve this, we had
to reduce the increment of the angle in each step.
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