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Abstract: Unsupervised domain adaptation (UDA) is a popular approach to reducing distributional
discrepancies between labeled source and the unlabeled target domain (TD) in machine learning.
However, current UDA approaches often align feature distributions between two domains explicitly
without considering the target distribution and intra-domain category information, potentially
leading to reduced classifier efficiency when the distribution between training and test sets differs.
To address this limitation, we propose a novel approach called Cluster Matching-based Improved
Kernel Fisher criterion (CM-IKFC) for object classification in image analysis using machine learning
techniques. CM-IKFC generates accurate pseudo-labels for each target sample by considering
both domain distributions. Our approach employs K-means clustering to cluster samples in the
latent subspace in both domains and then conducts cluster matching in the TD. During the model
component training stage, the Improved Kernel Fisher Criterion (IKFC) is presented to extend
cluster matching and preserve the semantic structure and class transitions. To further enhance the
performance of the Kernel Fisher criterion, we use a normalized parameter, due to the difficulty
in solving the characteristic equation that draws inspiration from symmetry theory. The proposed
CM-IKFC method minimizes intra-class variability while boosting inter-class variants in all domains.
We evaluated our approach on benchmark datasets for UDA tasks and our experimental findings
show that CM-IKFC is superior to current state-of-the-art methods.

Keywords: unsupervised domain adaptation; improved kernel fisher criterion; domain discrepancy;
k-means clustering; cluster matching

1. Introduction

In machine learning (ML) applications, such as object detection and image classifica-
tion, a vast amount of labeled data is necessary to build a model for there to be a good
achievement on test data that has the same distribution as the model training data. Several
practical applications, such as the diagnosis of medical images [1], require an enormous
quantity of labeled data to be collected, and such efforts are time- and money-consuming.
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To handle this issue, the ML paradigm known as “Domain Adaptation” (DA) [2,3]
transfers information from a source domain (SD) that has already been labeled to a target
domain (TD) that has only recently been labeled by assuming that both domains have the
same classification task (see Figure 1). We focus on the UDA scenario in this study, where
all target samples are taken to be unlabeled [4]. UDA is used for predicting unlabeled
data in a particular TD in a similar label space in which various divergences exist among
two domains [5,6]. Typically, because of the distribution shifts, various models from the
SD to the TD are unsuccessful. These issues are figured out by employing numerous
methods that seek to match the specified source and target distribution and are used to
perform several tasks in computer vision (CV). UDA is becoming more popular due to
its applications in numerous CV fields, and different methods are being used to solve the
issue [7–10]. During the time of the training process, there are various distributions for
two domains, and UDA is concerned with situations in which both an unlabeled TD and a
labeled SD are accessible [11]. Several methods, including [12,13], suggest matching the
two different distributions in a latent subspace to categorize the unlabeled target data.
Reference [12] suggested that, in order to minimize the distribution shift, samples from
both domains should be projected onto a new subspace, while also including marginal and
conditional distributions. Adaptively weighting the marginal and conditional distributions
was suggested by J. Wang et al. [14], based on [12], to further reduce the distribution shift.

Figure 1. An illustration of how DA techniques can solve the “domain shift” issue between the
SD and TD. The feature distributions of the SD and TD are compared, with the original feature
distributions on the left and the new feature distributions on the right, after DA.

The current approaches are classified into four categories [13]: (a) instance-based
adaptation, which decreases domain discrepancy by adjusting sample weights in either
the SD or both domains [15], (b) feature representation-based adaptation, which creates
feature representations to reduce either learning task inaccuracy, domain shift, or both [13],
(c) classifier-based adaptation [16], which uses training data from both domains and de-
velops a new model that lowers the generalization error within the TD and (d) hybrid
knowledge-based adaptation, which offers several knowledge types, such as joint instance
and feature representation-based adaption [12], joint instance and classifier-based adapta-
tion, or joint feature representation and classifier-based adaptation. Regardless of the classi-
fier’s apparent high performance, the majority of the techniques covered above, including
the support vector machine and the nearest neighbor classifier, instruct a straightforward
classifier on the projected source data, provide each target sample with a pseudo-label,
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after that, utilise the capabilities of the classifier. The classification procedure, independent
of the target data, may lead to a considerable distribution shift.

This study introduces a novel technique, known as the cluster matching-based im-
proved kernel Fisher criterion (CM-IKFC). To reduce the distribution shift, CM-IKFC
suggests aligning the conditional and marginal distributions of the SD and TD using cluster
matching and the Fisher criteria. Particularly, K-means clustering is utilised to cluster the
samples in the latent subspace in both domains [17]. After that, we provide pseudo-labels
to the target cluster by comparing the TD cluster centroid with the centroid of the SD class.
This way, when giving pseudo-labels, the distributions of both domains are considered.
Additionally, we used the Improved Kernel Fisher Criterion (IKFC) to reduce intra-class
discrepancy, while increasing inter-class discrepancy, in both domains. This promotes clus-
ter matching and the minimization of distribution shifts. In the training phase, the IKFC
is introduced to extend the technique, so that the adapted image class transitions and
the semantic structures are preserved. The highlights of our paper’s contributions are
listed below:

• The proposed method, CM-IKFC, clusters the data from both domains using the
K-Means technique in a learnt subspace.

• The cluster centroid of both the SD and TD should be matched with one another in
order to more accurately assign the target sample pseudo-labels. In this manner, while
assigning pseudo-labels, the SD and TD distributions are considered.

• In the training phase of cluster matching, the IKFC increases inter-class discrepancy
in both domains while decreasing intra-class discrepancy. The KFC is improved by
utilizing normalized parameters.

• Based on experimental results on three benchmark datasets, CM-IKFC shows superior
performance over state-of-the-art UDA approaches.

The remaining sections of the paper are arranged as follows: In Section 2, a literature
review is described; In Section 3, the proposed method is demonstrated; In Section 4,
the experimental results, which demonstrate that the proposed technique is both successful
and efficient, are discussed; In Section 5, the paper’s conclusion is presented.

2. Related Work

Domain adaptation (DA) employs labelled source data with a distribution different
from the TD in an effort to improve target learning. Due to recent developments in
CV, several techniques for UDA have been developed that employ deep learning (DL).
Li et al. [18] provided a brand-new UDA technique that attempts to produce target image–
label pairings on the spot, and, moreover, creates semantic loss conditional on randomly
selected labels. In addition, it uses an adversarial training approach in GAN for similar
target styles. The labels on the output images must, specifically, match those on the
input images. Due to the reliable target-style preparation data used during training,
the model performs well in the TD. Our model performs better when dealing with problems
having high domain disagreement because it prevents lead distribution alignment between
two domains.

Das et al. [19] suggested a form of UDA that takes into account the presence of the TD
unlabeled statistics. The method focuses on connections between samples from SD and
TD. To find the correlations, the source and target samples are both considered as graphs
and paired using a convex criterion. The measures are class-based regularization and
first- and second-order similarity among the graphs. Additionally, they created a convex
optimization process that was computationally effective, making the suggested strategy
generally applicable. Furthermore, it is indeed necessary to test conventional DA datasets
for structured data.

Guan et al. [20] proposed “Cross-Domain Minimization with Deep Autoencoder”
(CDMDA) for UDA. CDMDA implements a strategy for multitask learning in which, in a
single architecture, CORAL-aligned sharable feature representations are utilized to simulta-
neously train the SD’s label prediction and input reconstruction on the TD. Additionally,
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the cluster assumption can be supported by attaching a label discriminator to the adversar-
ial training procedure, which causes the projected target label distribution and the category
distribution to appear to have different distributions. Several domain adaptations on visual,
as well as on non-visual, datasets demonstrated that the developed method consistently
outperformed competing UDA methods. These proposed methods have to be applied to
several other domain-adaptable tasks, such as semantic segmentation and classification.

Tian et al. [21] suggested a brand-new DA strategy that extensively investigates the
TD data distribution structure and, particularly, treats samples that are part of a similar
cluster as a whole, rather than as individuals in the TD. The strategy gives the target cluster
pseudo-labels through class matching of the centroid. A self-learning technique for local
manifolds was also included in the presentation to fully leverage the target data’s different
structural information and to adaptively capture the local connectedness the target samples
naturally possessed. The objective function was to be solved with a theoretical convergence
guarantee by a powerful iterative optimization technique. A more comprehensive design
of semi-supervised algorithms needs further investigation.

Some recent UDA techniques employ the pseudo-labeling approach to take advantage
of the semantic information of the target samples. Pseudo labels were used by Xie et al. [22]
to estimate class centroids for the TD and to compare them to those in the SD. A self-
training system, that alternatively executes model training and pseudo label refinement,
was proposed by Zou et al. [23]. Recent studies [24,25] have demonstrated the superior-
ity of clustering-based pseudo-labeling approaches and have demonstrated how these
approaches may be successfully applied to DA.

The Kernel Fisher discrimination analysis (KFDA) is a nonlinear technique for two-
class and multi-class problems with origins in FDA [26]. KFDA works by transforming the
low-dimensional sample space into a high-dimensional feature space, where the FDA is
then carried out. To make the computation simpler, the kernel matrix was replaced by its
submatrix by [27]. Liu et al. suggested a new KFDA criterion to maximize the uniformity
of class–pair separabilities, which was assessed by the entropy of the normalized class–pair
separabilities [28]. One of the theoretical study fields that has received a lot of interest
recently is optimal kernel selection. Based on FDA’s quadratic programming formulation,
Fung et al. devised an iterative technique [29]. By using second-order cone programming,
Khemchandani et al. looked at the issue of locating the data-dependent “optimal” kernel
function [30]. In order to solve identification or classification issues, KFDA is increasingly
being used in conjunction with strong nonlinear feature extraction abilities, and, as a result,
is used extensively and successfully in numerous fields.

In this context, Deng et al. [31] proposed a deep clustering method using a Fisher-
like criteria-based loss to align the feature distributions of the SD and TD. However,
they only used target clustering as an incremental strategy to increase explicit feature
alignment, while our proposed method uses cluster matching to take into account both
domains’ distributions and intra-domain category information. Chang et al. [32] proposed
a discriminative feature learning method to estimate the inter-class separability in UDA.
They calculated inter-class separability using the distances between pairs of class centers,
whereas our proposed method utilizes preserved semantic structure and class transitions.
Meng et al. [33] proposed a method that utilizes pseudo-labels and iterative clustering
to incorporate label structure information in UDA. Their approach aims to improve the
accuracy of the pseudo-labels generated for the TD, while our proposed method focuses
on generating an accurate pseudo-label in a latent discriminative subspace for each target
sample. The majority of modern approaches use a method that explicitly aligns feature
distributions between the two domains, while ignoring the target distribution and intra-
domain category information. The findings of published works first create a classifier on
the labeled domain to generate pseudo-labels for unlabeled samples and then compute
the unlabeled class distribution using the pseudo-labels, before aligning the distributions.
Unfortunately, if the classifier ignores the unlabeled distribution, it may fail to learn the
TD. In the prediction of the unlabeled domain distribution, mislabeled data results in large
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errors. In order to solve the issue, this research suggests a novel CM-IKFC to produce
a precise pseudo-label in a latent discriminative subspace for each target sample, while
taking into account both domain distributions.

3. Proposed Method

We start with the basic definitions of the UDA problem before providing an overview
and delving into the details of the proposed method.

3.1. Problem Statement

We start with the formal concept of DA [6]. The terminology definitions and the
notations used are listed in Table 1 for clarification.

We focus on UDA for image classification when the SD has enough labeled data
Ds = {Xs, Ys} = {xi, yi}ns

i=1, and unlabeled data in the TD Dt = {Xt} = {xi}nt
i=1 , where

xi ∈ Rdx1 denotes the feature vector, yi ∈ {1, ..., K} refers to the sample label, having a total
of K classes. It is assumed that the SD and TD features and label spaces are the same. The
goal of DA is to locate a mapping h that will maximise the consistency between the mapped
spaces of the SD data h(Xs) and the TD data h(Xt). As a result, the model is able to build a
more efficient classifier f(.) on the SD using labeled samples to anticipate the labels of the
TD, i.e., xt → yt, yt ∈ yt.

Table 1. Notations used for this paper.

Variable Definition

Ds, Dt Source/target domain
xs,i, yt,i Source/target sample
ns, nt #source/target sample

Lt target label matrix
H projection matrix
F cluster centroids of the target data
Es class centroids of the source data
Mw within-class scatter matrix
Mb scatter matrix between classes
F feature space
d subspace dimension
i max iteration number
µ identity matrix
δ classification parameter
α optimal vector

3.2. CM-IKFC

The proposed CM-IKFC focuses on creating a discriminative subspace for reducing
distributional changes between two domains. As seen in Figure 2, there are two main
components of our model, named the K-means algorithm and IKFC. In CM-IKFC, first,
we use the k-means algorithm [17] to cluster the data from the two domains in a learning
subspace. After that, we apply pseudo-labels to the target samples by comparing the
clustered centroid of the TD with the clustered centroid of the SD. In this method, the dis-
tributions of the SD and TD are both considered when deciding on pseudo-labels. Finally,
the KFC is improved by utilizing normalized parameters and weighed schemes to rebuild
the scatter matrices between different classes and within the same class. As a result, it
has the capability to alter the function known as the kernel scatter difference discriminant.
CM-IKFC applies the IKFC constraint to increase inter-class discrepancy in both domains,
while decreasing intra-class discrepancy. This encourages distribution shift reduction and
cluster matching.
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Figure 2. The proposed CM-IKFC method architecture.

3.3. Domain Clustering

The K-means technique is utilised to cluster both domain samples and attach associ-
ated labels. The number of clusters is equal to the number of core classes K. The distance
means for the K classes in the data set are determined using the distance as the metric and
the initial centroid to describe each class. The Euclidean distance is the similarity index for
a specific data set X with n multi-dimensional data points and the class K to be partitioned.
The clustering objectives reduce the sum of the squares of the different data types [34].

e =
K

∑
z=1

i

∑
x=1

wik‖(px −mz)‖2 (1)

In this context, if a data point px belongs to cluster K, then the value of wik is set to 1;
otherwise, it is set to 0. The variable mz represents the center of the cluster, i represents the
total number of data points, K denotes the cluster number, and |(px −mz)|2 represents the
squared distance between a data point px and the cluster center mz.

It is a two-step minimization problem. We start by minimizing e in relation to wik and
treating mz as fixed. Then, we minimize e w.r.t. mz and regard wik as fixed. Technically, we
distinguish e with respect to wik first and then update cluster assignments. After that, we
differentiate e concerning mz and recompute the centroids based on the cluster assignments
from the initial phase as follows:

∂e
∂wik

=
K

∑
z=1

i

∑
x=1
‖px −mz‖2

⇒ wik =

{
1 if z = arg mine ‖px −mz‖2

0 otherwise

(2)

It means that the data point px should be assigned to the cluster that is the closest to it,
based on its sum of squared distance from the centroid of the cluster, and the assignment
should be made using the following formula:

∂e
∂mz

= 2
i

∑
x=1

wik(px −mz) = 0

⇒ mz =
∑i

x=1 wik px

∑i
x=1 wik

(3)

This requires the centroids of all of the clusters to be recalculated so that they reflect
the new assignments.

Initially, the cluster center is chosen at random, drawn from the sample set. Every
sample point is grouped to form a cluster that represents the center point that is nearest
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to it. Then, all sample points are combined, and the core of each cluster is its own center.
The preceding procedures are performed until the cluster’s center point is constant or until
the specified number of iterations have been completed. The algorithm output fluctuates
depending on the center point selected, causing instabilities. The K value chosen sets the
center point, which serves as the algorithm’s target. The results of clustering directly affect
aspects such as local or global optimality.

3.4. Cluster Matching

To calculate the UDA’s conditional distribution, each target sample is labeled along
with having a pseudo-label. In contrast to traditional methods, to allocate the pseudo-
labels, a classifier that has been trained on the SD is employed. This task takes all these
domain distributions into account. In such scenarios, it becomes possible to obtain pertinent
information regarding the sample distribution structure of the target data. To accomplish
this objective, there are several pre-existing clustering algorithms that can be suitable
options. Without sacrificing the generalizability of our approach, we chose to employ
the well-established K-means algorithm in this study for the purpose of obtaining cluster
prototypes. Therefore, the ensuing formula can be expressed as follows [21]:

Θ(H, F, Lt) =
∥∥∥HTXt − FLT

t

∥∥∥2

F
(4)

where H ∈ Rm×d represent the projection matrix. F ∈ Rd×C denotes the cluster centroids
of the target data. Lt ∈ Rnt×C is the cluster indicator matrix for the target data. This matrix
is defined as (Lt)ij = 1 if the cluster label of xti is j, and (Lt)ij = 0 otherwise.

Next, we conduct the computation of class centroids for the source data and class
centroid matching of the SD and TD. When we have the cluster prototypes of the target
data, we may reframe the distribution discrepancy reduction issue as the class centroid
matching problem. This is possible once we receive the cluster prototypes. It is important
to keep in mind that the class centroids of the source data may be precisely determined
by computing the mean value of the sample features that belong to the same class. In this
study, we used the straightforward and time-saving technique of searching for the closest
neighbor to find a solution to the issue of matching class centroids. To be more specific, we
looked for the class centroid that was geographically closest to each target cluster centroid,
and we tried to find a way to reduce the total distance between each pair of class centroids.
In conclusion, the formula for class centroid matching between two domains reads as
follows [21]:

Ω(H, F) =
∥∥∥HTXsEs − F

∥∥∥2

F
(5)

where the matrix Es ∈ Rns×C is a fixed matrix that is utilized to calculate the class centroids
of the source data in the transformed space with each element Eij = 1/nj

s if ysi = j,
and Eij = 0 otherwise.

3.5. KFDA

KFDA is an effective nonlinear FDA technique, in which the kernel function is applied
to handle the issues of nonlinear optimization. The KFDA is widely used in several fields,
due to its effectiveness. The numerical principle is evaluated as follows.

Suppose S = {x1, x2, . . . ., xN} is the dataset, which consists of K classes in a d-dimensional
real space Rd, where Ni samples belong to the j th class, (N = N1 + N2 + · · ·+ Nk).

FDA is employed for the purpose of finding the optimal projection vectors w that min-
imize the within-class scatter among different samples. The vector w ∈ Rd that optimizes
the Fisher discriminant function provides FDA as

max J(w) =
wT Mbw
wT Mww

(6)
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where Mw represents the within-class scatter matrix and Mb represents the scatter matrix
between classes. FDA primarily relies on linear techniques, posing a challenge when
attempting to distinguish samples that exhibit nonlinear separability.

The utilization of a kernel trick in the KFDA leads to a notable enhancement in
the classification capability of the FDA when dealing with samples that are nonlinearly
separable. To accommodate nonlinear scenarios, the function ϕ(x) transforms the sam-
ples from a lower-dimensional space into a higher-dimensional feature space. Note that
φ
(

µ
j
i

)(
i = 1, 2, . . . , Nj, j = 1, 2, . . . , K

)
is the i th projection value in the class ωj. mφ denotes

the mean vector of the entire population, and mφ
j represents the mean vector of class ωj.

In the feature space F, we define the total scatter matrix Mt, the within-class scatter matrix
Mw, and the between-class scatter matrix Mb as [35]:

Mφ
t =

1
N

N

∑
i=1

(
φ(µi)−mφ

)(
φ(µi)−mφ

)T (7)

Mφ
w =

1
N

K

∑
j=1

Nj

∑
i=1

(
φ
(

µ
j
i

)
−mφ

j

)(
φ
(

µ
j
i

)
−mφ

j

)T
(8)

Mφ
b =

K

∑
j=1

Nj

N

(
mφ

j −mφ
)(

mφ
j −mφ

)T
(9)

The development of KFDA may be traced back to the following improvement in the
kernel Fisher criteria function:

max J(v) =
vT Mφ

b v

vT Mφ
wv

(10)

where the various optimal projection vectors are represented by v. Directly calculating the
ideal discriminant vector v is not feasible, due to the large dimension of feature space F
and the infinite dimension. Applying the kernel technique is one approach to resolve this
issue, as is shown below [36]:

K
(
µi, xj

)
=
(
φ(µi), φ

(
xj
))

(11)

Any solution v must exist inside the feature space F, as stated by the notion of repro-
ducing a kernel [26], which spans φ(x1), φ(x), . . . , φ(xN) as follows:

v =
N

∑
i=1

αiφ(µi) (12)

By projecting any test samples into w in F, the following equation is obtained:

vTφ(x) =
N

∑
i=1

αi(φ(x), φ(µi))

=αT((φ(x)φ(x1)), (φ(x), φ(x2)), . . .

(φ(x), φ(xN)))

=αT(K(x, x1), K(x, x2), . . . , K(x, xN)).

(13)

The kernel between-class scatter matrix Hy and within-class scatter matrix Hu in F
may be defined as follows [37]:

Hy =
K

∑
i=1

Ni
N

(µi − µ0)(µi − µ0)
T , (14)
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Hu =
1
N

K

∑
i=1

Ni

∑
j=1

(
ξxj − µi

)(
ξxj − µi

)T
, (15)

µ0 =

(
1
N

N

∑
i=1

K(x1, µi),
1
N

N

∑
i=1

K(x2, µi), . . . ,
1
N

N

∑
i=1

K(xN , µi)

)T

, (16)

µi =

(
1
Ni

Ni

∑
j=1

K
(

x1, xi
j

))
, . . . ,

1
Ni

Ni

∑
j=1

K
(

xN , xi
j

)
, (17)

ξxj =
(
k
(
x1, xj

)
, k
(
x2, xj

)
, . . . , k

(
xn, xj

))T (18)

We know that Hu, Hu, Ht are in a semi-definite symmetrical matrix. The fisher criterion
function in the feature space F is defined as [38]:

max J(v) =
vT Mφ

b v

vT Mφ
wv

=
αT Hyα

αT Huα
= J(α) (19)

In accordance with the characteristics of the generalized Rayleigh quotient, the opti-
mum solution vector w may be found by increasing the value of the criteria function in (19)
until it is equal to the solution of the generalized characteristic equation in the following
manner:

Hyα = λHuα (20)

3.6. IKFC

The scatter difference discriminant function [39] was constructed in this study in
response to the ill-posed issue of the discriminant criteria function (19):

max J(v) = vTHφ
y v− vTHφ

u v (21)

The within-class scatter matrix singular issue is substantially resolved by this approach.
The basic concept of the weighted kernel maximum scatter difference discriminant

analysis is that a class is designated as a margin class if it is significantly distant from
the center. In this instance, the margin class is distinguished from other classes using the
best discriminant vectors produced by maximizing the kernel scatter difference criteria
function, since the class variance is greatest in this direction. The class with a greater
distance from the center plays a significant part in the process of maximizing the kernel
scatter difference criteria function. These projection vectors not only cannot separate
classes, other than the margin class, but also cause neighboring classes in the feature space
to overlap. The between-class scatter matrix is redefined in response to this issue in the
manner described below [38]:

Hφ
y =

K

∑
i=1

Ni
N

v(di)(φ(µi)− φ(µ0))(φ(µi)− φ(µ0))
T (22)

where di =
√
(φ(µi)− φ(µ0))

T(φ(µi)− φ(µ0)); di is the distance between ith class and
center. v(·) represents the weighted function. In order to reduce the impact of margin
classes, we employed a strategy where the larger value of ‖µi − µ0‖ was assigned a smaller
weight. To achieve this, we defined a weighted function v(di) = d−3

i . Additionally,

we assigned a weight α = 1/
(

1 + ∑K
i=1 ∑Ni

j=1 di
j

)
to the within-class scatter matrix. Here,
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di
j =

√(
φ
(

ξxj

)
− (µ0)φ

)T(
φ
(

ξxj

)
− (µ0)φ

)
. By employing these methods, we obtained

the following result.

Hφ
u =

a
N

K

∑
i=1

Ni

∑
j=1

(
ξ

φ
xj − (µi)

φ
)(

ξ
φ
xj − (µi)

φ
)T

(23)

The weight’s objective was to bring all of the training samples belonging to a certain
class closer together to the class’s center, and so further reducing the amount of large
overlapping occurring across classes. The following is a definition of the weighted kernel
scatter difference discriminant function in the feature space:

max J(v∗) = v∗T
(

Hφ
y − Hφ

u

)
v∗ (24)

v∗ =
N

∑
k=1

α∗k φ(xk) = Xφα∗ (25)

The column vector α∗ is of dimension N. By applying the Regeneration Kernel Theory
and Equations (14)–(22), we obtain the following result:

J(α∗) = v∗T
(

Hφ
y − Hφ

u

)
v∗ = α∗T(KB − KW)α∗ (26)

KB =
K

∑
i=1

Ni
N

v(d∗i )(ui − u0)(ui − u0)
T (27)

KW =
a
N

K

∑
i=1

Ni

∑
j=1

(
ϕ
(

ξxj

)
− ui

)(
ϕ
(

ξxj

)
− ui

)T
(28)

KT = KB + KW (29)

In the given context, d∗i =
√
(ui − u0)

T(ui − u0). KT , KW and KB are referred to as
the weighted kernel total scatter matrix, weighted kernel within-class scatter matrix,
and weighted kernel between-class scatter matrix, respectively. It is important to note
that these matrices are semi-definite and symmetrical, with dimensions of N × N. Moving
on, we can infer that Equation (22) can be equivalently expressed in the following forms:{

max J(α∗) = α∗T(KB − KW)α∗

α∗Tα∗ = 1
(30)

The expression α∗T(KB−KW )α∗

α∗Tα∗
can be rewritten as α∗T(KB−KW )α∗

α∗T Iα∗
, where I represents a unit

matrix. Using the Expansion Rayleigh Quotient, we derive the following information.

(KB − KW)α∗ = λα∗ (31)

The optimal solutions α∗ correspond to the solutions of Equation (26). By utilizing
α∗ and Equation (26), we derive the nonlinear discriminant vectors in the feature space F.
These vectors are denoted as v∗, which can be represented as v∗ =

(
v∗1 , v∗2 , · · · , v∗k

)
, where

v∗i = ∑K−1
k=1 α∗ik φ(xk), i = 1, 2, · · · , N.

3.7. Selecting a Normalized Parameter

A normalized parameter was used because the characteristic equation is difficult to
solve. If Hy represents a non-singular matrix, then α is an optimal vector which is obtained
by maximizing Equation (19), which is comparable to the feature vector corresponding to
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the top m greatest eigenvalues, as described in the article by [40]. Equation (20) may also
be written as (

Hy
)−1Huα = λα (32)

where Hy represents the singular matrix. It is not always possible to just use Equation (32).
Furthermore, employing a regularized method improves the stability of numerical methods.(

Hy
)

δ
= Hy + δµ, (33)

where, δ represents a small, positive number, and µ indicates the identity matrix. Then,
Equation (20) can be written as (

Hy + δµ
)−1Huα = λα (34)

While KFDA is employed to solve applied problems, the parameter is determined
based on experience or experimental results. In this, a normalized parameter was used and
the value Hy + δµ regarded as a function of δ:

f (δ) =| Hy + δµ | (35)

where, function f is stable, and the value of the function tends to zero in Equation (36),
the δ is the best classification parameter,

lim
δ→0

f (δ) −→ 0 (36)

In Algorithm 1, the whole optimization of CM-IKFC is presented.

Algorithm 1 CM-IKFC

1: Input: source data {Xs, Ys}, target data {Xt}, initial target label matrix Lt, subspace
dimensionality d = 100, maximum iteration number i = 10, parameters γ = 5, α and β;

2: Output: Target label matrix Lt
3: while converge condition not satisfied do
4: Calculate the source class center with a focus on the source features
5: Configure the source class center to create the target cluster center
6: Discover the target samples’ pseudo-labels using the K-means technique (Section 3.4)
7: Update H by Equation (4)
8: Update α∗ with Equation (26)
9: Update f (δ) with Equation (35)

10: end while
11: Output: target label matrix Lt

4. Experiments and Analysis

We evaluated the CM-IKFC method using benchmarks, including Office-31, Image-
CLEF, and Office-Home, for object classification. We compared CM-IKFC with state-of-the-
art DA methods. To enable an accurate comparison, original or state-of-the-art papers were
used to obtain the results. The research findings showed how well the proposed CM-IKFC
handled the DA problem.

4.1. Benchmark Datasets

The research used three well-known benchmark datasets: Office-31, ImageCLEF,
and Office-Home. Each dataset is briefly described below, and Table 2 provides a quick
rundown of each dataset’s specifics.

The Office-31 [41], a frequently used evaluation dataset for visual DA, is made up
of 4652 images and 31 classes from the following three different domains: images gath-
ered from the (1) Amazon site (Amazon domain), (2) digital SLR photo (DSLR domain),
and (3) web camera (Webcam domain) under various conditions, as shown in Figure 3.
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The dataset’s distribution across domains is shown in Table 2 with 2817 images belong-
ing to the Amazon domain, 795 images to the Webcam domain, and 498 images to the
DSLR domain.

Table 2. Description of the benchmark datasets.

Dataset Domain #Samples #Classes

Office-31 [41]
DSLR (D)
Amazon (A)
Webcam (W)

498
2817
795

31

Office-Home [42]

Artistic images (Ar)
Clip Art (Cl)
Real-World images (Rw)
Product images (Pr)

958
15,710
1299
295

65

ImageCLEF [43]
ImageNet (I)
Caltech (C)
Pascal (P)

4000
3847
2626

31

(a) (b) (c)

Figure 3. Images of (a) Amazon (b) DSLR (c) Webcam from office-31 dataset.

The Office–Home [42] poses significant challenges when utilizing it for the examination
of the DA model. The 65 categories contain more than 15,500 images of things used every
day in homes and offices. The four distinct domains are artistic images (Ar), clip art (Cl),
product images (Pr), and real-world images (Rw), as shown in Figure 4. Backgrounds and
appearances in these photos are very different. It is more difficult to transfer data between
domains because there are many more categories than in Office-31. We examined each
technique on each of the 12 adaptation tasks.

(a) (b) (c) (d)

Figure 4. Images of (a) Artistic (b) Clip Art (c) Product and (d) Real World from Office–Home datasets.

The ImageCLEF [43] dataset has 31 categories and 3 domains, namely, Pascal (P),
Caltech (C) and ImageNet (I), as shown in Figure 5. We set up six DA tasks: I→ C , I→ P,
P→ I , C→I, P→C, C→ P.
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(a) (b) (c)

Figure 5. Images of (a) Caltech (b) Imagnet (c) Pascal from ImageCLEF dataset.

4.2. Implementation Details

The model was implemented using the PyTorch framework. In every experiment,
the projection matrix dimension was always 100. Twenty iterations were the most that
could be carried out. We used K-means algorithms for clustering, so the value of K was
set according to the classes in the datasets. Specifically, the values of K on the Office-31,
Office-Home and ImageCLEF datasets were set as 31, 65, and 31, respectively. Furthermore,
we set the parameter δ = 0.2 analytically. The following section analyzes the impact of the
trade-off parameter.

4.3. Baseline Methods

To evaluate the effectiveness of our proposed strategy in an experimental setting, we
looked at both conventional and state-of-the-art DA methodologies, such as DAN [44],
DANN [45], CyCADA [46], JDDA [47], CDAN [48], HAFN [15], SAFN [15], DMP [49],
ADDA [50], JAN [51] and rRevGrad+ CAT [31]. We evaluated the method with other
domain adaptation techniques. For the purpose of classifying target samples, ResNet-
50 [52] simply utilizes the classification model trained on the SD. Multi-mode structures
are used by MADA [53] to achieve proper alignment of different data distributions, based
on numerous domain discriminators.

4.4. Results and Analysis

In order to demonstrate the efficacy of CM-IKFC, this section presents the classifica-
tion accuracy achieved on the benchmark datasets. Additionally, we conducted several
experiments to investigate how and why our CM-IKFC model successfully addressed
domain adaptability. The bold values in the tables represent the highest accuracy achieved
for the specific task, indicating superior performance.

The experimental data confirmed the model’s efficacy in this research. The classifi-
cation results of our model on six UDA tasks from the Office-31 dataset, are shown in
Table 3. The source-only model performed satisfactorily for D�W tasks because the do-
main gap was minimal. When compared to other models, our method’s accuracy improved
more significantly for the challenging A�W and A�D adaptation tasks. For instance,
our approach considerably outperformed all the current adaptation techniques on A→D,
W→A, and D→A, especially when compared to CyCADA [46], which had an equal num-
ber of class-based discriminators. Our suggested CM-IKFC model outperformed other
approaches in the majority of domain adaptation tasks and also improved average perfor-
mance by 2.47%. In the six experiments, CM-IKFC produced the four best results and none
of the poorest results. This demonstrates how well K-means cluster matching and the IKFC
work with UDA.

In this study, we describe how the use of IKFC enhanced the performance of our
proposed approach, CM-IKFC, in comparison to the base KFC. To demonstrate this im-
provement, we conducted an experiment where we compared the performance of our
proposed approach, CM-IKFC, with that of the KFC-based method without the IKFC ex-
tension. The results presented in Table 3, demonstrate that the use of the IKFC criterion
significantly enhanced performance by increasing inter-class variability and decreasing
intra-class variation. As a result, we observed a substantial improvement in the accuracy
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of pseudo-labels for TD samples. These findings comprehensively explain how the IKFC
criterion was integrated into the KFC to improve its effectiveness. Specifically, the inclusion
of a normalized parameter enabled the IKFC criterion to solve the characteristic equation
more accurately, leading to a significant improvement in the classification performance of
our proposed approach.

Table 3. Results (%) comparison of proposed and existing methodologies for Office-31.

Method A→W D→W W→D A→D D→A W→A Avg

ResNet-50 [52] 68.4 96.7 99.3 68.9 62.5 60.7 76.1

ADDA [50] 86.2 96.2 98.4 77.8 69.5 68.9 82.9

JAN [51] 85.4 97.2 99.8 84.7 68.8 70.0 84.3

HAFN [15] 83.4 98.3 99.7 84.4 69.4 68.5 83.9

JDDA [47] 82.6 95.2 99.7 79.8 57.4 66.7 80.0

CyCADA [46] 82.2 94.6 99.7 78.7 60.5 67.8 80.6

MADA [53] 80.7 97.4 99.6 87.8 70.3 66.4 85.2

rRevGrad+ CAT [31] 90.0 97.6 100.0 76.4 63.7 62.2 80.1

CM-KFC Base 86.0 93.6 96.2 83.1 70.9 72.3 83.68

CM-IKFC (ours) 91.0 97.3 99.7 89.1 72.9 76 87.67

The experiment’s results for the office–home dataset are presented in Table 4. Com-
pared to other methods, CM-IKFC outperformed some traditional methods and performed
better on 8 of the 12 cross-domain tasks. The average classification accuracy obtained by
CM-IKFC was 68.50%, and, compared with the baseline model, it displayed an improve-
ment in accuracy of 1.3% on average, proving that the process of incremental hardening of
prediction labels improves the discriminative information therein. Overall, the majority of
tasks achieved excellent results.

Table 4. Results (%) comparison of proposed and existing methodologies for Office–Home.

Methods Ar→
Cl

Ar→
Pr

Ar→
Rw

Cl→
Ar

Cl→
Pr

Cl→
Rw

Pr→
Ar

Pr→
Cl

Pr→
Rw

Rw→
Ar

Rw→
Cl

Rw→
Pr Avg

ResNet-50 [52] 34.9 50 58 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

JAN [51] 45.9 61.2 68.9 50.4 59.7 61 45.8 43.4 70.3 63.9 52.4 76.8 58.3

DANN [45] 45.6 59.3 70.1 47 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

ADDA [50] 43.5 57.2 67.3 45 57.2 59.3 44.3 43.2 67.2 62.8 51.2 73.9 56

CDAN+ E [48] 50.7 70.6 76 57.6 70 70 57.4 50.9 77.3 70.9 56.7 81.6 65.8

HAFN [15] 50.2 70.1 76.6 61.1 68 70.7 59.5 48.4 77.3 69.4 53 80.2 65.4

SAFN [15] 52 71.7 76.3 64.2 79.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3

CM-IKFC (ours) 52.3 72.1 76 65.3 79.8 72.3 64.8 52.8 77.0 71.3 58.0 80.9 68.5

On the ImageCLEF dataset, Table 5 displays the experimental results of this method
and the related comparison methods. In domain adaptation tasks, such as I→P, P→I,
C→I, and P→C, CM-IKFC achieved the four best accuracies and none of the six domain
adaptation trials’ poorest performances. This demonstrates that CM-IKFC produces greater
improvements on challenging DA tasks. The proposed model achieved an average accuracy
result of 89.8%, an improvement of 0.7% in comparison with the other baseline methods.
We found, through our experiments on all three datasets, that good results with fewer
classes were achieved, as seen with the average accuracy of Office-31 and ImageCLEF’s
being higher than Office–Home.
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Table 5. Results (%) comparison of proposed and existing methodologies for ImageCLEF.

Method I → P P → I I → C C → I C → P P → C Avg

ResNet-50 [52] 74.8 83.9 78 65.5 91.2 60.7 80.7

DAN [44] 74.5 82.2 92.8 86.3 69.2 89.9 82.5

DANN [45] 75 86 96.2 87 74.3 91.5 85

JAN [51] 76.8 88 94.7 89.5 74.2 91.7 85.8

HAFN [15] 76.9 89 94.4 89.6 74.9 92.9 86.3

CDAN [48] 76.7 90.6 97 90.5 74.5 93.5 87.1

CDAN+E [48] 77.7 90.7 97.7 91.3 74.2 94.3 87.7

SAFN [15] 78 91.7 96.2 91.1 77 94.7 88.1

DMP* [49] 80.7 92.5 97.2 90.5 77.7 96.2 89.1

CM-IKFC (ours) 81.1 93.3 96.6 92.1 79.2 96.5 89.8

The proposed method is well-suited for UDA in image classification tasks. However,
it may not be applicable to other types of data. The performance of the method can
be affected by high-dimensional input data, and it may be necessary to employ feature
selection or dimensionality reduction techniques. Additionally, the method requires similar
feature distributions between the SD and TD, as large differences may compromise its
performance. These limitations should be taken into consideration when applying the
method. The information provided is helpful in understanding the restrictions associated
with this approach.

4.5. Effectiveness of the Parameter Tuning

Finally, we examined the consequences of the parameter δ. In order to take the para-
metric sensitivities into account, we chose 4 transfer tasks from each trial. as we tuned
the parameter over the range of {0.1, 0.2, 0.3, 0.5, 0.8, 1.0}. In Figure 6, the outcomes are
displayed. It is clear that the results of several trials differed from one another. The perfor-
mance levels in the Office-31 and Office-Home experiments rose gradually, peaked when
the trade-off parameter δ was around 0.2, and then declined as δ grew. The ImageCLEF
experiment showed that it performed best when δ was around 0.3 and degraded as the
parameter increased. This pattern showed that the ideal δ varied depending on the trans-
fer task; for instance, the ideal δ for task A-W from the Office-31 experiment was 0.2,
although it was around δ 0.3 for other tasks within the same experiment. We selected 0.2
for Office–Home and Office-31 and 0.3 for the ImageCLEF experiment in our experimental
settings because the parameters were suitable for most tasks.

Figure 6. Parameter Sensitivity Analysis comprising of four tasks from each experiment, assessed
using various parameter values. For our study, the vertical green dotted line was the ideal parameter.
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5. Conclusions

The purpose of UDA is to reduce distribution discrepancy when data is being trans-
ferred data from a labeled SD to an unlabeled TD. The new CM-IKFC approach proposed
creates a proper pseudo-label for every target sample. Specifically, the samples are clustered
by utilizing K-Means clustering in both domains. In the TD, the clusters are matched by
using cluster matching, and then this is extended in the training phase by suggesting an
IKFC. This ensures that the updated images’ semantic architectures and class transitions are
preserved. Furthermore, because the characteristic equation is difficult to solve, to improve
the KFC, a normalized parameter is utilized. In all domains, this CM-IKFC minimizes
intra-class variability while boosting inter-class variants. The results from several experi-
ments showed that, on a variety of image benchmark datasets, CM-IKFC was superior to
state-of-the-art UDA methods.
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