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Abstract: For a nonnegative integer p, we give explicit formulas for the p-Frobenius number and
the p-genus of generalized Fibonacci numerical semigroups. Here, the p-numerical semigroup Sp

is defined as the set of integers whose nonnegative integral linear combinations of given positive
integers a1, a2, . . . , ak are expressed in more than p ways. When p = 0, S0 with the 0-Frobenius
number and the 0-genus is the original numerical semigroup with the Frobenius number and the
genus. In this paper, we consider the p-numerical semigroup involving Jacobsthal polynomials, which
include Fibonacci numbers as special cases. We can also deal with the Jacobsthal–Lucas polynomials,
including Lucas numbers accordingly. An application on the p-Hilbert series is also provided. There
are some interesting connections between Frobenius numbers and geometric and algebraic structures
that exhibit symmetry properties.
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Apéry set; denumerants; Hilbert series

MSC: 11D07; 20M14; 05A17; 05A19; 11D04; 11B68; 11P81

1. Introduction

Given the set of positive integers A := {a1, a2, . . . , ak} (k ≥ 2), for a nonnegative
integer p, let Sp be the set of integers whose nonnegative integral linear combinations
of given positive integers a1, a2, . . . , ak are expressed in more than p ways. For some
backgrounds of the number of representations, see, e.g., [1–5]. For a set of nonnegative
integers N0, the set N0\Sp is finite if and only if gcd(a1, a2, . . . , ak) = 1. Then there exists
the largest integer gp(A) := g(Sp) in N0\Sp, which is called the p-Frobenius number. The
cardinality of N0\Sp is called the p-genus and is denoted by np(A) := n(Sp). The sum of
the elements in N0\Sp is called the p-Sylvester sum and is denoted by sp(A) := s(Sp). This
kind of concept is a generalization of the famous Diophantine problem of Frobenius ([6–8])
since p = 0 is the case when the original Frobenius number g(A) = g0(A), the genus
n(A) = n0(A) and the Sylvester sum s(A) = s0(A) are recovered. Sp can then be called
the p-numerical semigroup. Strictly speaking, when p ≥ 1, Sp does not include 0, since the
integer 0 has only one representation, so it satisfies simply additivity and the set Sp ∪ {0}
becomes a numerical semigroup. For numerical semigroups, we refer to [9–11].

Additionally, there exist different extensions of the Frobenius number and genus, even
in terms of the number of representations called denumerant. For example, some consider
S∗p as the set of integers whose nonnegative integral linear combinations of given positive
integers a1, a2, . . . , ak are expressed in exactly p ways (see, e.g., [12,13]). Consequently, the
corresponding p-Frobenius number g∗p(A) is the largest integer that has exactly p distinct
representations. However, in this case, g∗p(A) does not necessarily increase as p increases.
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For example, when A := {2, 5, 7}, g∗17(2, 5, 7) = 43 > g∗18(2, 5, 7) = 42. In addition, for
some p, g∗p may not exist. For example, g∗22(2, 5, 7) does not exist because there is no
positive integer whose number of representations is exactly 22. Similarly, the p-genus may
be also defined in different ways. For example, n∗p(A) can be defined as the cardinality
of [`p(A), gp(A) + 1]\Sp(A), where `p(A) is the least element of Sp(A). However, in our
definition of np(A) as the cardinality of [0, gp(A) + 1]\Sp(A), one can use the convenient
formula arising from the p-Apéry set in order to obtain np(A). See the next section for detail.

In [14], numerical semigroups generated by {a, a + b, aFk−1 + bFk} are considered.
Using a technique of Johnson [15], the Frobenius numbers of such semigroups are found as
a generalization of the result by Marin et al. [16].

In this paper, for a positive integer v, we treat with Jacobsthal polynomials Jn(v),
defined by the recurrence relation Jn(v) = Jn−1(v) + vJn−2(v) (n ≥ 2) with J0(v) = 0
and J1(v) = 1 (see, e.g., [17] (Chapter 44)). When v = 1, Fn = Jn(1) are Fibonacci num-
bers. When v = 2, Jn = Jn(2) are Jacobsthal numbers. Then, we give explicit formulas
of p-Frobenius numbers for A := {a, va + b, vaJk−1(v) + bJk(v)}, where a and b are pos-
itive integers with gcd(a, b) = 1 and a, k ≥ 3. If a = Ji(v) and b = Ji+1(v), then by
vJi(v)Jk−1(v) + Ji+1(v)Jk(v) = Ji+k(v), we get A = {Ji(v), Ji+2(v), Ji+k(v)}. Hence, the
results in [18] are recovered as special cases. In addition, if v = 1, the results in [16,19] are
recovered as special cases.

For k = 2, that is, the case of two variables, closed formulas are explicitly given
for g0(A) ([8]), n0(A) ([6]) and s0(A) ([20]; its extension [21]). However, for k ≥ 3, the
Frobenius number cannot be given by any set of closed formulas which can be reduced to a
finite set of certain polynomials ([22]). For k = 3, various algorithms have been devised
for finding the Frobenius number ([15,23,24]). Some inexplicit formulas for the Frobenius
number in three variables can be seen in [25]. Even in the original case of p = 0, it is
very difficult to give a closed explicit formula of any general sequence for three or more
variables (see, e.g., [24,26–28]). Indeed, it is even more difficult when p > 0. However,
finally, we have succeeded in obtaining the p-Frobenius number in triangular numbers [29]
and repunits [30] as well as Fibonacci and Lucas triplets [19] and Jacobsthal triples [18]
quite recently.

It is well-known that the Fibonacci sequence exhibits a certain symmetry property
known as self-similarity, where the pattern of the sequence repeats itself in smaller and
smaller scales. There are some interesting connections between Frobenius numbers and
geometric and algebraic structures that exhibit symmetry properties ([31–33]), some of
which are found in this paper. In the context of Lotka–Volterra models, the Frobenius
number may be relevant in determining the stability of equilibria or the number of limit
cycles in the system. This can in turn affect the occurrence of bifurcations. In addition, the
Frobenius number may be used in models that seek to predict the behavior of financial
markets based on historical data.

The structure of the paper is as follows. In Section 2, we prepare a concept for the
p-Apéry set and convenient formulas using its elements, which we will use afterwards.
In Section 3, we prove the main theorem about the p-Frobenius number on Jacobsthal
polynomials. We first set up the structure of the p-Apéry set when p = 0 and, based on it,
we determine the structures of the p-Apéry set when p = 1, 2, . . . . Once the structure of the
p-Apéry set is known, the formula prepared in Section 2 is used to find the p-Frobenius
number. By looking at the tables in Section 3, one will have a better understanding of how
the p-Frobenius number is found. In Section 4, by using the structure of the p-Apéry set
discussed in Section 3 and the formula prepared in Section 2, we find the p-genus. In a
similar manner, we can also find the p-Sylvester number but we leave it out as the result
will only be complicated. In Section 4, we show the corresponding results with respect
to the Jacobsthal–Lucas polynomials. In Section 5, we give an application concerning the
p-Hilbert series that play an important role in the numerical semigroup. In Section 6, we
discuss future works.
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2. Preliminaries

We introduce the Apéry set (see [34]) below in order to obtain the formulas for gp(A),
np(A) and sp(A) technically. Without loss of generality, we assume that a1 = min(A).

Definition 1. Let p be a nonnegative integer. For a set of positive integers A = {a1, a2, . . . , ak}
with gcd(A) = 1 and a1 = min(A) we denote by

App(A) = App(a1, a2, . . . , ak) = {m
(p)
0 , m(p)

1 , . . . , m(p)
a1−1} ,

the p-Apéry set of A, where m(p)
i is the least positive integer of Sp(A), satisfying m(p)

i ≡ i

(mod a1) (0 ≤ i ≤ a1 − 1) (that is, m(p)
i ∈ Sp(A) and m(p)

i − a1 6∈ Sp(A)).

Note that m(0)
0 is defined to be 0.

It follows that, for each p,

App(A) ≡ {0, 1, . . . , a1 − 1} (mod a1) .

Even though it is hard to find any explicit form of gp(A) as well as np(A) and sp(A)
when k ≥ 3, by using convenient formulas established in [35,36], we can obtain such values
for some special sequences (a1, a2, . . . , ak) after finding any regular structure of m(p)

j is hard
enough in general. One of the applicable formulas is on the power sum

s(µ)p (A) := ∑
n∈N0\Sp(A)

nµ

by using Bernoulli numbers Bn defined by the generating function

x
ex − 1

=
∞

∑
n=0

Bn
xn

n!
,

and another applicable formula is on the weighted power sum ([37,38])

s(µ)λ,p(A) := ∑
n∈N0\Sp(A)

λnnµ

by using Eulerian numbers
〈 n

m
〉

appearing in the generating function

∞

∑
k=0

knxk =
1

(1− x)n+1

n−1

∑
m=0

〈 n
m

〉
xm+1 (n ≥ 1)

with 00 = 1 and
〈

0
0

〉
= 1. Here, µ is a nonnegative integer and λ 6= 1. From these formulas,

many useful expressions are yielded as special cases. Some useful ones are given as follows.
Formulas (2) and (3) are entailed from s(0)λ,p(A) and s(1)λ,p(A), respectively.

Lemma 1. Let k, p and µ be integers with k ≥ 2, p ≥ 0 and µ ≥ 1. Assume that
gcd(a1, a2, . . . , ak) = 1. We have

gp(a1, a2, . . . , ak) =

(
max

0≤j≤a1−1
m(p)

j

)
− a1 , (1)

np(a1, a2, . . . , ak) =
1
a1

a1−1

∑
j=0

m(p)
j −

a1 − 1
2

, (2)
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sp(a1, a2, . . . , ak) =
1

2a1

a1−1

∑
j=0

(
m(p)

j
)2 − 1

2

a1−1

∑
j=0

m(p)
j +

a2
1 − 1
12

. (3)

Remark 1. When p = 0, the Formulas (1)–(3) reduce to the formulas by Brauer and Shock-
ley [39] [Lemma 3], Selmer [40] [Theorem], and Tripathi [41] [Lemma 1] (there was a typo but it
was corrected in [42]), respectively:

g(a1, a2, . . . , ak) =

(
max

0≤j≤a1−1
mj

)
− a1 ,

n(a1, a2, . . . , ak) =
1
a1

a1−1

∑
j=0

mj −
a1 − 1

2
,

s(a1, a2, . . . , ak) =
1

2a1

a1−1

∑
j=0

(mj)
2 − 1

2

a1−1

∑
j=0

mj +
a2

1 − 1
12

,

where mj = m(0)
j (1 ≤ j ≤ a1 − 1) with m0 = m(0)

0 = 0.

3. Main Results

Determine integers q and r by a = qJk(v) + r with 0 ≤ r < Jk(v). The function bxc
denotes the largest integer that does not exceed x.

Theorem 1. Let a and b be positive integers with a ≥ 3 and gcd(a, b) = 1. Then, for a positive
integer k ≥ 3, and 0 ≤ p ≤ ba/Jk(v)c we have

gp
(
a, va + b, vaJk−1(v) + bJk(v)

)

=


(a− 1)b + a

(
v(r− 1)− 1

)
+

va(a−r)Jk−1(v)
Jk(v)

+ p
(
vaJk−1(v) + bJk(v)

)
if a < Jk(v) or (va + b)r > va

(
Jk(v)− Jk−1(v)

)
;

(a− r− 1)b + va(Jk(v)− Jk−1(v)− 1)− a + va(a−r)Jk−1(v)
Jk(v)

+p
(
vaJk−1(v) + bJk(v)

)
if a ≥ Jk(v) and (va + b)r < va

(
Jk(v)− Jk−1(v)

)
,

where r = a− ba/Jk(v)cJk(v).

For example, if k = 3 and v = 1, then for 0 ≤ p ≤ ba/2c we have

gp(a, a + b, aF2 + bF3)

=


(a− 1)b +

a(a− 3)
2

+ p(a + 2b) if a is odd;

(a− 1)b +
a(a− 2)

2
+ p(a + 2b) if a is even .

3.1. The Case p = 0

In this triple {a, va + b, vaJk−1(v) + bJk(v)}, we can use the similar framework to one
in [18] to construct the elements of the p-Apéry set. Nevertheless, it is very important to see
that such a framework is not always possible. For example, referring to [29] may call for a
different structure. No structure has been analyzed for most other triples, so no explicit
formula has been found for them.

Consider the expression

ty,z := y(va + b) + z
(
vaJk−1(v) + bJk(v)

)
.
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We see that q = ba/Jk(v)c. Then all the elements in the 0-Apéry set are represented as
in Table 1.

Table 1. Ap0(a, va + b, vaJk−1(v) + bJk(v)).

t0,0 · · · · · · · · · tJk(v)−1,0
t0,1 · · · · · · · · · tJk(v)−1,1

...
...

t0,q−1 · · · · · · · · · tJk(v)−1,q−1
t0,q · · · tr−1,q

Since ti+1,j − ti,j ≡ b (mod a) and t0,j+1 − tJk(v)−1,j ≡ b (mod a), the sequence

t0,0, t1,0, . . . , tJk(v)−1,0, t0,1, t1,1, . . . , tJk(v)−1,1, . . .

t0,q−1, t1,q−1, . . . , tJk(v)−1,q−1, t0,q, . . . , tr−1,q

is equivalent to the sequence {`b (mod a)}a−1
`=0 in a way that keeps this order completely.

Since gcd(a, b) = 1 (otherwise, gcd(A) > 1), all the elements appearing in Table 1 constitute
a complete residue system modulo a

(
= qJk(v) + r

)
.

It is clear that the largest element in Ap0(A), where A := {a, va + b, vaJk−1(v) +
bJk(v)}, is tr−1,q or tJk(v)−1,q−1. If a < Jk(v), by q = 0, the largest element is tr−1,q = ta−1,q.
Otherwise, by q > 0, compare two values. The inequality tr−1,q > tJk(v)−1,q−1 holds if and
only if (va + b)r > va

(
Jk(v)− Jk−1(v)

)
. Hence, if (va + b)r > va

(
Jk(v)− Jk−1(v)

)
, then by

Lemma 1 (1) we have

g0(A) = tr−1,q − a

= (a− 1)b + a
(
v(r− 1)− 1

)
+

va(a− r)Jk−1(v)
Jk(v)

.

If (va + b)r < va
(

Jk(v)− Jk−1(v)
)
, then we have

g0(A) = tJk(v)−1,q−1 − a

= (a− r− 1)b + va(Jk(v)− Jk−1(v)− 1)− a +
va(a− r)Jk−1(v)

Jk(v)
.

Note that (va + b)r 6= vs.a
(

Jk(v)− Jk−1(v)
)

because gcd(a, b) = 1.

3.2. The Case p = 1

We assume that a ≥ Jk(v) from now on. If a < Jk(v), the situation becomes more and
more complicated by requiring a lot of case-by-case discussion for p ≥ 1. So, the discussion
that follows does not apply.

All the elements in Ap1(A) can be determined from those in Ap0(A). Only those
elements that have the same residue modulo a as those in the top row of Ap0(A) are
arranged in order in the form of filling gaps under the same block. Elements that have the
same residue modulo a as the other elements of Ap0(A) are arranged in a row shift up to
the immediately adjacent block. This is shown in Table 2.

This fact is supported by the congruence relationships

ty,z ≡ ty+Jk(v),z−1 (mod a)

(0 ≤ y ≤ Jk(v)− 1, 0 ≤ z ≤ q− 1; 0 ≤ y ≤ r− 1, z = q) ,

ty,0 ≡ ty+r,q (mod a) (0 ≤ y ≤ Jk(v)− r− 1) ,

tJk(v)−r+y,0 ≡ ty,q+1 (mod a) (0 ≤ y ≤ r− 1) .
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Table 2. Ap1(A) from Ap0(A).

t0,0 t1,0
· · · · · ·

tJk(v)−1,0
tJk(v),0 tJk(v)+1,0 · · · · · · t2Jk(v)−1,0

t0,1 t1,1 · · · · · · tJk(v)−1,1 tJk(v),1 tJk(v)+1,1 · · · · · · t2Jk(v)−1,1

t0,2 t1,2 · · · · · · tJk(v)−1,2
...

...
...

...
...

... tJk(v),q−2 tJk(v)+1,q−2 · · · · · ·
�� ��t2Jk(v)−1,q−2

t0,q−1 t1,q−1 · · · · · · tJk(v)−1,q−1 tJk(v),q−1 · · ·
�� ��tJk(v)+r−1,q−1

t0,q · · · tr−1,q tr,q · · ·
�� ��tJk(v)−1,q

t0,q+1 · · ·
�� ��tr−1,q+1

In addition, each element of Ap1(A) has two representations in terms of a, va + b and
vaJk−1(v) + bJk(v), because

ty+Jk(v),z−1 =
(
y + Jk(v)

)
(va + b) + (z− 1)

(
vaJk−1(v) + bJk(v)

)
= v

(
Jk(v)− Jk−1(v)

)
a + y(va + b) + z

(
vaJk−1(v) + bJk(v)

)
,

ty+r,q = (y + r)(va + b) + q
(
vaJk−1(v) + bJk(v)

)
=
(
va + b− q

(
Jk(v)− Jk−1(v)

))
a + y(va + b) ,

ty,q+1 = y(va + b) + (q + 1)
(
vaJk−1(v) + bJk(v)

)
=
(
va + b− (q + 1)v2 Jk−2(v)

)
a +

(
y + Jk(v)− r

)
(va + b) .

Notice that (va+ b− q
(

Jk(v)− Jk−1(v)
)
> 0 and va+ b− (q+ 1)v2 Jk−2(v) > 0 because

a = qJk(v) + r and Jk(v) = Jk−1(v) + vJk−2(v).
There are four candidates to take the largest value in Ap1(A):

tr−1,q+1, tJk(v)−1,q, tJk(v)+r−1,q−1, t2Jk(v)−1,q−2 .

However, since 2vs.aJk−1(v)+ bJk(v) > vaJk(v), we can see that tr−1,q+1 > tJk(v)+r−1,q−1
and tJk(v)−1,q > t2Jk(v)−1,q−2. In addition, tr−1,q+1 > tJk(v)−1,q if and only if (va + b)r >

va
(

Jk(v)− Jk−2(v)
)
. Hence, if (va+ b)r > a

(
Jk(v)− Jk−1(v)

)
, then by Lemma 1 (1) we have

g1(A) = tr−1,q+1 − a

= (a− 1)b + a
(
v(r− 1)− 1

)
+

va(a− r)Jk−1(v)
Jk(v)

+
(
vaJk−1(v) + bJk(v)

)
.

If (va + b)r < a
(

Jk(v)− Jk−1(v)
)
, then we have

g1(A) = tJk(v)−1,q − a

= (a− r− 1)b + va(Jk(v)− Jk−1(v)− 1)− a

+
va(a− r)Jk−1(v)

Jk(v)
+ (vaJk−1(v) + bJk(v)) .

3.3. The Case p ≥ 2

When p ≥ 2, in a similar manner, each element of App(A) is determined by the
corresponding element with the same residue modulo a in App−1(A). In each block with a
lateral length of Jk(v), the elements in the top row in App−1(A) are arranged in order to fill
the gap below the left-most block in App(A). The other elements of App−1(A) are shifted
directly to the right block by one in App(A).

In Table 3, n© denotes the area of elements in Apn(A). Here, each m(n)
j , satisfying

m(n)
j ≡ j (mod a) (0 ≤ j ≤ a− 1), can be expressed in at least n + 1 ways but m(n)

j − a
in at most n ways. Each element of Ap3(A) existing in the second block to the fourth
block corresponds to each element having the same residue of Ap2(A) existing in the block
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immediately to the left thereof in a form of shifting up one step. The Jk(v) elements of
Ap3(A) existing over two rows (or one row) at the bottom of the first block correspond to
the Jk(v) elements with the same residue of Ap2(A) at the top of the third block. Therefore,
since all the elements in Ap2(A) form a complete remainder system, so is Ap3(A). It can
be shown that all the elements of Ap3(A) have exactly four ways of being expressed in
terms of a, va + b and vaJk−1(v) + bJk(v). Within each region of Ap3(A), one of the two
leftmost (lower left) elements tr−1,q+3 and tJk(v)−1,q+2 is the largest so, by comparing these
elements, the largest element of Ap3(A) can be determined.

Table 3. App(A) (p = 0, 1, 2, 3) for q ≥ 3.

2© 3©
1©

0© 3©
2© 3©

1© 2© 3©
1© 2© 3©
2© 3©
3©

Such a structure of App(A) continues as long as p ≤ ba/Jk(v)c = q. Eventually, the
largest element in App(A) is tr−1,q+p or tJk(v)−1,q+p−1. However, when p = ba/Jk(v)c+ 1,
this kind of regularity is broken. Therefore, regularity cannot be maintained even for the
largest value of App(A). Therefore, Theorem 1 is proved. Table 4 shows the arrangement
of the p-Apéry sets (p = 0, 1, . . . , 5) when ba/Jk(v)c = 5. One can see that there will be a
deficiency in the arrangement of the lower left for the 6-Apéry set.

Table 4. App(A) (p = ba/Jk(v)c).

4© 5©
2© 3© 5©

1© 4© 5©
0© 3© 4© 5©

2© 3© 4© 5©
1© 2© 3© 4© 5©

1© 2© 3© 4© 5©
2© 3© 4© 5©
3© 4© 5©
4© 5©
5© 6©

See [18,19], etc. for a detailed explanation that the elements located within the entire
specified areas actually constitute the elements of the p-Apéry set. That is, they form a
complete residue system modulo a and each element is represented by a, va+ b, vaJk−1(v)+
bJk(v) in at least p + 1 ways. The rough structure is similar to that in [18,19], though the
structures of the p-Apéry set in other cases are not necessarily similar or have not been
known yet.

4. p-Genus

The elements of App(A) in the area of the 2p staircase parts are

t0,q+p, . . . , tr−1,q+p, tr,q+p−1, . . . , tJk(v)−1,q+p−1,

tJk(v),q+p−2, . . . , tJk(v)+r−1,q+p−2, tJk(v)+r,q+p−3, . . . , t2Jk(v)−1,q+p−3,

t2Jk(v),q+p−4, . . . , t2Jk(v)+r−1,q+p−4, t2Jk(v)+r,q+p−5, . . . , t3Jk(v)−1,q+p−5,

. . .

t(p−1)Jk(v),q−p+2, . . . , t(p−1)Jk(v)+r−1,q−p+2, t(p−1)Jk(v)+r,q−p+1, . . . , tpJk(v)−1,q−p+1
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in order from the lower left and the elements of App(A) in the right-most main area are

tpJk(v),0, . . . , tpJk(v)+r−1,0, tpJk(v)+r,0, . . . , t(p+1)Jk(v)−1,0,

tpJk(v),1, . . . , tpJk(v)+r−1,1, tpJk(v)+r,1, . . . , t(p+1)Jk(v)−1,1,

. . .

tpJk(v),q−p−1, . . . , tpJk(v)+r−1,q−p−1, tpJk(v)+r,q−p−1, . . . , t(p+1)Jk(v)−1,q−p−1,

tpJk(v),q−p, . . . , tpJk(v)+r−1,q−p .

Hence, by a = qJk(v) + r, we have

∑
w∈App(A)

w

=
p−1

∑
i=0

r−1

∑
j=0

ti Jk(v)+j,q+p−2i +
p−1

∑
i=0

Jk(v)−r−1

∑
j=0

ti Jk(v)+r+j,q+p−2i−1

+
Jk(v)−1

∑
i=0

q−p−1

∑
j=0

tpJk(v)+i,j +
r−1

∑
i=0

tpJk(v)+i,q−p (4)

=
a
2
(
−v(a− r2) + b(a− 1) + v

(
(a + r)q− a + r

)
Jk−1(v) + v(a− r)Jk(v)

)
+

p
2

aJk(v)
(
2(va + b)− v(Jk(v)− Jk−1(v)

)
− p2

2
avs.Jk(v)

(
Jk(v)− Jk−1(v)

)
.

Thus, by Lemma 1 (2), we obtain that

np(a, va + b, aJk−1(v) + bJk(v))

=
1
a ∑

w∈App(A)

w− a− 1
2

=
1
2
(
−v(a− r2) + b(a− 1) + v

(
(a + r)q− a + r

)
Jk−1(v) + v(a− r)Jk(v)

)
+

p
2

aJk(v)
(
2(va + b)− v(Jk(v)− Jk−1(v)

)
− p2

2
avs.Jk(v)

(
Jk(v)− Jk−1(v)

)
− a− 1

2

=
1
2

(
−v(a− r2) + (a− 1)(b− 1) +

v(a + r)(a− r)Jk−1(v)
Jk(v)

+ v(a− r)
(

Jk(v)− Jk−1(v)
))

+
p
2

aJk(v)
(
2(va + b)− v(Jk(v)− Jk−1(v)

)
− p2

2
avs.Jk(v)

(
Jk(v)− Jk−1(v)

)
.

Theorem 2. Let a and b be coprime integers. Then, for a positive integer k ≥ 3 and 0 ≤ p ≤
ba/Jk(v)c we have

np
(
a, a + b, aJk−1(v) + bJk(v)

)
=

1
2

(
−v(a− r2) + (a− 1)(b− 1) +

v(a + r)(a− r)Jk−1(v)
Jk(v)

+ v(a− r)
(

Jk(v)− Jk−1(v)
))
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+
p
2

aJk(v)
(
2(va + b)− v(Jk(v)− Jk−1(v)

)
− p2

2
avs.Jk(v)

(
Jk(v)− Jk−1(v)

)
,

where r = a− ba/Jk(v)cJk(v).

p-Sylvester Sum

In this subsection, we shall show a closed formula for the Sylvester sum. By
a = qJk(v) + r, we have

∑
w∈App(A)

w2

=
p−1

∑
i=0

r−1

∑
j=0

(ti Jk(v)+j,q+p−2i)
2 +

p−1

∑
i=0

Jk(v)−r−1

∑
j=0

(ti Jk(v)+r+j,q+p−2i−1)
2

+
Jk(v)−1

∑
i=0

q−p−1

∑
j=0

(tpJk(v)+i,j)
2 +

r−1

∑
i=0

(tpJk(v)+i,q−p)
2

=
a
6

(
(va + b)2 + (va + b)(2vs.r2 − 3ab− 3vs.r2) + 2ab(ab + 3vs.r2)

+ v2a
(
2q2(a + 2r)− (a− r)(3q− 1)

)
Jk−1(v)2

− 3v(a− r)(va + b− b(a− r)
)

Jk(v) + v(a− r)(2vs.a + b)Jk(v)2

+ v
(
3(a− r)((a− r)(va− b) + va + b) + q(a + r)(4ab− 3(va + b))

+ 2qr2(3vs.a− b)− (a− r)(3vs.a + b)Jk(v)
)

Jk−1(v)
)

+
ap
6

(
6
(
(va + b)(ab + vr2)− (va + b)2 − b2)Jk(v)

+ 3v
(
(va + b)(2r + 1) + 2vs.a2)Jk(v)2 − v(2vs.a− b)Jk(v)3

+ v
(
6(a2 − r2)(av + b) + 3((va + b)(2r− 1)− 4vs.a2)Jk(v)

+ (5vs.a− b)Jk(v)2)Jk−1(v) + 3v2a
(
2a− Jk(v)

)
Jk−1(v)2

)
+

ap2

2

((
v(va + b)(2a + 1) + 2b2 − v(2vs.a + b)Jk(v)

)
Jk(v)2

− v
(
2a(va− b) + av + b

)
Jk−1(v)Jk(v) + v2aJk−1(v)2(2a− Jk(v)2)

)
− 2av(va + b)p3

3
(

Jk(v)− Jk−1(v)
)
(Jk(v))2 .

Thus, by Lemma 1 (3), together with ∑w∈App(A) w in (4), we obtain that

sp
(
a, va + b, vaJk−1(v) + bJk(v)

)
=

1
2a ∑

w∈App(A)

w2 − 1
2 ∑

w∈App(A)

w +
a2 − 1

12

=
1

12

(
(a− r)v(2av + b)Jk(v)2 − (a− r)v

(
3(va + b− b(a− r) + a)

+ (3vs.a + b)Jk−1(v)
)

Jk(v) + v2a(a− r)Jk−1(v)2

+ 3(a− r)v
(
va + b + (a− r)(va− b) + a

)
Jk−1(v)

+ 3
(
vr2(va + b) + var2(2b− 1)− va2(b− 1)− ab(a + b− 1)

)
+ (va + b)2 + (a2 − 1) + 2

(
vr3(va− b) + a2b2)
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+
2v2a(a− r)(a2 + ar− 2r2)Jk−1(v)2

Jk(v)2 − 3v2a(a− r)2 Jk−1(v)2

Jk(v)

+
v(a− r)Jk−1(v)

Jk(v)
(
4ab(2a + 3r) + 2r2(3v− b)

− 3(a2 + r(v + b + 1))− 3a(va + b)
))

+
p

12

(
−v(2vs.a− b)Jk(v)3 + 3v

(
−(2r− 1)(va + b) + a(2vs.a + 1)

)
Jk(v)2

+ 6(va + b)
(
vr2 − (va + b) + a(b− 1)

)
Jk(v)

+ v(5vs.a− b)Jk−1(v)Jk(v)2

+ 3v
(
−(2r− 1)(va + b) + a(4vs.a + 1)

)
Jk−1(v)Jk(v)

+ 6v(a2 − r2)(va + b)Jk−1(v) + 3v2a
(
2a− Jk(v)

)
Jk−1(v)2

)
+

p2

4

(
v
(
a(2vs.a− 2b + 1) + va + b− (3vs.a + b)Jk(v)

)
Jk−1(v)Jk(v)

+
(
v(2a + 1)(va + b) + va + 2b2 − v(2vs.a + b)Jk(v)

)
Jk(v)2

+ v2aJk−1(v)2 Jk(v)2
)

− v(va + b)p3

3
(

Jk(v)− Jk−1(v)
)

Jk(v)2 .

Here, again q = ba/Jk(v)c and r = a− qJk(v).

5. Jacobsthal–Lucas Polynomials

The same discussion as Jacobsthal polynomials can be applied to Jacobsthal–Lucas
polynomials jn(v). Here, jn(v) = jn−1(v) + jn−2(v) (n ≥ 2) with j0(v) = 2 and j1(v) = 1
(see, e.g., [17], Chapter 44). When v = 1, Ln = jn(1) are Lucas numbers. When v = 2,
jn = jn(2) are Jacobsthal–Lucas numbers. Similarly, determine integers q and r by
a = qjk(v) + r with 0 ≤ r < jk(v). If a = ji(v) and b = ji+1(v), then the numerical
semigroup 〈ji(v), ji+2(v), ji+k(v)〉 in [18] can be reduced as a special case.

Theorem 3. Let a and b be positive integers with gcd(a, b) = 1 and a ≥ 3. Then, for a positive
integer k ≥ 3 and 0 ≤ p ≤ ba/jk(v)c we have

gp
(
a, va + b, vajk−1(v) + bjk(v)

)

=



(a− 1)b + a
(
v(r− 1)− 1

)
+

va(a−r)jk−1(v)
jk(v)

+ p
(
vajk−1(v) + bjk(v)

)
if a < jk(v) or (va + b)r > va

(
jk(v)− jk−1(v)

)
;

(a− r− 1)b + va(jk(v)− jk−1(v)− 1)− a + va(a−r)jk−1(v)
jk(v)

+p
(
vajk−1(v) + bjk(v)

)
if a ≥ jk(v) and (va + b)r < va

(
jk(v)− jk−1(v)

)
,

where r = a− ba/jk(v)cjk(v).

Theorem 4. Let a and b be coprime integers. Then, for a positive integer k ≥ 3 and
0 ≤ p ≤ ba/jk(v)c we have

np
(
a, a + b, ajk−1(v) + bjk(v)

)
=

1
2

(
−v(a− r2) + (a− 1)(b− 1) +

v(a + r)(a− r)jk−1(v)
jk(v)
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+ v(a− r)
(

jk(v)− jk−1(v)
))

+
p
2

ajk(v)
(
2(va + b)− v(jk(v)− jk−1(v)

)
− p2

2
avs.jk(v)

(
jk(v)− jk−1(v)

)
,

where r = a− ba/jk(v)cjk(v).

6. p-Hilbert Series

There are some applications, due to the p-Apéry set. One of them is on the p-Hilbert
series ([36]) of Sp(A), which is defined by

Hp(A; x) := H(Sp; x) = ∑
s∈Sp(A)

xs ,

When p = 0, the 0-Hilbert series is the original Hilbert series, which plays an important
role in the numerical semigroup (see, e.g., [9]). In addition, the p-gaps generating function
is defined by

Ψp(A; x) = ∑
s∈N0\Sp(A)

xs ,

satisfying Hp(A; x) + Ψp(A; x) = 1/(1− x) (|x| < 1). Moreover, according to the same
arguments of Chapter 5 in [9], we can express the p-Hilbert series as

Hp(A; x) =
1

1− xa ∑
w∈App(A;a)

xw , (5)

where a = min{A}.
When A = {a, va + b, vaJk−1(v) + bJk(v)}, similarly to (4), we have

∑
w∈App(A)

xw

=
p−1

∑
i=0

r−1

∑
j=0

xti Jk(v)+j,q+p−2i +
p−1

∑
i=0

Jk(v)−r−1

∑
j=0

xti Jk(v)+r+j,q+p−2i−1

+
Jk(v)−1

∑
i=0

q−p−1

∑
j=0

xtpJk(v)+i,j +
r−1

∑
i=0

xtpJk(v)+i,q−p

=
(1− xr(va+b))(x2p(vaJk−1(v)+bJk(v)) − xp(va+b)Jk(v))

x(p−q−2)(vaJk−1(v)+bJk(v))(1− xva+b)(x2(vaJk−1(v)+bJk(v)) − x(va+b)Jk(v))

+
(xr(va+b) − x(va+b)Jk(v))(x2p(vaJk−1(v)+bJk(v)) − xp(va+b)Jk(v))

x(p−q−1)(vaJk−1(v)+bJk(v))(1− xva+b)(x2(vaJk−1(v)+bJk(v)) − x(va+b)Jk(v))

+
(xp(va+b)Jk(v) − x(p+1)(va+b)Jk(v))(1− x(q−p)(vaJk−1(v)+bJk(v))))

(1− xva+b)(1− xvaJk−1(v)+bJk(v))

+
xpvs.a(Jk(v)−Jk−1(v))+q(vaJk−1+bJk(v))(1− xr(va+b))

1− xva+b .

Therefore, by (5)

Hp
(
a, va + b, vaJk−1(v) + bJk(v); x

)
=

1
1− xa

(
(1− xr(va+b))(x2p(vaJk−1(v)+bJk(v)) − xp(va+b)Jk(v))

x(p−q−2)(vaJk−1(v)+bJk(v))(1− xva+b)(x2(vaJk−1(v)+bJk(v)) − x(va+b)Jk(v))

+
(xr(va+b) − x(va+b)Jk(v))(x2p(vaJk−1(v)+bJk(v)) − xp(va+b)Jk(v))

x(p−q−1)(vaJk−1(v)+bJk(v))(1− xva+b)(x2(vaJk−1(v)+bJk(v)) − x(va+b)Jk(v))
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+
(xp(va+b)Jk(v) − x(p+1)(va+b)Jk(v))(1− x(q−p)(vaJk−1(v)+bJk(v))))

(1− xva+b)(1− xvaJk−1(v)+bJk(v))

+
xpvs.a(Jk(v)−Jk−1(v))+q(vaJk−1+bJk(v))(1− xr(va+b))

1− xva+b

)
.

7. Future Works

In this paper, as well as in [18,19,29,30], the p-numerical semigroup with three variables
has been studied. However, that with four variables is very difficult to deal with. In fact,
even for p = 0, no algorithm to calculate the Frobenius number has been discovered yet.

In [43], the numerical semigroup of A := (a, a+ b, 2a+ 3b, . . . , F2k−1a+ F2kb) is studied
for relatively prime integers a and b when p = 0:

g0(A) = a
(⌊

F2k−1(a− 1)
F2k

⌋
− 1
)
+ (a− 1)b

and

n0(A) =
a−1

∑
y=1

⌊
F2k−1y

F2k

⌋
+

(a− 1)(b− 1)
2

.

However, for p ≥ 1, it is very difficult to find an explicit formula for the case with
more than three variables. One wants to study a more general number Un, satisfying
Un = uUn−1 + vUn−2, but nothing is known even for the numerical semigroup of Pell
numbers Pn, satisfying Pn = 2Pn−1 + Pn−2 (n ≥ 2) with P0 = 0 and P1 = 1, because the
structure is rather different.
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