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Abstract: 1,4- and 1,2-additons of secondary phosphine oxides to (1R)-myrtenal and (1S)-myrtanal
were evaluated as potential routes to P,C-stereogenic phosphine oxides bearing additional hydroxyl
or aldehyde functions. 1,4-Additions of racemic secondary phosphine oxides to (1R)-myrtenal were
found to offer moderate to good stereoselectivity which shows some promise for utility in kinetic
resolution processes, especially at lower conversions. In case of 1,2-additions making the process
doubly asymmetric by using an enantiomerically pure secondary phosphine oxide as substrate turned
out to be practical. The stereochemical course of the addition reactions under study is presented. The
P-resolved 1,2-addition products were demonstrated to undergo facile reduction by BH3 at room
temperature leading to the formation of the corresponding α-hydroxyphosphine-boranes with clean
inversion of configuration at the P-centre. All P,C-stereogenic phosphine oxides and boranes that
were isolated in the form of a single diastereoisomer were assigned their absolute configurations by
means of X-ray crystallography and/or 2D NMR spectral techniques.

Keywords: hydroxyphosphine oxides; hydroxyphosphine-boranes; P-stereogenic; kinetic resolution;
doubly asymmetric additions; absolute configuration; reduction of P=O by BH3

1. Introduction

The development of new methodologies leading to P-stereogenic phosphorus com-
pounds is an important topic because these compounds find widespread use as reagents,
biologically active compounds, and as ligands and organocatalysts in asymmetric syn-
thesis [1–6]. Among them, bifunctional P-stereogenic α-hydroxyphosphine derivatives
have become a motif of growing interest [7–10]. A typical synthesis of P,C-stereogenic
α-hydroxyphosphine oxides is based on deprotonation of a resolved P-stereogenic sec-
ondary phosphine oxide, followed by 1,2-addition to an aldehyde which proceeds without
losing optical purity of the P centre [11–14]. Nowadays, access to a wider spectrum of
optically pure secondary phosphine oxides enables the formation of many derivatives
having P,C-stereogenic α-hydroxyphosphine skeletons (e.g., Scheme 1) [15–18]. An in-
teresting synthesis of P,C-stereogenic 1,3-bis(phosphinyl)hydroxypropanes by reaction of
(RP)-menthylphenylphosphine oxide with α,β-unsaturated aldehydes has been presented
recently [19] (Scheme 1).

In this communication we wish to present a preliminary study that aims to explore a
reverse approach, i.e., to check whether a racemic stereogenic P-centre can be effectively
resolved in analogous 1,2-addition (or 1,4-addition) reactions utilizing naturally occurring
(1R)-myrtenal and (1S)-myrtanal and racemic secondary phosphine oxides. Interestingly, in
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contrast to the frequent use of menthol [19–22] as well as other terpenoids [23] to resolve or
to generate chirality at a P-centre neither myrtenal nor myrtanal have been used previously
as chiral auxiliaries or chiral scaffolds for the synthesis of P,C-stereogenic phosphorus
compounds. Unlike the case with menthol, myrtenal-derived phosphine oxides allow
further functionalization to be carried out easily. New myrtenal-based resolution protocols
may therefore provide valuable contributions to the field of the synthesis of P,C-chiral
phosphine oxides.
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2. Results and Discussion
2.1. 1,4-Addition of Secondary Phosphine Oxides to (1R)-Myrtenal

First, we chose to study selectivity of addition of racemic tert-butyl(phenyl)phosphine
oxide (1a) [16] to (1R)-myrtenal (2) using n-BuLi as a base (Scheme 2). The reaction afforded
1,4-addition product 3a which was formed as a mixture of two isomers in a ratio of 1:0.5
(60%). Only traces of 1,2-addition product 4a could be detected. Interestingly, formation of
a bis(phosphinoyl) product resulting from tandem 1,4- and 1,2-addition observed recently
in similar additions of secondary phosphine oxides to acyclic α,β-unsaturated aldehydes
was not observed [19]. Due to the low stability of 3a on silica gel column, we were able to
isolate only one pure isomer (3a-I, δP 57.03, major) in 30% yield. The minor isomer of 3a
(δP 58.04) could not be separated and it was identified only spectrally in a minute fraction
also containing trace amounts of 1,2-addition product 4a (δP 53.79). (The structure of 4a
was deduced from the characteristic peaks of vinyl protons at δH 6.65 ppm and the CH-OH
proton at δH 4.49).

The molecular structure of the isolated major adduct 3a-I was determined by means
of the X-ray crystallographic analysis and it is displayed in Figure 1. As can be seen,
the absolute configuration at the P centre is SP and the configurational array of the sub-
stituents at the P1-C3-C2-C10 bond is anti (torsion angle 111◦). It appears that attack of
the P-nucleophile and subsequent protonation both occurred from the less hindered side
of the (1R)-myrtenal molecule. This observation is in agreement with the recent literature
reporting that 1,4-additions of a sulfur nucleophile proceeded from the less hindered side
of myrtenal molecule and led exclusively to the formation of anti-configured adducts [24].
Based on this apparent stereochemical preference it seems reasonable to assume that both
the major and the minor isomer of 3a have relative anti configuration and that they differ
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only in the configuration of the phosphorus atom. The observed predominance of (SP)-3a-I
in the product mixture at 60% conversion indicates that the SP enantiomer of 1a reacts
faster with (1R)-myrtenal than its RP counterpart and that this finding may constitute a
basis for development of a useful kinetic resolution process, especially at lower conversion.
It can also be conjectured that (SP)-1a composes with (1R)-myrtenal (2) a ‘matched pair’ in
terms of a doubly asymmetric 1,4-addition process.
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The addition of racemic o-anisyl(phenyl)phosphine oxide (1b) was tried next under
the same conditions (Scheme 3). Again, the reaction afforded only 1,4-addition product 3b
as a mixture of two diastereoisomers (δP, 36.23 and 36.56) in a 1:0.8 ratio (85%). A higher
conversion this time inevitably resulted in lower stereoselectivity. Again, only traces of
1,2-addition product could be detected, if any. An attempted separation of the mixture
of diastereoisomeric adducts 3b on silica gel proved unsuccessful. However, when the
mixture was exposed to air some tiny crystals started to separate from the mixture upon
standing as a result of a partial oxidation of adducts 3b to the corresponding acids 5b (δP,
41.49 and 41.22). Collection and recrystallization of those crystals from methanol led to
isolation of a single diastereoisomer 5b-I (δP 42.03) in 15% yield. The X-ray crystal structure
analysis of this diastereoisomer allowed its absolute configuration at phosphorus to be
determined as RP as well as to assign an anti-configuration of the P1-C3-C2-C10 fragment
(torsion angle 110◦) (Figure 2). The structure of 5b-I further corroborates the previous
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observation that, in these 1,4-additions, the attack of a P-nucleophile and subsequent
protonation both prefer to take place from the less hindered side of (R)-myrtenal molecule
to yield an anti-configured adduct.
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2.2. 1,2-Addition of Secondary Phosphine Oxides to (1R,2R/2S)-Myrtanal

Since reactions of (1R)-myrtenal (2) with secondary phosphine oxides 1a,b led ex-
clusively to the formation of 1,4-addition products 3 it became necessary to hydrogenate
its double bond in order to obtain access to 1,2-addition products. The hydrogenation of
(1R)-myrtenal was most conveniently carried out in AcOEt at 1 atm pressure of hydrogen
using platinum on carbon as catalyst (cf., Supporting Information) and gave myrtanal
(6) as a mixture of two C2-epimers 6a and 6b in a 2:1 (2R:2S) ratio (Scheme 4) [25]. Due to
possible epimerization of their C2-centers under basic conditions of the planned additions
the epimers were not separated and were used as a mixture in further studies.

Having in hand saturated aldehyde 6 as a mixture of two C2-epimers we decided to
react it with enantiomerically pure tert-butyl(phenyl)phosphine oxide (RP)-1a [16] rather
than with rac-1a in order to cut the number of possible diastereoisomeric adducts and to
facilitate their separation. By this maneuver, the studied 1,2-adition reaction turned into a
doubly asymmetric one (Scheme 5).
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In effect, we obtained only two diastereoisomeric 1,2-adducts 7a (δP 44.13 and δP
50.01) in a 1:0.4 ratio (63%). In addition, the formation of traces of unsaturated phosphine
oxide 8 (1 dia; δP 49.9) that originated from dehydration of 7a was observed. We were
able to isolate the major diastereoisomer (7a-I) in 14% yield and a fraction consisting of a
mixture of the two diastereoisomers in a 1:0.7 ratio (49%). Further attempts to separate this
mixture resulted in additional isolation of 7a-I (major) and 7a-II (minor) in 6 and 7% yield,
respectively as well as the mixture of both pure diastereoisomers (7%).

The confirmation of structure and assignment of configuration for the major di-
astereoisomer (7a-I) was obtained by means of X-ray crystallography (Figure 3). The
absolute configuration at P was established to be RP in accord with the configuration of
the starting (RP)-1a. In turn, the absolute configurations at C10 and at C2 were found
to be S. The observed S configuration at C2 suggested that the major product of the 1,2-
addition resulted from the addition of (RP)-1a to the minor (SP)-epimer of myrtanal (6b)
and that two C2 epimers of myrtanal 6a and 6b must have equilibrated under the basic
reaction conditions.
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This reasoning led us to attempt the reaction using the same enantiomerically pure
(RP)-1a, whilst changing the base to DBU to secure better equilibrating conditions and
running the reaction at room temperature during prolonged time (7 d), we were able to
markedly increase the yield and stereoselectivity of this addition. Under these conditions
the two diastereoisomeric adducts 7a were formed in a 1:0.07 ratio in 67% overall yield.
Chromatographic separation of these adducts afforded the major one, 7a-I, and the minor
one, 7a-II, in 35 and 9% isolated yield, respectively (Scheme 6). Additionally, a fraction
containing the two isomers in a mixture was isolated in 20% yield.

Symmetry 2023, 15, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 3. The molecular structure of RP−7a-I. 

This reasoning led us to attempt the reaction using the same enantiomerically pure 
(RP)-1a, whilst changing the base to DBU to secure better equilibrating conditions and 
running the reaction at room temperature during prolonged time (7 d), we were able to 
markedly increase the yield and stereoselectivity of this addition. Under these conditions 
the two diastereoisomeric adducts 7a were formed in a 1:0.07 ratio in 67% overall yield. 
Chromatographic separation of these adducts afforded the major one, 7a-I, and the minor 
one, 7a-II, in 35 and 9% isolated yield, respectively (Scheme 6). Additionally, a fraction 
containing the two isomers in a mixture was isolated in 20% yield. 

 
Scheme 6. Synthesis of α-hydroxyphosphine oxide 7a using (RP)−1a and myrtanal (6) in the presence 
of DBU. 

Apparently, as shown by the very high diastereomeric ratio of the adducts 7a-I and 
7a-II (1:0.07) observed in the crude product mixture, the minor (2SP)-epimer (6b) reacted 
much faster with (RP)-1a than did the major (2RP)-epimer (6a). It can thus be concluded 
that in the studied doubly asymmetric process (RP)-1a and the minor (2SP)-epimer of myr-
tanal (6b) constituted the ‘matched pair’ of reactants. A plausible course of this process is 
sketched in Scheme 7.  

Scheme 6. Synthesis of α-hydroxyphosphine oxide 7a using (RP)−1a and myrtanal (6) in the presence
of DBU.

Apparently, as shown by the very high diastereomeric ratio of the adducts 7a-I and
7a-II (1:0.07) observed in the crude product mixture, the minor (2SP)-epimer (6b) reacted
much faster with (RP)-1a than did the major (2RP)-epimer (6a). It can thus be concluded
that in the studied doubly asymmetric process (RP)-1a and the minor (2SP)-epimer of
myrtanal (6b) constituted the ‘matched pair’ of reactants. A plausible course of this process
is sketched in Scheme 7.
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Next, we used the same reaction conditions to test a possibility of resolution of racemic
phenyl(methyl)phosphine oxide (1c) in its reaction with myrtanal (6). We used racemic
form of 1c due to difficult access to its nonracemic form. This reaction led to the formation
of a mixture of all possible diastereoisomers of 9c (δP, 44.22; 42.82; 42.04; 41.38; 40.94;
40.89; 40.52; 39.57) in 62% overall yield (Scheme 8). This time, despite the presence of
many isomers, silica gel column chromatography provided the fractions each of which
was enriched in pairs of diastereoisomers of 9c of close retention time (for more details
see Supporting Information, pp. S62–S68). Each of these fractions was then subjected to
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crystallization from ethyl acetate. In this way, we obtained three single diastereoisomers of
9c, i.e., 9c-I and 9c-II in 5% yield each, and 9c-III in 1% yield. Isomer 9c-IV was obtained
in one of the fractions coming from the chromatography column in 2% yield. Additionally,
two fractions containing mixtures of other diastereoisomers were isolated, both in 3% yield.
The structures of diastereoisomers 9c-I and 9c-III were established by X-ray analysis. In
9c-I, the stereogenic centres at P, C10 and C2 were found to be of RP,S,R configuration,
respectively (Figure 4). In 9c-III, the absolute configurations at P, C10 and C2 were assigned
as RP,R,S (Figure 5).
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For determination of the structure of 9c-II a two-dimensional NMR technique was
used. In a NOESY spectrum of 9c-II it was found that proton H1 interacts with protons H11
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of the P-methyl group. The interactions of protons H1 and H2 with protons of the P-phenyl
ring were not detected. Therefore, we have assigned the configuration at the phosphorus
atom as Sp. In turn, the detected interactions of proton H1 with proton H8 allowed the
absolute configuration at C1 to be assigned as R. The interactions of H2 with protons
H9 indicated that H2 occupies an equatorial position. Hence, the phenylmethylphosphi-
noyl(hydroxy)metine group has to occupy an axial position which implies that the absolute
configuration at C2 is S (Figure 6). It appears then that 9c-I and 9c-II are the P-epimers.
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2.3. Synthesis of P-Stereogenic α-Hydroxyphosphine-Boranes

One of the important features of α-hydroxyphosphine oxides is their ability to undergo
very facile reduction upon treatment with BH3 at room temperature, to give directly the
corresponding borane-protected α-hydroxyphosphines with clean inversion of configu-
ration at the P-centre [26–29]. To further explore this possibility, two of the synthesized
P,C-stereogenic α-hydroxyphosphine oxides, i.e., (RP)-7a-I, and (SP)-9c-II were subjected
to such reductions under the previously reported conditions [26]. In the case of (RP)-7a-I
the reduction of the P=O bond with 5 equiv. of BH3-THF at room temperature for 16 h
afforded the corresponding α-hydroxyphosphine-borane 10a together with a secondary
phosphine-borane 11a in 65 and 15% isolated yield, respectively (Scheme 9). The formation
of a secondary phosphine borane as a side product in such reduction has not been reported
before [26,27]. Even more surprisingly, when 7a-I was subjected to reaction with 3 equiv.
of BH3-THF at 60 ◦C for 20 h, 11a was formed as the major product and could be isolated
from the product mixture in 80% yield.
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Scheme 9. The synthesis of P−stereogenic phosphine-borane 10a.

Based on the previous literature data and the known mechanism of this reduction we
could expect that the formation of phosphine-borane 10a would occur with clean inversion
of configuration at the P-centre [30–32]. Indeed, inspection of a NOESY spectrum of 10a
revealed interactions between proton H1 and protonso-H of the P-phenyl ring attesting to
the change in configuration of substituents at the phosphorus atom (Figure 7). This allowed
the absolute configuration at the P atom in 10a to be assigned as RP and to confirm again
the stereoinvertive course of reduction of α-hydroxyphosphine oxides by BH3.

The absolute configuration of phosphine-borane 11a was assigned as RP on the basis
of the sign of its specific optical rotatory power ([α]D = −2.0 (c 1.03, CHCl3)) by correlation
with the literature data [32]. Since phosphine-borane 11a has preserved configuration at P
atom (RP, retention), it can be deduced that it resulted from a stereoretentive reduction of
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(R)-t-butyl(phenyl)phosphine oxide regenerated from 7a-I in a retro-addition process [30–32]. It
has already been established that reduction of secondary phosphine oxides by BH3 complexes
proceeds with retention of configuration [31]. However, the low optical rotatory power for
11a suggests that some optical purity was lost, probably due to racemisation of secondary
phosphine before complexation with BH3 [32].
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The second reduction was conducted with phosphine oxide (SP)-9c-II which, under the
same reduction conditions, was successfully converted into the corresponding phosphine-
borane 12c that was isolated in 94% yield (Scheme 10). Taking into consideration the
inversion during the reduction process, the absolute configuration of 12c was assigned
as SP [26,27]. This time, formation of a secondary phosphine-borane by-product was
not observed. It seems likely, that in case of 7a-I it was steric crowding that facilitated a
retro-addition process and eventually led to the formation of 11a.
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Scheme 10. The reduction of phosphine oxide 9c-II using BH3-THF.

Finally, an attempt was made to reduce a phosphine oxide 3a-I, which features a
reducible aldehyde group, under the same conditions (Scheme 11). The experiment revealed
that only the aldehyde group underwent the reduction and that the P=O group present in
the formed γ-hydroxyphosphine oxide 13 remained intact. We have previously reported
a similar outcome of the reaction of a different γ-hydroxyphosphine oxide with BH3 [26].
We proved in that work that γ-positioned hydroxyl group is too remote from P=O bond to
generate the cycle required to enable the reduction process by BH3.
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3. Materials and Methods
3.1. General

1H, 31P{1H}, 13C{1H} NMR spectra were recorded on Bruker Advance 500 or 300, or
Varian 400 spectrometer at ambient temperature (CDCl3 as a standard solvent or MeOD-d4).
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Chemical shifts (δ) are reported chemical shift in ppm from tetramethylsilane and peaks
are labelled using as singlets (s), doublets (d), triplets (t), ect., broad (b) and multiplets
(m). Mass spectra were recorded on Shimadzu GC-MS QP2010S in electron ionization
(EI). Melting points were determined on Büchi Melting Point M-560 and were uncorrected.
The HRMS analysis performed on the HPLC system coupled to a linear trap quadrupole-
Orbitrap mass spectrometer (LTQ-Orbitrap Velos from Thermo Fisher Scientific, San Jose,
CA, USA) equipped with an ESI source. Chromatographic separation was performed using
isocratic elution with the composition of the mobile phase equal 25% 25 mM formic acid in
water and 75% 25 mM formic acid in acetonitrile. The total run time was 30 min at a mobile
phase flow rate of 0.5 mL/min. Specific optical rotations were measured on Perkin Elmer
341LC (1 mL cell, 10 mm path length) and are reported as follows: [α]25

D (c: g/100 mL, in
solvent). Elementary analyses were performed on PERKIN ELMER CHN 2400. Thin-layer
chromatography (TLC) was performed with precoated silica gel plates and subjected to
visualization (UV, KMnO4 solution or iodine/silica gel). The purification of compounds
was performed on column chromatography (silica gel, 60–240 mesh).

3.2. X-ray Crystallography

The single crystal diffraction data were collected at room temperature with a Su-
perNova (for 3a-I, 5b-I, 7a-I and 9c-III) and an Xcalibur Gemini (for 9c-I) diffractometer
(Oxford Diffraction, Oxford, UK) using the graphite monochromated CuKα radiation. The
data collection, cell refinement, and data reduction was obtained using CrysAlisPro pro-
gram system [33]. The intensities were corrected for Lorentz and polarization effects, and
additionally a multi-scan absorption corrections were applied. The SHELXT program was
used to solve the crystal structure by direct methods. SHELXL-97 program was applied to
refine crystal structures by the full-matrix least squares method on F2 using the [34,35]. The
experimental details and final atomic parameters for the analysed crystals were deposited
with the Cambridge Crystallographic Data Centre as Supplementary Material. (CCDC Nos
2162093–2162097).

4. Experimental

The starting compounds: t-butylphenylphosphine oxide (1a) [16], o-anisylphenylphosphine
oxide (1b) [36], phenyl(methyl)phosphine oxide (1c) [37] were obtained according to reported
methods. Celite® was purchased from Sigma-Aldrich (Buchs, Switzerland).

4.1. General Procedure of the Reaction of Phosphine Oxides with (R)-Myrtenal

In a Schlenk tube (50 mL) equipped with an argon inlet, secondary phosphine oxide 1
(2 mmol) in anhydrous THF (5 mL) was dissolved. Then, the mixture was cooled to −78 ◦C
and n-BuLi (1.38 mL, 2.2 mmol, 1.6 M in hexanes) was added. The reaction mixture was
stirred at this temperature for 15 min. After that time, (1R)-myrtenal (304 µL, 2 mmol) and
the mixture was left at rt for 48 h. Then, the saturated solution of NH4Cl (5 mL) was added
to quench the reaction. Then, the reactions mixture was extracted with CH2Cl2 (3 × 30 mL)
and collected organic phases were dried using MgSO4. The solvent was evaporated and the
crude product was checked using NMR technique. The purification of the crude product
was performed on silica gel column using CHCl3/MeOH (v/v = 50:1) as eluent. The
following products were synthesized according to this method.

2-(1-(t-Butylphenylphosphinoyl)-1-hydroxymethyl)-6,6-dimethylbicyklo[3.1.1]heptane (4a).31P
NMR (162 MHz, CDCl3): δ 53.79.

3-(t-Butylphenylphosphinoyl)-6,6-dimethylbicyclo[3.1.1]heptane-2-carboaldehyde (3a). Yield
60% (0.398 g). An yellow oil; mixture of diastereoisomers (d.r. = 1:0.5). Separation of this
mixture via chromatography column gave pure 3a-I (Figure 8).

Trans-(SP,1S,2R,3S,5R)-3-(t-butylphenylphosphinoyl)-6,6-dimethylbicyclo[3.1.1]heptane-2-
carboaldehyde (3a-I). White solid. m.p. = 307–308 ◦C (dec.). Yield 30% (0.199 g). Rf = 0.52
(AcOEt). 1H NMR (400 MHz, CDCl3): δ 0.71 (s, 3H, C(9)H), 1.08 (d, JP-H = 14.09 Hz, 9H),
1.16 (s, 3H, C(8)H), 1.70–1.90 (m, 4H, C(4)H2, C(1)H, C(7)H), 2.29–2.36 (m, 1H, C(7)H),
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2.56–2.61 (m, 1H, C(5)H), 3.56–3.64 (m, 2H, C(2)H,C(1)H), 7.43–7.52 (m, 3H), 7.73–7.78 (m,
2H), 9.75 (s, 1H, C(10)H); 13C NMR (125 MHz, CDCl3): δ 20.8 (d, 1JP-C = 60.9 Hz, C3), 21.9
(s, C9), 25.1, 26.5 (s, C8), 28.7 (s, C7), 29.1 (d, JP-C = 2.9 Hz, C4), 34.4 (d, 1JP-C = 64.4 Hz), 38.7
(s, C6), 40.2 (d, 3JP-C = 2.9 Hz, C5), 40.8 (d, 3JP-C = 2.9 Hz, C1), 53.5 (d, 2JP-C = 2.3 Hz, C2),
128.5 (d, 3JP-C = 10.4 Hz, CH), 131.1 (d, 1JP-C = 87.9 Hz, C), 131.6 (d, 4JP-C = 2.9 Hz, CH),
132.5 (d, 2JP-C = 7.5 Hz, CH), 203.8 (d, 3JP-C = 4.0 Hz, C10); 31P NMR (162 MHz, CDCl3):
δ 57.03 (s); Anal calcd for C20H29O2P: C, 72.26; H, 8.79; Found: C, 72.33; H, 8.80. HRMS
(ESI-LTQ) m/z calcd for C20H30O2P [M+H]+: 333.19834, found: 333.19821.
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Z = 4, Density (calc) = 1.187 g/cm3, absorption coeff. 1.356 mm−1, F(000) = 720. Col-
lected/independent reflections 13,077/3820 [R(int) = 0.0267], data/restraints/parameters
3820/0/208. Goodness-of-fit on F2 1.057; final R indices [I > 2σ(I)] R1 = 0.0291, wR2 = 0.0762,
absolute structure parameter x = −0.010(9). CCDC No. 2162093.

3-(o-Anisylphenylphosphinoyl)-6,6-dimethylbicyclo[3.1.1]heptane-2-carboaldehyde (3b). Yield
85% (0.649 g). Rf = 0.59 (CHCl3/MeOH = 50:1). A yellow oil; mixture of diastereoisomers
(d.r. = 1:0.8). 1H NMR (400 MHz, CDCl3): δ 0.72 (s, 3H, minor), 0.76 (s, 3H, major), 1.18 (s,
6H), 1.81–1.85 (m, 2H), 1.86–1.92 (m, 1H), 1.95–2.24 (m, 5H), 2.32–2.40 (m, 2H), 2.45–2.52 (m,
2H), 2.97–3.05 (m 1H, major), 3.15–3.23 (m, 1H, minor), 3.86 (s, 3H, major), 3.93–4.00 (m, 1H,
major), 4.00 (s, 3H, minor), 4.05–4.13 (m, 1H, minor), 6.75–6.79 (m, 1H, major), 6.91–6.95 (m,
1H, minor), 7.00–7.04 (m, 1H, major), 7.06–7.10 (m, 1H, minor), 7.33–7,49 (m, 8H), 7.94–8.01
(m, 4H), 8.03–8.07 (m, 1H, major), 8.07–8.13 (m, 1H, minor), 9.31 (s, 1H, major), 9.32 (s,
1H, minor); 31P NMR (162 MHz, CDCl3): δ 36.32 (s, minor); 36.56 (s, major). 13C NMR
(125 MHz, CDCl3): δ 22.0 (s, CH3, minor), 22.4 (d, JC-P = 72.7 Hz, CH, major), 22.5 (s, CH3,
major), 23.9 (d, JC-P = 71.8 Hz, CH, minor), 25.3 (d, JC-P = 1.8 Hz, CH2, minor), 25.9 (d,
JC-P = 2.7 Hz, CH2, major), 26.3 (s, CH, major), 26.4 (s, CH, minor), 28.4 (s, CH2, major),
28.7 (s, CH2, minor), 38.7 (s, C, major), 38.8 (s, C, minor), 39.6 (d, JC-P = 3.6 Hz, CH, minor),
39.7 (d, JC-P = 3.6 Hz, CH, major), 40.5 (d, JC-P = 3.6 Hz, CH, minor), 40.9 (d, JC-P = 3.6 Hz,
CH, major), 51.7 (d, JC-P = 2.7 Hz, CH, minor), 51.9 (d, JC-P = 2.7 Hz, CH, major), 54.8 (s,
CH3, major), 55.2 (s, CH3, minor), 110.3 (d, JC-P = 7.3 Hz, CH, major), 110.6 (d, JC-P = 7.3 Hz,
CH, minor), 119.1 (d, JC-P = 93.6 Hz, C, major), 120.3 (d, JC-P = 95.4 Hz, C, minor), 120.5 (d,
JC-P = 10.0 Hz, CH, major), 121.1 (d, JC-P = 10.9 Hz, CH, minor), 127.7 (d, JC-P = 11.8 Hz,
CH, minor), 127.8 (d, JC-P = 11.8 Hz, CH, major), 131.1 (d, JC-P = 2.7 Hz, CH, major), 131.4
(d, JC-P = 2.7 Hz, CH, minor), 131.5 (d, JC-P = 10.0 Hz, CH, minor), 131.8 (d, JC-P = 10.0 Hz,
CH, major), 132.1 (d, JC-P = 100.8 Hz, C, minor), 132.2 (d, JC-P = 100.8 Hz, C, major), 133.6
(d, JC-P = 1.8 Hz, CH, minor), 133.9 (d, JC-P = 1.8 Hz, CH, major), 134.7 (d, JC-P = 3.6 Hz,
CH, major), 137.1 (d, JC-P = 3.6 Hz, CH, minor), 158.8 (d, JC-P = 5.5 Hz, C, minor), 159.4 (d,
JC-P = 5.5 Hz, C, major), 201.8 (d, JC-P = 4.5 Hz, C, minor), 201.9 (d, JC-P = 3.6 Hz, C, major).
HRMS (ESI-LTQ) m/z calcd for C23H28O3P [M+H]+: 383.17761; found: 383.17777.

3-(o-Anisylphenylphosphinoil)-6,6-dimethylbicyclo[3.1.1]heptane-2-carboxylic acid (5b). Com-
pound 3b oxidized spontaneously to 5b upon standing. Crystallization of 5b gave 5b-I
(15%) and mixture of both isomers (5b-I and 5b-II).

Trans-(RP,1S,2R,3S,5R)-3-(o-anisylphenylphosphinoil)-6,6-dimethylbicyclo[3.1.1]heptane-2-
carboxylic acid (5b-I). Yield 15% (0.12 g). White solid, m.p. = 314–315 ◦C (methanol). Rf = 0.39
(CHCl3/MeOH = 30:1). 1H NMR (400 MHz, CDCl3): δ 0.65–0.67 (m, 1H), 1.00 (s, 3H), 1.20
(s, 3H), 1.84–1.88 (m, 1H), 2.06–2.11 (m, 2H), 2.42–2.46 (m, 1H), 2.41–2.43 (m, 1H), 3.13–3.19
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(m, 1H), 3.79 (s, 3H), 3.98–4.00 (m, 1H), 6.86–6.89 (m, 1H), 7.03–7.07 (m, 1H), 7.48–7.53 (m,
3H), 7.57–7.60 (m, 1H), 7.77–7.79 (m, 1H), 7.89–7.92 (m, 2H). 31P NMR (162 MHz, CDCl3):
δ 42.03 (s). 13C NMR (75 MHz, CD3OD): δ 21.9 (s), 25.8 (d, JC-P = 72.4 Hz, CH), 26.4 (s),
27.7 (d, JC-P = 2.9 Hz, CH2), 28.8 (s, CH2), 39.9 (s, C), 41.2 (d, JC-P = 3.4 Hz, CH), 45.1 (d,
JC-P = 4.6 Hz, CH), 45.2 (d, JC-P = 2.0 Hz, CH), 55.5 (s, CH3), 112.1 (d, JC-P = 7.2 Hz, CH),
119.7 (d, JC-P = 96.9 Hz, C), 121.5 (d, JC-P = 10.3 Hz, CH), 129.3 (d, JC-P = 12.1 Hz, CH),
132.9 (d, JC-P = 2.6 Hz, CH), 133.1 (d, JC-P = 102.1 Hz, C), 133.3 (d, JC-P = 9.5 Hz, CH), 135.1
(d, JC-P = 4.3 Hz, CH), 135.8 (d, JC-P = 2.0 Hz, CH), 161.9 (d, JC-P = 5.6 Hz, C), 177.0 (d,
JC-P = 4.0 Hz, C). HRMS (ESI-LTQ) m/z calcd for C23H28O4P [M+H]+: 399.17252, found:
399.17262.

Crystal data for RP-5b-I: Mw = 398.41, crystal system orthorhombic, space group P212121,
Unit cell dimensions a = 10.6346(3) Å, b = 11.0832(3) Å, c = 18.1288(4) Å; V = 2136.76(10) Å3,
Z = 4, Density (calc) 1.238 g/cm3, absorption coeff. 1.344 mm−1, F(000) = 848. Collected/
independent reflections 15423/4396 [R(int) = 0.0274], Data/restraints/parameters 4396/0/258.
Goodness-of-fit on F2 1.075; final R indices [I > 2σ(I)] R1 = 0.0346, wR2 = 0.0968, absolute
structure parameter x = −0.035(9). CCDC No. 2162094.

3-(o-Anisylphenylphosphinoil)-6,6-dimethylbicyclo[3.1.1]heptane-2-carboxylic acid (5b-II),
Signals identified in a mixture (with 5b-I, d.r. = 1:0.37) which left after crystallization.
1H NMR (400 MHz, CDCl3): δ 1.00 (s, 3H), 1.20 (s, 3H), 1.84–1.88 (m, 1H), 2.06–2.11 (m,
2H), 2.42–2.46 (m, 1H), 2.41–2.43 (m, 1H), 3.13–3.19 (m, 1H), 3.79 (s, 3H), 3.98–4.00 (m,
1H), 6.86–6.89 (m, 1H), 7.03–7.07 (m, 1H), 7.48–7.53 (m, 3H), 7.57–7.60 (m, 1H), 7.77–7.79
(m, 1H), 7.89–7.92 (m, 2H). 31P NMR (162 MHz, CDCl3): δ 40.69 (s). 13C NMR (125 MHz,
DMSO-d6): δ 21.4 (s, CH3), 21.6 (s, CH3), 24.1 (d, JC-P = 71.8 Hz, CH), 25.7 (s, CH2),
26.1 (d, JC-P = 72.5 Hz, CH), 26.5 (s, CH2), 27.1 (s, CH), 27.2 (s, CH), 28.1 (s, CH2), 28.4
(s, CH2), 38.7 (d, JC-P = 4.5 Hz, CH), 39.9 (d, JC-P = 4.5 Hz, CH), 40.04 (s, CH), 40.2 (s,
CH), 43.2 (d, JC-P = 3.7 Hz, CH), 43.3 (d, JC-P = 3.7 Hz, CH), 43.4 (d, JC-P = 1.8 Hz, CH),
43.6 (d, JC-P = 1.2 Hz, CH), 55.3 (s, CH3), 56.2 (s, CH3), 111.3 (d, J = 6.8 Hz, CH), 112.2 (d,
J = 6.8 Hz, CH), 120.4 (d, J = 6.8 Hz, CH), 118.4 (d, J = 92.6 Hz, C), 120.5 (d, J = 10.0 Hz,
CH), 118.4 (d, J = 92.6 Hz, C), 121.4 (d, J = 91.7 Hz, C), 128.3 (d, J = 11.8 Hz, CH), 128.4 (d,
J = 10.9 Hz, CH), 131.6 (d, J = 2.6 Hz, CH), 131.8 (d, J = 9.8 Hz, CH), 131.8 (d, J = 2.6 Hz,
CH), 131.7 (d, J = 9.8 Hz, CH), 131.7 (d, J = 2.6 Hz, CH), 132.3 (d, J = 10.0 Hz, CH), 132.7 (d,
J = 2.6 Hz, CH), 132.4 (d, J = 10.0 Hz, CH), 133.1 (d, J = 99.0 Hz, C), 133.3 (d, J = 95.0 Hz,
C), 134.4 (d, JC-P = 4.5 Hz, CH), 134.6 (d, JC-P = 5.5 Hz, CH), 132.6 (d, JC-P = 4.5 Hz, CH),
159.4 (d, JC-P = 4.5 Hz, C), 160.2 (d, JC-P = 4.5 Hz, C), 175.3 (d, JC-P = 4.5 Hz, C), 175.6 (d,
JC-P = 4.5 Hz, C).

4.2. Procedure of Reduction of (R)-Myrtenal (2) to Myrtanal (6) [25]

In a hydrogenation vessel (100 mL) (R)-myrtenal (8.77 g, 58.4 mol) and Pt/C (0.88 g)
was placed in anhydrous AcOEt (20 mL). The vessel was degassed three times and con-
nected to balloon with hydrogen (1 atm). The mixture was heated at 60 ◦C for 8 d. After
completion of the reaction, the crude reaction mixture was filtered through Celite® and
washed three times with AcOEt (3 × 5 mL). The solvent was evaporated and the crude
product was purified by distillation under reduced pressure to afford myrtanal (6).

Myrtanal (6). Yield 69% (6.13 g). Colorless liquid, b.p. = 110–120 ◦C (15 mmHg).
A mixture of diastereoisomers (d.r. = 2:1). Rf = 0.79 (hexane/AcOEt = 10:1). 1H NMR
(500 MHz, CDCl3): major diastereoisomer: δ 0.70 (s, 3H), 1.20 (s, 4H), 1.57–1.62 (m, 1H),
1.86–1.93 (m, 3H), 2.24–2.06 (m, 1H), 2.36–2.39 (m, 1H), 2.52–2.55 (m, 1H), 2.72–2.75 (m, 1H),
9.75 (s, 1H); minor diastereoisomer: δ 0.88 (s, 3H), 1.25 (s, 4H), 1.68–1.77 (m, 1H), 1.82–1.88
(m, 3H), 2.09–2.13 (m, 2H), 2.26–2.30 (m, 1H), 2.75–2.80 (m, 1H), 9.59 (s, 1H). These data are
consistent with those reported previously [38,39].
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4.3. Procedure of the Synthesis of [6,6-dimethylbicyclo[3.1.1]heptan-2-yl)(hydroxy)methyl](t-butyl)
(phenyl)phosphine Oxide (7a) Using n-BuLi

In a Schlenk tube (50 mL) equipped with a magnetic stirrer and an argon inlet, sec-
ondary phosphine oxide (RP)-1a (0.33 g, 1.81 mmol) in anhydrous THF (5 mL) was added.
Then, the reactions mixture was cooled to −78 ◦C, and n-BuLi (1.47 mL, 2.36 mmol, 1.6 M
in hexanes) was added and stirred at this temperature for 15 min. After that time, myrtanal
(6) (360 µL, 2.36 mmol) was added, the cooling bath was removed, and the mixture was left
at rt for 48 h. Then, the saturated solution NH4Cl (5 mL) was added to quench the reaction.
The reactions mixture was extracted with CH2Cl2 (3 × 30 mL), collected organic phases
were dried over MgSO4, filtered and evaporated. The crude residue was checked using
NMR technique and showed a mixture of two diastereoisomers 7a-I and 7a-II in a 1:0.4
ratio accompanied by traces of a side product 8. The purification of the crude product was
performed on silica gel using CHCl3/MeOH (v/v = 50:1) as eluent. The following products
were synthesized according to this method.

[6,6-Dimethylbicyclo[3.1.1]heptan-2-yl)(hydroxy)methyl](methyl)(phenyl)phosphine oxide
(RP)-(7a) as a mixture of two diastereoisomers (d.r. = 1:0.7). Yield 49% (0.296 g).

[6,6-Dimethylbicyclo[3.1.1]heptan-2-yl)(hydroxy)methyl](methyl)(phenyl)phosphine oxide
(RP)-(7a-I) (major). Yield 20% (0.121 g). [α]D = -198.3 (c 2.5, MeOH).

[6,6-Dimethylbicyclo[3.1.1]heptan-2-yl)(hydroxy)methyl](methyl)(phenyl)phosphine oxide
(RP)-(7a-II) (minor) Yield 7% (0.042 g). [α]D = −1.65 (c 2.24, MeOH).

For full identification of these adducts see below.
tert-Butyl((6,6-dimethylbicyclo[3.1.1]heptan-2-ylidene)methyl)(phenyl)phosphine oxide (8).

Analyzed in the reaction mixture. Rf = 0.43 (CHCl3/AcOEt = 5:1). 1H NMR (500 MHz,
CDCl3) (signals assigned in mixture): δ 0.76 (s, 3H), 0.92 (d, JP-H = 9.46 Hz, 1H), 0.96 (s,
3H), 1.16 (d, JP-H = 15.76 Hz, 9H), 1.41–1.47 (m, 1H), 2.22–2.25 (m, 2H), 2.31–2.32 (m, 1H),
2.34–2.45 (m, 2H), 2.59–2.62 (m, 1H), 6.16–6.20 (m, 1H), 7.44–7.47 (m, 2H), 7.52–7.55 (m, 1H),
7.72–7.76 (m, 2H); 31P NMR (202 MHz, CDCl3): δ 49.90 (s).

4.4. Procedure of the Synthesis of 6,6-dimethylbicyclo[3.1.1]heptan-2-yl)(hydroxy)methyl)(t-butyl)
(phenyl)phosphine Oxide (7a) from (RP)-1a and Myrtanal (6) Using DBU as a Base

In a Schlenk tube (50 mL) equipped with a magnetic stirrer and an argon inlet, sec-
ondary phosphine oxide (RP)-1a (0.544 g, 3 mmol) in anhydrous THF (15 mL). Then, DBU
(45 µL, 0.3 mmol) was added followed by myrtanal (6) (690 µL, 4.5 mmol). Then, the
mixture was stirred at rt for 7 d. Then, solid NH4Cl (200 mg) was added to quench the
reaction. Then, the reaction mixture was filtered through Celite® and evaporated. The
purification of the crude product was performed on silica gel using gradient elution from
CHCl3:AcOEt 50:1 to 1:1 a and then AcOEt to AcOEt/MeOH (v/v = 40:1).

(RP)-[(6,6-Dimethylbicyclo[3.1.1]heptan-2-yl)(hydroxy)methyl](t-butyl) (phenyl)phosphine
oxide (RP)-(7a-I) (major) (Figure 9). Yield 35% (0.351 g). White solid, m.p. = 163–164 ◦C.
Rf = 0.28 (CHCl3/AcOEt = 5:1). 1H NMR (500 MHz, CDCl3): δ 0.71 (s, 3H, C(9)H3), 1.15
(s, 3H, C(10)H3), 1.22 (d, 2JP-H = 14.0 Hz, 9H), 1.21–1.26 (m, 1H, C(3)H), 1.46–1.54 (m, 1H,
C(3)H), 1.53 (d, JH-H = 10.09 Hz, C(7)H), 1.57–1.69 (m, 2H, C(4)H2), 1.73–1.76 (m, 1H, C(5)H),
1.98 (bs, 1H), 2.01–2.03 (m, 1H, C(2)H), 2.07–2.13 (m, 1H, C(7)H), 2.54–2.59 (m, 1H, C(8)H),
4.45–4.46 (m, 1H, C(1)H), 7.42–7.46 (m, 2H), 7.48–7.53 (m, 1H), 7.98–8.02 (m, 2H); 13C NMR
(125 MHz, CDCl3): δ 16.0 (s, C3), 20.0 (s, C9), 23.9 (s, C4), 24.2 (C7), 25.0 (s, C), 26.6 (C10),
33.4 (d, 1JP-C = 63.6 Hz), 36.6 (s, C8), 40.0 (C5), 40.5 (C6), 49.5 (C2), 74.7 (d, JP-C = 78.1 Hz,
C1), 127.7 (d, 3JP-C = 10.9 Hz), 130.2 (d, 1JP-C = 79.9 Hz), 131.2 (d, 4JP-C = 2.7 Hz), 132.7 (d,
2JP-C = 8.2 Hz); 31P NMR (202 MHz, CDCl3): δ 42.43 (s); Anal. Calcd for C20H31O2P: C,
71.83; H, 9.34; Found: C, 71.50 H, 9.37; [α]D = −198.3 (c 2.5, MeOH). HRMS (ESI-LTQ) m/z
calcd for C20H32O2P [M+H]+: 335.21399, found: 335.21369.

Crystal data for RP−7a-I: Mw = 334.42, crystal system tetragonal, space group P 41,
unit cell dimensions a = b = 10.7713(8) Å, V = 2020.1(3) Å3, Z = 4, Density (calculated)
1.100 g/cm3, absorption coefficient 1.249 mm−1, F(000) = 728. Collected/independent
reflections 5471/3301 [R(int) = 0.0236]. data/restraints/parameters 3301/1/212. Goodness-
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of-fit on F2 1.032, final R indices [I > 2σ(I)] R1 = 0.0424, wR2 = 0.1092, absolute structure
parameter x = 0.006(19). CCDC No. 2162097.
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(RP)-[6,6-Dimethylbicyclo[3.1.1]heptan-2-yl)(hydroxy)methyl](t-butyl)(phenyl)phosphine ox-
ide (7a-II) (minor). Yield 7% (0.07 g). Colorless oil. Rf = 0.40 (CHCl3/AcOEt = 5:1). 1H
NMR (500 MHz, CDCl3): δ 0.28 (s, 3H), 0.98 (s, 3H), 1.19 (d, JP-H = 14.19 Hz, 9H), 1.21–1.30
(m, 1H), 1.51 (d, JP-H = 10.90 Hz, 1H), 1.64–1.68 (m, 2H), 1.73–1.80 (m, 1H), 2.01–2.04 (m,
1H), 2.10–2.14 (m, 2H), 3.20 (dd, JH-H = 6.31 Hz, JP-H = 11.03 Hz, 1H), 4.16–4.20 (m, 1H),
7.43–7.47 (m, 2H), 7.50–7.53 (m, 1H), 7.68–7.72 (m, 2H); 13C NMR (125 MHz, CDCl3): δ 18.8
(d, JP-C = 9.1 Hz, CH), 19.4 (s), 23.4 (d, JP-C = 2.7 Hz, CH2), 23.7 (s), 23.9 (d, JP-C = 1.8 Hz,
CH2), 25.1 (s, CH3), 26.4 (s), 33.7 (d, 1JP-C = 64.5 Hz, C), 36.9 (d, JP-C = 1.8 Hz, CH), 39.5 (s,
CH), 40.4 (d, JP-C = 3.6 Hz, CH), 70.9 (d, 1JP-C = 68.2 Hz, CH), 128.1 (d, JP-C = 10.9 Hz, CH),
129.8 (d, JP-C = 118.0 Hz, C), 131.4 (d, JP-C = 2.7 Hz, CH), 131.7 (d, JP-C = 8.2 Hz, CH); 31P
NMR (202 MHz, CDCl3): δ 47.76 (s); Anal. Calcd for C20H31O2P: C, 71.83; H, 9.34; Found:
C, 71.50; H, 9.37; [α]D = −1.65 (c 2.24, MeOH). HRMS (ESI-LTQ) m/z calcd for C20H32O2P
[M+H]+: 335.21399, found: 335.21379.

4.5. General Procedure of the Synthesis of [6,6-dimethylbicyclo[3.1.1]heptan-2-yl)(hydroxy)methyl]
(methyl)(phenyl)phosphine Oxide (9c) from rac-1c and Myrtanal (6) Using DBU as a Base

In a Schlenk tube (50 mL) equipped with a magnetic stirrer and an argon inlet, sec-
ondary phosphine oxide rac-1c (9 mmol) was placed in anhydrous THF (15 mL). Then,
to the mixture DBU (135 µL, 0.9 mmol) was added followed by myrtanal (6) (1.65 mL,
10.8 mmol). The mixture was stirred at rt for 7 d and monitored by TLC. Upon completion,
the reaction quenched with solid NH4Cl (200 mg). Then, the reaction mixture was filtered
through Celite® and evaporated. The purification of the crude product was performed on
silica gel using CH2Cl2/AcOEt/MeOH (v/v = 50:10:1) to give the product 9c as mixture
of all four diastereoisomers in 62% yield (1.629 g). By dividing the product into fractions
enriched with specific diastereoisomers and their subsequent crystallization from AcOEt
The following products were synthesized.

(RP)-6,6-Dimethylbicyclo[3.1.1]heptan-2-yl)(hydroxy)methyl)(methyl)(phenyl)phosphine oxide
(RP)-9c-I. (Figure 10). Yield 5% (0.131 g) as a solid, m.p.= 157.7–158.2 ◦C (AcOEt). Rf = 0.38
(CHCl3/AcOEt/MeOH = 30:5:1). 1H NMR (500 MHz, CDCl3): δ 0.79 (d, JH-H = 9.77 Hz, 1H,
C(7)H), 1.05 (s, 3H C(9)H3), 1.16 (s, 3H, C(10)H3), 1.75–1.81 (m, 3H, C(3)H, C(4)H), 1.82 (d,
JP-H = 12.93 Hz, 3H, C(11)H3), 1.83–1.88 (m, 1H, C(8)H), 1.91–1.94 (m, 1H, C(4)H), 2.04–2.13
(m, 1H, C(2)H), 2.18–2.22 (m, 1H, C(5)H), 2.26–2.31 (m, 1H, C(7)H), 3.21 (bs, 1H), 4.09–4.11
(m, 1H, C(1)H), 7.47–7.51 (m, 2H), 7.54–7.57 (m, 1H), 7.79–7.83 (m, 2H); 13C NMR (125 MHz,
CDCl3): δ 13.9 (d, 1JP-C = 68.1 Hz, C11), 18.4 (s, C3), 22.9 (s, C9), 26.1 (s, C4), 27.8 (s, C10), 32.2
(s, C7), 38.5 (s, C6), 41.0 (s, C5), 41.2 (d, J = 9.9 Hz, C8), 42.9 (s, C2), 74.3 (d, 1JP-C = 82.7 Hz,
C1), 128.5 (d, 3JP-C = 9.1 Hz), 131.3 (d, 1JP-C = 90.8 Hz), 131.2 (d, 2JP-C = 9.1 Hz), 131.9 (d,
4JP-C = 2.7 Hz); 31P NMR (202 MHz, CDCl3): δ 41.91 (s); Anal. Calcd for C17H25O2P: C, 69.84;
H, 8.62; Found: C, 69.99; H, 8.74; [α]D = −43.9 (c 1.025, CHCl3). HRMS (ESI-LTQ) m/z calcd
for C17H26O2P [M+H]+: 293.16704, found: 293.16721.

Crystal data for RP−9c-I: Mw = 292.34, crystal system monoclinic, space group P 21,
unit cell dimensions a = 6.9985(5) Å, b = 10.5591(8) Å, c = 11.2596(8) Å, β= 104.303(5)◦,
V = 806.27(10) Å3, Z = 2, Density (calc) 1.204 g/cm3, absorption coeff. 1.496 mm−1, F(000) = 316.
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Collected/independent reflections 11,414/2893 [R(int) = 0.0217], data/restraints/parameters
2893/1/188. Goodness-of-fit on F2 1.028, final R indices [I > 2σ(I)] R1 = 0.0264, wR2 = 0.0709,
absolute structure parameter x = 0.003(13). CCDC No. 2162095.
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(SP)-6,6-Dimethylbicyclo[3.1.1]heptan-2-yl)(hydroxy)methyl)(methyl)(phenyl)phosphine ox-
ide (SP)-9c-II (Figure 11). Yield 5% (0.131 g). White solid, m.p.= 157.9–158.2 ◦C (AcOEt).
Rf = 0.42 (CHCl3/AcOEt/MeOH = 30:5:1). 1H NMR (500 MHz, CDCl3): δ 0.73 (s, 3H,
C(9)H), 1.18 (s, 3H, C(10)H), 1.29–1.32 (m, 1H, C(3)H), 1.36 (d, JH-H = 10.09 Hz, 1H, C(7)H),
1.40–1.47 (m, 1H, C(3)H), 1.60–1.69 (m, 2H, C(4)H2), 1.74 (d, JH-P = 12.61 Hz, 3H, C(11)H3),
1.78–1.81 (m, 1H, C(5)H), 2.01–2.05 (m, 1H, C(7)H), 2.25–2.27 (m, 1H, C(8)H), 2.34–2.37 (m,
1H, C(2)H), 3.64 (d, JH-P = 7.57 Hz, C(1)H, 3.85 (bs, 1H), 7.41–7.48 (m, 2H), 7.48–7.53 (m,
1H), 7.70–7.73 (m, 2H); 13C NMR (125 MHz, CDCl3): δ 13.3 (d, JP-C = 68.2 Hz, C11), 18.7 (d,
JP-C = 4.6 Hz, C3), 19.9 (s, C9), 23.3 (s, C7), 24.1 (s, C4), 26.7 (s, C10), 37.2 (d, JP-C = 2.3 Hz,
C2), 39.1 (s, C6), 40.2 (s, C5), 41.1 (d, J = 8.09 Hz, C8), 74.0 (d, JP-C = 80.9 Hz, C1), 128.4 (d,
3JP-C = 10.1 Hz), 130.7 (d, 2JP-C = 9.1 Hz), 131.6 (d, 4JP-C = 2.7 Hz), 133.0 (d, 1JP-C = 90.2 Hz);
31P NMR (202 MHz, CDCl3): δ 40.43 (s); Anal. Calcd for C17H25O2P: C, 69.84; H, 8.62;
Found: C, 69.81; H, 8.62; [α]D = −44.0 (c 1.0, CHCl3). HRMS (ESI-LTQ) m/z calcd for
C17H26O2P [M+H]+: 293.16704, found: 293.16719.
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(RP)-6,6-Dimethylbicyclo[3.1.1]heptan-2-yl)(hydroxy)methyl)(methyl)(phenyl)phosphine 
oxide (RP)-9c-III. Yield 1% (0.026 g). Waxy solid. Rf = 0.43 (CH2Cl2/AcOEt/MeOH = 50:10:1). 
1H NMR (500 MHz, CDCl3): δ 0.70 (s, 3H), 1.18 (s, 3H), 1.33–1.46 (m, 2H), 1.39 (d, JH-H = 
10.4 Hz, 1H), 1.63–1.74 (m, 2H), 1.80 (d, JH-H = 4.73 Hz, 1H), 1.87 (d, JH-P = 10.40 Hz, 3H), 
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(RP)-6,6-Dimethylbicyclo[3.1.1]heptan-2-yl)(hydroxy)methyl)(methyl)(phenyl)phosphine ox-
ide (RP)-9c-III. Yield 1% (0.026 g). Waxy solid. Rf = 0.43 (CH2Cl2/AcOEt/MeOH = 50:10:1).
1H NMR (500 MHz, CDCl3): δ 0.70 (s, 3H), 1.18 (s, 3H), 1.33–1.46 (m, 2H), 1.39 (d,
JH-H = 10.4 Hz, 1H), 1.63–1.74 (m, 2H), 1.80 (d, JH-H = 4.73 Hz, 1H), 1.87 (d, JH-P = 10.40 Hz,
3H), 2.04–2.08 (m, 1H), 2.24–2.26 (m, 1H), 2.29–2.38 (m, 1H), 3.81 (bs, 1H), 3.86 (bs, 1H),
7.50–7.53 (m, 2H), 7.55–7.59 (m, 1H), 7.73–7.79 (m, 2H). 31P NMR (202 MHz, CDCl3): δ
44.22 (s); 13C NMR (125 MHz, CDCl3): δ 13.3 (d, JP-C = 68.2 Hz, C11), 18.7 (s, CH2), 19.9
(s), 23.4 (s, CH2), 24.1 (s, CH2), 26.7 (s), 37.1 (s), 39.2 (s, C), 40.1 (s), 41.1 (d, J = 7.2 Hz),
74.0 (d, JP-C = 80.9 Hz, C1), 128.8 (d, 3JP-C = 10.9 Hz), 130.8 (d, 2JP-C = 8.2 Hz), 132.2 (d,
4JP-C = 2.7 Hz).Anal. Calcd for C17H25O2P: C, 69.84; H, 8.62; Found: C, 69.81; H, 8.62.
[α]D = −41.5 (c 0.265, CHCl3).

Crystal data for RP−9c-III; Mw = 292.34, crystal system monoclinic, space group P 21,
unit cell dimensions a = 6.0752(3) Å, b = 10.4200(5) Å, c = 13.1252(6) Å, β = 100.740(10)◦,
V = 816.32(7) Å3, Z = 2, Density (calc) 1.189 g/cm3, absorption coefficient 1.478 mm−1,
F(000) = 316. Collected/independent reflections 5311/3075 [R(int) = 0.0315], data/restraints/
parameters 3075/1/188. Goodness-of-fit on F2 1.083, final R indices [I > 2σ(I)] R1 = 0.0368,
wR2 = 0.0945, absolute structure parameter x = 0.013(19). CCDC No. 2162096.
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6,6-Dimethylbicyclo[3.1.1]heptan-2-yl)(hydroxy)methyl)(methyl)(phenyl)phosphine oxide 9c-IV.
An oil. Yield 2% (0.0526 g). 1H NMR (500 MHz, CDCl3): δ 0.70 (s, 3H), 1.13 (s, 3H), 1.40
(d, JH-H = 9.46 Hz, 1H), 1.53–1.69 (m, 2H), 1.72–1.76 (m, 2H), 1.80–1.83 (m, 1H), 1.82 (d,
JH-P = 12.93 Hz, 3H), 2.00–2.03 (m, 2H), 2.08–2.15 (m, 1H), 3.19 (bs, 1H), 3.83 (d, JH-P = 5.10 Hz,
1H), 7.47–7.51 (m, 2H), 7.54–7.57 (m, 1H), 7.78–7.82 (m, 2H). 13C NMR (125 MHz, CDCl3): δ
13.9 (d, JP-C = 68.9 Hz, CH3), 18.3 (d, JP-C = 3.6 Hz, CH2), 19.9 (s), 23.4 (s, CH2), 24.1 (s, CH2),
26.7 (s), 37.8 (s), 39.0 (s, C), 40.3 (s), 41.0 (s), 41.1 (s), 73.8 (d, JP-C = 83.6 Hz, CH), 128.5 (d,
JP-C = 10.9 Hz), 130.9 (d, JP-C = 9.1 Hz), 131.6 (d, JP-C = 90.8 Hz), 131.8 (d, JP-C = 2.7 Hz).31P
NMR (202 MHz, CDCl3): δ 41.04 (s); Anal. Calcd for C17H25O2P: C, 69.84; H, 8.62; Found: C,
69.99; H, 8.74.

4.6. General Procedure for the Reaction of α-Hydroxyphosphine Oxides with BH3-THF

In a Schenk tube (25 mL) equipped with a magnetic stirrer and an argon inlet, hy-
droxymethylphosphine oxide (0.3 mmol) was dissolved in anhydrous THF (2 mL). Then,
BH3-THF complex (1.5 mL, 1.5 mmol, 1 M solution in THF) was added slowly to avoid
uncontrolled bubbling. Then, the reaction mixture was stirred at rt for 16 h. Then, the
reaction mixture was evaporated to dryness, and the residue was purified by column
chromatography using hexane/ethyl acetate (v/v = 10:1) as eluent. The following products
were synthesized.

(RP)-6,6-Dimethylbicyclo[3.1.1]heptan-2-yl)(hydroxy)methyl)(t-butyl)(phenyl)phosphine-borane
(RP)-10a (Figure 12). Yield 65% (0.0647 g). White solid, m.p. = 98–101 ◦C. Rf = 0.64
(hexane/AcOEt = 6:1). 1H NMR (500 MHz, CDCl3): δ 0.33–0.87 (bm, 3H), 0.60 (s, 3H, C(9)H3),
0.98 (s, 3H, C(10)H3), 1.16 (d, JP-H = 13.24 Hz, 9H, C(12)H3), 1.38 (d, J = 10.09 Hz, 1H, C(7)H),
1.47–1.49 (m, 1H, C(8)H), 1.52–1.56 (m, 1H, C(3)H), 1.63–1.67 (m, 1H, C(5)H), 1.68–1.73 (m,
3H, C(4)H2, C(3)H), 1.80–1.84 (m, 1H, C(7)H), 2.25–2.30 (m, 1H, C(2)H), 4.58–4.63 (m, 1H,
C(1)H), 7.41–7.45 (m, 2H), 7.48–7.52 (m, 1H), 7.64–7.68 (m, 2H); 13C NMR (125 MHz, CDCl3):
δ 17.4 (d, JP-C = 4.5 Hz, C3), 19.7 (s, C9), 23.9 (s, C4), 24.1 (s, C7), 26.3, 26.4 (s, C10), 30.51 (d,
1JP-C = 30.9 Hz, C11), 38.9 (d, JP-C = 6.4 Hz, C2), 39.7 (d, JP-C = 8.2 Hz, C8), 45.5 (d, JP-C = 4.5 Hz,
C5), 71.6 (d, 1JP-C = 34.5 Hz, C1), 127.1 (d, 1JP-C = 46.3 Hz), 128.2 (d, 3JP-C = 9.1 Hz), 131.2 (d,
4JP-C = 2.7 Hz), 133.4 (d, 2JP-C = 6.4 Hz); 31P NMR (202 MHz, CDCl3): δ 32.67 (bm); Anal. Calcd
for C20H31O2P: C, 72.30; H, 10.31; Found: C, 72.64; H, 9.91; [α]D = −29.3 (c 1.76, CHCl3).
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(RP)-(-)-t-Butylphenylphosphine-borane (RP)-(-)-11a. Yield 15% (0.0081 g). 1H NMR (500 MHz,
CDCl3): δ 0.37–1.05 (bm, 3H), 1.18 (d, JH-P = 14.82 Hz, 1H), 5.10 (dq, JH-P = 140.67 Hz, 1H),
7.44–7.47 (m, 2H), 7.51–7.56 (m, 1H), 7.62–7.66 (m, 2H); 31P NMR (202 MHz, CDCl3): δ 30.49
(bm); [α]D = −2.0 (c 1.03, CHCl3). These data are consistent with previously reported [32].

((SP)-(6,6-Dimethylbicyclo[3.1.1]heptan-2-yl)(hydroxy)methyl)(methyl)(phenyl)phosphine-borane
(SP)-12c. Yield 94% (0.0812 g). White solid, m.p. = 77.8–78.8 ◦C. Rf = 0.40 (hexane/AcOEt = 4:1).
1H NMR (500 MHz, CDCl3): δ 0.39–1.02 (bm, 3H), 0.76 (s, 3H), 1.11 (s, 3H), 11.38 (d, J = 10.09 Hz,
1H), 1.50–1.58 (m, 2H), 1.66 (d, 1JP-H = 10.09 Hz, 3H), 1.70 (bs, 1H), 1.73–1.81 (m, 4H), 1.97–2.01
(m, 1H), 2.26–2.33 (m, 1H), 3.90 (dd, JH-H = 1.89 Hz, JP-H = 6.31 Hz, 1H), 7.47–7.50 (m, 2H),
7.51–7.55 (m, 1H), 7.76–7.80 (m, 2H); 13C NMR (125 MHz, CDCl3): δ 8.4 (d, 1JP-C = 39.1 Hz), 19.6
(d, JP-C = 5.5 Hz), 19.9, 23.3, 24.1, 26.6, 37.8 (d, JP-C = 4.5 Hz), 39.3, 40.5, 40.7 (d, JP-C = 5.5 Hz), 74.3
(d, 1JP-C = 36.3 Hz), 127.5 (d, 1JP-C = 50.9 Hz), 128.7 (d, 3JP-C = 9.1 Hz), 131.5 (d, 4JP-C = 1.8 Hz),
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132.5 (d, 2JP-C = 8.2 Hz), 31P NMR (202 MHz, CDCl3): δ 17.01 (bm); Anal. Calcd for C17H28BOP:
C, 70.36; H, 9.73; Found: C, 70.46; H, 9.90. [α]D = +10.9 (c 1.0, CHCl3). HRMS (ESI-LTQ) m/z
calcd for C17H29BOP [M+H]+: 291.20491, found: 291.20487.

4.7. Procedure of the Reduction of (3a-I) Using BH3-SMe2

In a two-necked round-bottom flask (25 mL) equipped with magnetic stirrer and argon
inlet was placed phosphine oxide SP-3a-I (0.0996 g, 0.3 mmol) in anhydrous THF (5 mL).
Then, BH3-SMe2 (284.6 µL, 3 mmol), was added slowly to avoid uncontrolled bubbling.
After addition of BH3 complex, the reaction mixture was stirred at 60 ◦C for 72 h. Then, the
saturated solution of NaHCO3 was added to quench the reaction mixture and extracted
with CHCl3 (3 × 30 mL). The collected organic phases were evaporated to dryness and the
residue was purified on silica gel using AcOEt/MeOH (v/v = 10:1) as eluent.

trans-(SP,1S,2R,3S,5R)-t-Butyl-2-(hydroxymethyl)-6,6-dimethylbicyclo[3.1.1]heptan-3-yl)
(phenyl)phosphine oxide SP-13. Oil. Yield 60% (0.0601 g). Rf = 0.19 (AcOEt). 1H NMR
(400 MHz, CDCl3): δ −0.09 (d, JP-H = 9.71 Hz, 1H), 0.99 (s, 3H), 1.09 (s, 3H), 1.33 (d,
JP-H = 14.23 Hz, 9H), 1.72–1.76 (m, 1H), 1.80–1.86 (m, 1H), 1.87–1.92 (m, 1H), 2.24–2.29
(m, 2H), 2.40–2.48 (m, 1H), 2.88–2.98 (m, 1H), 3.50–3.56 (m, 1H), 3.64–3.69 (m, 1H), 5.93
(bs, 1H), 7.46–7.51 (m, 2H), 7.51–7.57 (m, 1H), 7.91–7.95 (m, 2H); 13C NMR (125 MHz,
CDCl3): δ 23.1, 25.8, 27.2, 28.2, 29.9, 31.4 (d, JP-C = 1.2 Hz), 32.15 (d, JP-C = 1.2 Hz), 33.96 (d,
1JP-C = 65.5 Hz), 38.17 (d, 4JP-C = 1.15 Hz), 40.5 (d, JP-C = 5.2 Hz), 44.2 (d, JP-C = 5.75 Hz), 44.3
(d, JP-C = 4.0 Hz), 67.9 (d, 3JP-C = 1.2 Hz), 128.2 (d, 3JP-C = 9.8 Hz), 128.54 (d, 1JP-C = 81.6 Hz),
131.87 (d, 4JP-C = 2.9 Hz), 133.3 (d, 3JP-C = 6.9 Hz); 31P NMR (162 MHz, CDCl3): δ 53.10 (s);
Anal. Calcd for C20H31O2P: C, 71.83; H, 9.34; Found: C, 71.90; H, 9.40.

5. Conclusions

In summary, we have evaluated syntheses of P,C-stereogenic hydroxyphosphine oxides
based on 1,4- and 1,2-addition of secondary phosphine oxides to (1R)-myrtenal and (2R/2S)-
myrtanal, respectively. Reactions involving racemic secondary phosphine oxides as substrates
showed only moderate selectivity; however, using an enantiomerically pure secondary
phosphine oxide creates a doubly asymmetric process that is highly selective and ready
for practical use. In most cases, isolation of at least one or two diastereoisomerically pure
P,C stereogenic adducts formed in the addition reaction was possible. 1,2-Additions of P-
stereogenic secondary phosphine oxides to myrtanal produced α-hydroxyphosphine oxides
having five densely distributed chirality centers, four of which were contiguous. The absolute
configurations of isolated pure diastereoisomers were established using a single crystal
crystallographic analysis and 2D NMR techniques. The stereochemical course of the studied
addition reactions has been presented. A convenient and fully stereoselective reduction
of enantiomerically pure P,C-stereogenic α-hydroxyphosphine oxides by BH3 yielding the
corresponding α-hydroxyphosphine-boranes with inversion of configuration at the P-center
has been accomplished. Attempted similar reduction of a γ-hydroxyphosphine oxide by
BH3 did not take place. Further tuning of those addition processes as well as application of
synthesized α-hydroxyphosphines as ligands is currently underway in our laboratory.
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mdpi.com/article/10.3390/sym15061172/s1, 1H, 31P{1H}, 13C{1H} NMR spectra of isolated compounds,
Table S1. Optimisation of the hydrogenation of (1R)-myrtenal (2). Table S2. The attempts of the
hydrogenation of acetal derived from (1R)-myrtenal (2). Scheme S1. Separation of diastereoisomers of 9c
on silica gel. Refs. [40,41] are cited in Supplementary Materials.

Author Contributions: Conceptualization, K.M.P.; investigation, S.S., A.E.K. and H.M.; supervision,
K.M.P.; writing—original draft, S.S.; writing—review and editing, S.S., A.E.K. and K.M.P. All authors
have read and agreed to the published version of the manuscript.

Funding: Authors are grateful for the financial support from the Ministry of Science and Higher
Education (Research grant No. N N204 111 035).

Data Availability Statement: The presented data (both in the ms and SI) are openly available.

https://www.mdpi.com/article/10.3390/sym15061172/s1
https://www.mdpi.com/article/10.3390/sym15061172/s1


Symmetry 2023, 15, 1172 18 of 19

Acknowledgments: S.S. wants to thank Marek Stankevič for help in the 2D NMR analysis and interpre-
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