
Citation: Thangkhenpau, G.;

Panday, S.; Bolunduţ, L.C.; Jäntschi, L.
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Abstract: In this paper, we have constructed new families of derivative-free three- and four-parametric
methods with and without memory for finding the roots of nonlinear equations. Error analysis veri-
fies that the without-memory methods are optimal as per Kung–Traub’s conjecture, with orders of
convergence of 4 and 8, respectively. To further enhance their convergence capabilities, the with-
memory methods incorporate accelerating parameters, elevating their convergence orders to 7.5311
and 15.5156, respectively, without introducing extra function evaluations. As such, they exhibit
exceptional efficiency indices of 1.9601 and 1.9847, respectively, nearing the maximum efficiency
index of 2. The convergence domains are also analysed using the basins of attraction, which exhibit
symmetrical patterns and shed light on the fascinating interplay between symmetry, dynamic be-
haviour, the number of diverging points, and efficient root-finding methods for nonlinear equations.
Numerical experiments and comparison with existing methods are carried out on some nonlinear
functions, including real-world chemical engineering problems, to demonstrate the effectiveness of
the new proposed methods and confirm the theoretical results. Notably, our numerical experiments
reveal that the proposed methods outperform their existing counterparts, offering superior precision
in computation.

Keywords: with-memory method; simple roots; nonlinear equation; R-order of convergence; Newton
interpolating polynomial; chemical engineering applications

1. Introduction

Iterative methods play a crucial role in solving complex nonlinear equations of
the form

Ω(s) = 0, (1)

where Ω : D ⊆ R → R represents a real function defined on an open interval D. With
diverse applications spanning scientific and engineering domains, the computation of
nonlinear Equation (1) remains a common yet formidable challenge due to the lack of ana-
lytical methods. However, iterative methods provide approximate solutions to nonlinear
Equation (1) with high accuracy.

Let α ∈ D ⊆ R be a simple root of (1) and s0 be an initial approximation to α. Then,
Ω(α) = 0 and Ω′(α) 6= 0. The most widely used iterative method for finding the simple
root of (1) is given below.

sn+1 = sn −
Ω(sn)

Ω′(sn)
, n = 0, 1, 2, . . . , (2)

which is the well-known Newton method [1]. It is a one-point without-memory method
with a quadratic order of convergence.
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In the past few decades, various optimal multi-point without-memory methods have
been developed for the computation of approximated simple roots [2–6]. The concept of an
optimal without-memory method is rooted in Kung–Traub’s conjecture [7]. This conjecture
proposes that a multi-point without-memory iterative method, which requires q function
evaluations per iteration, achieves optimality when its convergence order is precisely 2q−1.
The Newton method (2) is optimal for q = 2. However, the evaluation of the derivative
in the Newton method is a setback for many problems where derivative evaluation is
complicated or even does not exist.

To obtain a derivative-free variant of the Newton method (2), the first derivative Ω′(sn)
in (2) is approximated using the first-order Newton divided difference

Ω′(sn) ≈ Ω[sn, wn] =
Ω(sn)−Ω(wn)

sn − wn
, (3)

where wn = sn + γΩ(sn), γ 6= 0 is any real parameter, Equation (2) can be expressed as

sn+1 = sn −
Ω(sn)

Ω[sn, wn]
, (4)

which corresponds to the Traub–Steffensen method [1]. By setting γ = 1, we obtain the well-
known Steffensen method [8]. To assess the efficiency of an iterative method, Ostrowski [9]

introduced the efficiency index (EI) = p
1
q , where q represents the number of function

evaluations per iteration and p denotes the order of convergence.
The extension of without-memory methods into with-memory methods using accel-

erating parameters have gained much attention in recent years [10–13]. In multi-point
with memory iterative methods, the order of convergence is significantly increased with-
out any additional function evaluation by using information from the current as well as
the previous iterations. In this paper, we introduce new derivative-free families of three-
parametric three-point and four-parametric four-point with and without-memory methods
for finding simple roots of nonlinear equations. The formulation of the methods is based
on the derivative-free biparametric families of without-memory methods developed in [14]
and by using accelerating parameters without any additional function evaluations for
the with-memory methods. As a result, the orders of convergence of the with-memory
methods increase from 4 to 7.5311 and 8 to 15.5156. The accelerating parameters are
approximated using Newton’s interpolating polynomials so as to obtain highly efficient
with-memory methods.

The subsequent sections of this paper are organised as follows. Section 2 provides the
development of modified derivative-free families of without-memory methods, including
an in-depth analysis of their theoretical convergence properties. In Section 3, we delve into
the derivation and convergence analysis of the derivative-free families of with-memory
methods. The numerical experiments and comparative study of the proposed with and
without-memory methods against existing approaches on various test functions, including
real-world problems, are presented in Section 4 to assess the effectiveness and applicability
of our proposed methods. In this section, we also explore the dynamical properties of
the methods through the study of basins of attraction, revealing the presence of reflection
symmetry in all provided basins of attraction. Finally, Section 5 concludes this paper with
key remarks and observations.

2. Modified Families of Three- and Four-Parametric Without-Memory Methods

In this section, we present the new modified derivative-free families of three- and four-
parametric multi-point without-memory methods of optimal order in two separate subsections.

2.1. Modified Families of Three-Parametric Three-Point Without-Memory Methods

First, let us consider the following two derivative-free families of biparametric three-
point without-memory methods [14].
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wn =sn + γΩ(sn),

yn =sn −
Ω(sn)

Ω[sn, wn] + βΩ(wn)
, (5)

sn+1 =yn −
Ω(yn)

ξ(yn)

[
1 +

1
2

(
Ω(yn)

Ω[yn, wn] + βΩ(wn)

)2
ρ(yn)

Ω(yn)

]
.

wn =sn + γΩ(sn),

yn =sn −
Ω(sn)

Ω[sn, wn] + βΩ(wn)
, (6)

sn+1 =yn −
Ω(yn)

ξ(yn)

[
1 +

1
2

( 2Ω(yn)

Ω[yn, wn] + ξ(yn)

)2 ρ(yn)

Ω(yn)

]
,

where ξ(yn) =
Ω[sn ,yn ]Ω[yn ,wn ]

Ω[sn ,wn ]
and ρ(yn) = 2 Ω[sn ,yn ]Ω[yn ,wn ]Ω[sn ,yn ,wn ]

(Ω[sn ,wn ])2 .
From here, we introduce a new parameter λ ∈ R− {0} through the modification of

ξ(yn) as follows:

M(yn) =
Ω[sn, yn]Ω[yn, wn]

Ω[sn, wn]
+ λ(yn − sn)(yn − wn) = ξ(yn) + λ(yn − sn)(yn − wn). (7)

Now, substituting the above Equation (7) in Equations (5) and (6), we get two new
three-parametric families of without memory iterative methods. These modified methods,
denoted as Modified Methods (MM), are defined as follows:

Modified Method 4a (MMa
4):

wn =sn + γΩ(sn),

yn =sn −
Ω(sn)

Ω[sn, wn] + βΩ(wn)
, (8)

sn+1 =yn −
Ω(yn)

M(yn)

[
1 +

1
2

(
Ω(yn)

Ω[yn, wn] + βΩ(wn)

)2
ρ(yn)

Ω(yn)

]
.

Modified Method 4b (MMb
4):

wn =sn + γΩ(sn),

yn =sn −
Ω(sn)

Ω[sn, wn] + βΩ(wn)
, (9)

sn+1 =yn −
Ω(yn)

M(yn)

[
1 +

1
2

( 2Ω(yn)

Ω[yn, wn] + ξ(yn)

)2 ρ(yn)

Ω(yn)

]
.

These modified methods adhere to Kung–Traub’s conjecture, requiring three evalua-
tions of the function at each iteration and exhibit an efficiency index of 41/3 ≈ 1.587.

Next, we explore the theoretical convergence analysis of the newly introduced modi-
fied methods, specifically MM4a and MM4b, as outlined in the following theorem.

Theorem 1. Let an initial approximation s0 be close enough to the root α of a sufficiently differ-
entiable real function Ω : D ⊆ R→ R, where D is an open interval. Then, the modified methods
MMa

4 (8) and MMb
4 (9) exhibit a fourth order of convergence for any β, γ, λ ∈ R−{0}. Additionally,

both the methods have the same error equation given by

εn+1 =
(1 + Ω′(α)γ)2(β + d2)(λ + Ω′(α)d2

2 −Ω′(α)d3)

Ω′(α)
ε4

n + O(ε5
n), (10)

where dj =
1
j!

Ω(j)(α)
Ω′(α) , j = 2, 3, . . ., and εn = sn − α is the error at nth iteration.
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Proof. The proof of Modified Method 4a (MMa
4):

Let the error at nth iteration be εn = sn − α. Then, employing the Taylor’s series
expansion in the vicinity of s = α, we obtain

Ω(sn) = Ω′(α)
[
εn + d2ε2

n + d3ε3
n + d4ε4

n + O(ε5
n)
]
, (11)

where dj =
1
j!

Ω(j)(α)
Ω′(α) , j = 2, 3, . . .. By using wn = sn + γΩ(sn), γ ∈ R− {0}, expanding

Ω(wn) using Taylor’s series yields

Ω(wn) =Ω′(α)
[(

1 + Ω′(α)γ
)
εn +

(
1 + Ω′(α)γ(3 + Ω′(α)γ)

)
d2ε2

n +
2

∑
i=1

Aiε
i+2
n + O(ε5

n)
]
, (12)

where Ai, i = 1, 2 are functions of γ, Ω′(α), d2, d3, d4, i.e., A1 = 2Ω′(α)γ
(
1 + Ω′(α)γ

)
d2

2 +
Ω′(α)γd3 + (1 + Ω′(α)γ)3d3, etc.

Then, using (11) and (12), we have

Ω[sn, wn] =Ω′(α)
[
1 +

(
2 + Ω′(α)γ

)
d2εn +

3

∑
i=1

Biε
i+1
n + O(ε5

n)
]
, (13)

where Bi, i = 1, 2, 3 are functions of γ, Ω′(α), d2, d3, d4, i.e., B1 = Ω′(α)γd2
2 +

(
3 + Ω′(α)

γ(3 + Ω′(α)γ)
)
d3, B2 =

(
2 + Ω′(α)γ

)(
2Ω′(α)γd2d3 +

(
2 + Ω′(α)γ(2 + Ω′(α)γ)

)
d4
)
, etc.

Using (11), (12) and (13), we can write

yn − α =
(
1 + Ω′(α)γ

)(
β + d2

)
ε2

n +
2

∑
i=1

Ciε
i+2
n + O(ε5

n), (14)

where Ci, i = 1, 2 are functions of β, γ, Ω′(α), d2, d3, d4.
Then, by employing (14), Ω(yn) is obtained as follows:

Ω(yn) =Ω′(α)
[(

1 + Ω′(α)γ
)(

β + d2
)
ε2

n +
2

∑
i=1

Ciε
i+2
n + O(ε5

n)
]
. (15)

With the help of (11)–(15), we obtain

M(yn) =Ω′(α) +
(
1 + Ω′(α)γ

)(
λ + 2Ω′(α)βd2 + 3Ω′(α)d2

2 −Ω′(α)d3
)
ε2

n +
2

∑
i=1

Diε
i+2
n + O(ε5

n), (16)

where Di, i = 1, 2 are functions of β, λ, γ, Ω′(α), d2, d3, d4.
Now, putting the values of Equations (11)–(16) into the final step of Modified

Method 4a (MMa
4) (8), we get the following expression for the error equation:

εn+1 =
(1 + Ω′(α)γ)2(β + d2)(λ + Ω′(α)d2

2 −Ω′(α)d3)

Ω′(α)
ε4

n + O(ε5
n), (17)

which confirms the optimal fourth order for the Modified Method 4a (MMa
4) (8). Similarly,

we can prove the optimal fourth order convergence for the Modified Method 4b (MMb
4) (9).

The proof of the theorem is completed.

2.2. Modified Families of Four-Parametric Four-Point Without-Memory Methods

Here, we examine the derivative-free families of biparametric four-point without-
memory methods proposed in [14].
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wn =sn + γΩ(sn),

yn =sn −
Ω(sn)

Ω[sn, wn] + βΩ(wn)
,

zn =yn −
Ω(yn)

ξ(yn)

[
1 +

1
2

(
Ω(yn)

Ω[yn, wn] + βΩ(wn)

)2
ρ(yn)

Ω(yn)

]
, (18)

sn+1 =zn −
Ω(zn)

η(zn)

[
1 +

1
2

( Ω(zn)

Ω[zn, wn] + βΩ(wn)

)2 ψ(zn)

Ω(zn)

]
.

wn =sn + γΩ(sn),

yn =sn −
Ω(sn)

Ω[sn, wn] + βΩ(wn)
,

zn =yn −
Ω(yn)

ξ(yn)

[
1 +

1
2

( 2Ω(yn)

Ω[yn, wn] + ξ(yn)

)2 ρ(yn)

Ω(yn)

]
, (19)

sn+1 =zn −
Ω(zn)

η(zn)

[
1 +

1
2

( 2Ω(zn)

Ω[zn, wn] + ξ(yn)

)2 ψ(zn)

Ω(zn)

]
,

where η(zn) = Ω[sn, zn] +
(

Ω[sn, yn, wn] − Ω[sn, zn, wn] − Ω[sn, yn, zn]
)
(sn − zn)

and ψ(zn) = 2Ω[sn, yn, wn].
Now, we introduce a new parameter θ ∈ R− {0} through the modification of η(zn)

as follows:
N(zn) = η(zn) + θ(zn − sn)(zn − yn)(zn − wn). (20)

Then, substituting the above Equation (20) as well as Equation (7) into Equations (18)
and (19) yields two new four-parametric families of without-memory iterative methods.
These modified methods, denoted as Modified Methods (MM), are defined as follows:

Modified Method 8a (MMa
8):

wn =sn + γΩ(sn),

yn =sn −
Ω(sn)

Ω[sn, wn] + βΩ(wn)
,

zn =yn −
Ω(yn)

M(yn)

[
1 +

1
2

(
Ω(yn)

Ω[yn, wn] + βΩ(wn)

)2
ρ(yn)

Ω(yn)

]
, (21)

sn+1 =zn −
Ω(zn)

N(zn)

[
1 +

1
2

( Ω(zn)

Ω[zn, wn] + βΩ(wn)

)2 ψ(zn)

Ω(zn)

]
.

Modified Method 8b (MMb
8):

wn =sn + γΩ(sn),

yn =sn −
Ω(sn)

Ω[sn, wn] + βΩ(wn)
,

zn =yn −
Ω(yn)

M(yn)

[
1 +

1
2

( 2Ω(yn)

Ω[yn, wn] + ξ(yn)

)2 ρ(yn)

Ω(yn)

]
, (22)

sn+1 =zn −
Ω(zn)

N(zn)

[
1 +

1
2

( 2Ω(zn)

Ω[zn, wn] + ξ(yn)

)2 ψ(zn)

Ω(zn)

]
.

Modified methods MMa
8 and MMb

8 are optimal as per Kung–Traub’s conjecture, require
four function evaluations per iteration, and exhibit an efficiency index of 81/4 ≈ 1.682.

Next, we delve into the theoretical convergence analysis of the newly introduced
modified methods, namely MMa

8 and MMb
8, as outlined in the following theorem.
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Theorem 2. Let an initial approximation s0 be close enough to the root α of a sufficiently differ-
entiable real function Ω : D ⊆ R→ R, where D is an open interval. Then, the modified methods
MMa

8 (21) and MMb
8 (22) exhibit the eighth order of convergence for any β, γ, λ, θ ∈ R−{0}. In

addition, the methods MMa
8 and MMb

8 have the same error equation given by

εn+1 =
(1 + Ω′(α)γ)4(β + d2)

2(λ + Ω′(α)d2
2 −Ω′(α)d3)(−θ + Ω′(α)d4)

Ω′(α)2 ε8
n + O(ε9

n), (23)

where dj =
1
j!

Ω(j)(α)
Ω′(α) , j = 2, 3, . . ., and εn = sn − α is the error at nth iteration.

Proof. The proof of Modified Method 8a (MMa
8):

Considering all the assumptions made in Theorems 1, from Equation (17), we have

zn − α =
(1 + Ω′(α)γ)2(β + d2)(λ + Ω′(α)d2

2 −Ω′(α)d3)

Ω′(α)
ε4

n +
8

∑
i=5

Fiε
i
n + O(ε9

n), (24)

where Fi, i = 5, 6, . . . , 8 are functions of β, γ, Ω′(α), d2, d3, . . . , d8.
Using the above Equation (24), we have

Ω(zn) =(1 + Ω′(α)γ)2(β + d2)(λ + Ω′(α)d2
2 −Ω′(α)d3)ε

4
n +

8

∑
i=5

Fiε
i
n + O(ε9

n). (25)

Applying Equations (11), (12), (15), (24) and (25), the approximation of Ω′(zn) is
obtained as follows:

N(zn) =Ω′(α) + (1 + Ω′(α)γ)2(β + d2)
(
− θ + 2Ω′(α)d3

2 + 2d2(λ−Ω′(α)d3) + Ω′(α)d4
)
ε4

n

+
8

∑
i=5

Giε
i
n + O(ε9

n), (26)

where Gi, i = 5, 6, . . . , 8 are functions of β, γ, λ, θ, Ω′(α), d2, d3, . . . , d8.
Now, substituting the values of Equations (12), (24)–(26) in the last step of Equation (21),

we obtain the error equation as follows:

εn+1 =
1

Ω′(α)2 (1 + Ω′(α)γ)4(β + d2)
2(λ + Ω′(α)d2

2 −Ω′(α)d3)(−θ + Ω′(α)d4)ε
8
n + O(ε9

n), (27)

which confirms the optimal eight order for the Modified Method 8a (MMa
8) (21). Similarly,

we can prove the optimal eighth order convegence for the modified method MMb
8 (22). This

completes the proof of the theorem.

Remark 1. From Theorems 1 and 2, the analysis of the error Equations (10) and (23) shows that
the convergence order of the new modified derivative-free families of without-memory methods
(MMa

4 and MMb
4, MMa

8 and MMb
8) can be increased significantly without any additional function

evaluations using the free parameters γ, β, λ and θ, i.e., by putting γ = − 1
Ω′(α) , β = −d2,

λ = Ω′(α)d3 −Ω′(α)d2
2 and θ = Ω′(α)d4.

However, the exact values of Ω′(α), d2, d3, and d4 are not known to us. So, the parameters γ,
β, λ, and θ have to be approximated using known information available from the current as well as
the previous iterations. This will be the basis for extending the modified derivative-free families of
without-memory methods into derivative-free with-memory methods.

3. New Families of Three- and Four-Parametric With-Memory Methods

In this section, we shall discuss the extension of the new modified derivative-free fami-
lies of without-memory methods presented in Section 2 into their respective with=memory
versions under two separate subsections. Using the available free parameters as accelerat-
ing parameters, we aim to increase the convergence order without any additional function
evaluations per iteration thereby obtaining highly efficient multi-point with-memory methods.
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Let us now discuss in detail the formulation of the methods, the approximations of
the accelerating parameters, and the convergence analysis of the with-memory methods in
the following subsections.

3.1. Three-Parametric Three-Point With-Memory Methods

Here, we introduce new derivative-free with-memory methods based on the newly
suggested modified fourth order derivative-free families of without-memory methods
MMa

4 (8) and MMb
4 (9).

From error Equation (10), the convergence order of the methods MMa
4 (8), and MMb

4 (9)
can be increased from 4 to 8 without any additional function evaluation if we take
γ = − 1

Ω′(α) , β = −d2 and λ = Ω′(α)d3 − Ω′(α)d2
2, where d2 = Ω′′(α)

2Ω′(α) , d3 = Ω′′′(α)
6Ω′(α) .

However, the problem is that the exact values of Ω′(α), Ω′′(α) and Ω′′′(α) are not available
to us. So, we use the approximations γ = γn, β = βn and λ = λn, where γn, βn and λn are
the accelerating parameters computed using the available information from the current as
well as the previous iterations such that the following conditions are satisfied:

lim
n→∞

γn = − 1
Ω′(α)

, lim
n→∞

βn = − Ω′′(α)
2Ω′(α)

and lim
n→∞

λn =
Ω′′′(α)

6
− Ω′′(α)2

4Ω′(α)
.

Now, we consider the following approximations for the accelerating parameters γn,
βn and λn.

γn = − 1
N′3(sn)

, βn = −
N′′4 (wn)

2N′4(wn)
, λn =

N′′′5 (yn)

6
−

N′′5 (yn)2

4N′5(yn)
, n = 0, 1, 2, . . . , (28)

where N3(t), N4(t) and N5(t) are the respective Newton’s interpolating polynomials of
third, fourth, and fifth degrees passing through the best saved points, i.e.,

N3(t) = N3(t; sn, yn−1, wn−1, sn−1);

N4(t) = N4(t; wn, sn, yn−1, wn−1, sn−1);

N5(t) = N5(t; yn, wn, sn, yn−1, wn−1, sn−1).

Now, applying the approximations of the three accelerating parameters βn, γn and λn
from (28) in the methods MMa

4 (8) and MMb
4 (9), we obtain the following new derivative-free

with-memory methods.
New With-Memory Method 4a (NWMMa

4): For a given s0, γ0, β0, λ0, we have
w0 = s0 + γ0Ω(s0). Then,

γn =− 1
N′3(sn)

, βn = −
N′′4 (wn)

2N′4(wn)
, λn =

N′′′5 (yn)

6
−

N′′5 (yn)2

4N′5(yn)
,

wn =sn + γnΩ(sn),

yn =sn −
Ω(sn)

Ω[sn, wn] + βnΩ(wn)
, (29)

sn+1 =yn −
Ω(yn)

M(yn)

[
1 +

1
2

(
Ω(yn)

Ω[yn, wn] + βnΩ(wn)

)2
ρ(yn)

Ω(yn)

]
.

New With-Memory Method 4b (NWMMb
4): For a given s0, γ0, β0, λ0, we have

w0 = s0 + γ0Ω(s0). Then,
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γn =− 1
N′3(sn)

, βn = −
N′′4 (wn)

2N′4(wn)
, λn =

N′′′5 (yn)

6
−

N′′5 (yn)2

4N′5(yn)
,

wn =sn + γnΩ(sn),

yn =sn −
Ω(sn)

Ω[sn, wn] + βnΩ(wn)
, (30)

sn+1 =yn −
Ω(yn)

M(yn)

[
1 +

1
2

( 2Ω(yn)

Ω[yn, wn] + ξ(yn)

)2 ρ(yn)

Ω(yn)

]
.

In order to prove the convergence order of methods NWMMa
4 (29) and NWMMb

4 (30),
we first present the following lemma.

Lemma 1. If γn = − 1
N′3(sn)

, βn = −1
2
N′′4 (wn)

N′4(wn)
and λn =

1
6

N′′′5 (yn) −
1
4

N′′5 (yn)2

N′5(yn)
,

n = 0, 1, 2, . . ., then the following estimates

1 + γnΩ′(α) ∼ P1εn−1,yεn−1,wεn−1 ∼ εn−1,yεn−1,wεn−1, (31)

βn + d2 ∼ P2εn−1,yεn−1,wεn−1 ∼ εn−1,yεn−1,wεn−1, (32)

λn + Ω′(α)d2
2 −Ω′(α)d3 ∼ P3εn−1,yεn−1,wεn−1 ∼ εn−1,yεn−1,wεn−1 (33)

hold, where εn = sn− α, εn,y = yn− α, εn,w = wn− α, and P1, P2, P3 are some asymptotic constants.

Proof. The proof is similar to Lemma 1 of [12].

Now, we state and prove the following theorem for obtaining the R-order of conver-
gence [8] of the new three-point with-memory methods NWMMa

4 (29) and NWMMb
4 (30).

Theorem 3. If an initial approximation s0 is sufficiently close to the root α of Ω(s) = 0, the
parameters γn, βn and λn are calculated by the expressions (28), then the R-order of convergence of
the methods NWMMa

4 (29) and NWMMb
4 (30) is at least 7.5311.

Proof. Let the sequence of approximations {sn} produced by the method NWMMa
4 (29)

converges to the root α with order r. Then, we can write

εn+1 ∼ εr
n, (34)

where εn = sn − α.
Then,

εn ∼ εr
n−1. (35)

Thus,
εn+1 ∼ εr

n =
(
εr

n−1
)r

= εr2

n−1. (36)

Assuming the iterative sequences {wn}, {yn} have orders r1, r2, respectively, then
using (34) and (35) gives

εn,w ∼ εr1
n =

(
εr

n−1
)r1 = εrr1

n−1, (37)

εn,y ∼ εr2
n =

(
εr

n−1
)r2 = εrr2

n−1. (38)

Using Theorem 1 and Lemma 1, we get

εn,w ∼
(
1 + γnΩ′(α)

)
εn = εr+r1+r2+1

n−1 , (39)

εn,y ∼
(
1 + γnΩ′(α)

)(
βn + d2

)
ε2

n = ε2r+2r1+2r2+2
n−1 , (40)

εn+1 ∼
(
1 + γnΩ′(α)

)2(
βn + d2

)(
λn + Ω′(α)d2

2 −Ω′(α)d3
)
ε4

n = ε4r+4r1+4r2+4
n−1 . (41)

Now, comparing the corresponding powers of εn−1 on the right hand sides of (37),
and (39), (38) and (40), (36) and (41), we get
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rr1 − r− r1 − r2 − 1 = 0,

rr2 − 2r− 2r1 − 2r2 − 2 = 0, (42)

r2 − 4r− 4r1 − 4r2 − 4 = 0.

This system of equations has the non-trivial solution r1 = 1.8828, r2 = 3.7656 and
r = 7.5311. Hence, the R-order of convergence of the method NWMMa

4 (29) is at least
7.5311. The R-order of convergence for the methods NWMMb

4 (30) can be proved in a
similar manner. The proof is complete.

3.2. Four-Parametric Four-Point With-Memory Methods

Here, we introduce new derivative-free with-memory methods which are extensions
of the newly suggested modified eighth order derivative-free families of without-memory
methods MMa

8 (21) and MMb
8 (22).

It is evident from error Equation (23) that the convergence order of the methods
MMa

8 (21), and MMb
8 (22) can be increased from 8 to 16 if we take γ = − 1

Ω′(α) , β = −d2,

λ = Ω′(α)d3 −Ω′(α)d2
2 and θ = Ω′(α)d4, where d2 = Ω′′(α)

2Ω′(α) , d3 = Ω′′′(α)
6Ω′(α) , d4 = Ωiv(α)

24 . In
a similar manner to the previous subsection, we use the approximations γ = γn, β = βn,
λ = λn, and θ = θn, where γn, βn, λn, and θn are the accelerating parameters computed
using the available information from the current as well as the previous iterations such that
the following conditions are satisfied:

lim
n→∞

γn = − 1
Ω′(α)

, lim
n→∞

βn = − Ω′′(α)
2Ω′(α)

, lim
n→∞

λn =
Ω′′′(α)

6
− Ω′′(α)2

4Ω′(α)
and lim

n→∞
θn =

Ωiv(α)

24
.

Now, we consider the following approximations for the accelerating parameters γn,
βn, λn and θn.

γn = − 1
N′4(sn)

, βn = −
N′′5 (wn)

2N′5(wn)
, λn =

N′′′6 (yn)

6
−

N′′6 (yn)2

4N′6(yn)
, and θn =

Niv
7 (zn)

24
, n = 0, 1, 2, . . . , (43)

where N4(t), N5(t), N6(t), and N7(t) are the respective Newton’s interpolating polynomials
of fourth, fifth, sixth, and seventh degrees passing through the best saved points, i.e.,

N4(t) = N4(t; sn, zn−1, yn−1, wn−1, sn−1);

N5(t) = N5(t; wn, sn, zn−1, yn−1, wn−1, sn−1)

N6(t) = N6(t; yn, wn, sn, zn−1, yn−1, wn−1, sn−1)

N7(t) = N7(t; zn, yn, wn, sn, zn−1, yn−1, wn−1, sn−1).

Now, applying the approximations of the four accelerating parameters γn, βn, λn, and
θn from (43) in the modified methods MMa

8 (21) and MMb
8 (22), we obtain the following

new derivative-free with-memory methods.
New With-Memory Method 8a (NWMMa

8): For a given s0, γ0, β0, λ0, θ0, we have
w0 = s0 + γ0Ω(s0). Then,

γn =− 1
N′4(sn)

, βn = −
N′′5 (wn)

2N′5(wn)
, λn =

N′′′6 (yn)

6
−

N′′6 (yn)2

4N′6(yn)
, θn =

Niv
7 (zn)

24
,

wn =sn + γnΩ(sn),

yn =sn −
Ω(sn)

Ω[sn, wn] + βnΩ(wn)
,

zn =yn −
Ω(yn)

M(yn)

[
1 +

1
2

(
Ω(yn)

Ω[yn, wn] + βnΩ(wn)

)2
ρ(yn)

Ω(yn)

]
(44)

sn+1 =zn −
Ω(zn)

N(zn)

[
1 +

1
2

( Ω(zn)

Ω[zn, wn] + βnΩ(wn)

)2 ψ(zn)

Ω(zn)

]
.
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New With-Memory Method 8b (NWMMb
8): For a given s0, γ0, β0, λ0, θ0, we have

w0 = s0 + γ0Ω(s0). Then,

γn =− 1
N′4(sn)

, βn = −
N′′5 (wn)

2N′5(wn)
, λn =

N′′′6 (yn)

6
−

N′′6 (yn)2

4N′6(yn)
, θn =

Niv
7 (zn)

24
,

wn =sn + γnΩ(sn),

yn =sn −
Ω(sn)

Ω[sn, wn] + βnΩ(wn)
,

zn =yn −
Ω(yn)

M(yn)

[
1 +

1
2

( 2Ω(yn)

Ω[yn, wn] + ξ(yn)

)2 ρ(yn)

Ω(yn)

]
, (45)

sn+1 =zn −
Ω(zn)

N(zn)

[
1 +

1
2

( 2Ω(zn)

Ω[zn, wn] + ξ(yn)

)2 ψ(zn)

Ω(zn)

]
.

In order to prove the convergence order of methods NWMMa
8 (44) and NWMMb

8 (45),
we first present the following lemma.

Lemma 2. If γn = − 1
N′4(sn)

, βn = −
N′′5 (wn)

2N′5(wn)
, λn =

N′′′6 (yn)

6
−

N′′6 (yn)2

4N′6(yn)
, and θn =

Niv
7 (zn)

24
,

n = 0, 1, 2, . . ., then the following estimates

1 + γnΩ′(α) ∼ Q1εn−1,zεn−1,yεn−1,wεn−1 ∼ εn−1,zεn−1,yεn−1,wεn−1, (46)

βn + d2 ∼ Q2εn−1,zεn−1,yεn−1,wεn−1 ∼ εn−1,zεn−1,yεn−1,wεn−1, (47)

λn + Ω′(α)d2
2 −Ω′(α)d3 ∼ Q3εn−1,zεn−1,yεn−1,wεn−1 ∼ εn−1,zεn−1,yεn−1,wεn−1, (48)

θn −Ω′(α)d4 ∼ Q4εn−1,zεn−1,yεn−1,wεn−1 ∼ εn−1,zεn−1,yεn−1,wεn−1 (49)

hold, where εn = sn − α, εn,y = yn − α, εn,w = wn − α, and Q1, Q2, Q3, Q4 are some
asymptotic constants.

Proof. The proof is similar to Lemma 1 of [12].

Now, we state and prove the following theorem for obtaining the R-order of conver-
gence [8] of the new four-point with-memory methods NWMMa

8 (44) and NWMMb
8 (45).

Theorem 4. If an initial approximation s0 is sufficiently close to the root α of Ω(s) = 0, the
parameters γn, βn, λn, and θn are calculated by the expressions (43), then the R-order of convergence
of the methods NWMMa

8 (44) and NWMMb
8 (45) is at least 15.5156.

Proof. Let the sequence of approximations {sn} produced by the method NWMMa
8 (44)

converges to the root α with order r. Then, we can write

εn+1 ∼ εr
n, (50)

where εn = sn − α.
Then,

εn ∼ εr
n−1. (51)

Thus,
εn+1 ∼ εr

n =
(
εr

n−1
)r

= εr2

n−1. (52)

Assuming the iterative sequences {wn}, {yn} and {zn} have orders r1, r2, and r3,
respectively, then using (50) and (51) gives

εn,w ∼ εr1
n =

(
εr

n−1
)r1 = εrr1

n−1, (53)

εn,y ∼ εr2
n =

(
εr

n−1
)r2 = εrr2

n−1, (54)

εn,z ∼ εr3
n =

(
εr

n−1
)r3 = εrr3

n−1. (55)
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Using Theorem 2 and Lemma 2, we get

εn,w ∼
(
1 + γnΩ′(α)

)
εn = εr+r1+r2+r3+1

n−1 , (56)

εn,y ∼
(
1 + γnΩ′(α)

)(
β + d2

)
ε2

n = ε2r+2r1+2r2+2r3+2
n−1 , (57)

εn,z ∼
(
1 + γnΩ′(α)

)2(
βn + d2

)(
λn + Ω′(α)d2

2 −Ω′(α)d3
)
ε4

n = ε4r+4r1+4r2+4r3+4
n−1 , (58)

εn+1 ∼
(
1 + γnΩ′(α)

)4(
β + d2

)2(
λn + Ω′(α)d2

2 −Ω′(α)d3
)(

θn −Ω′(α)d4
)
ε8

n =

ε8r+8r1+8r2+8r3+8
n−1 . (59)

Now, comparing the corresponding powers of εn−1 on the right hand sides of (53)
and (56), (54) and (57), (55) and (58), (52) and (59), we get

rr1 − r− r1 − r2 − r3 − 1 =0,

rr2 − 2r− 2r1 − 2r2 − 2r3 − 2 =0,

rr3 − 4r− 4r1 − 4r2 − 4r3 − 4 =0, (60)

r2 − 8r− 8r1 − 8r2 − 8r3 − 8 =0.

This system of equations has the non-trivial solution r1 = 1.9394, r2 = 3.8789,
r3 = 7.7578 and r = 15.5156. Hence, the R-order of convergence of the method NWMMa

8 (44)
is at least 15.5156. The R-order of convergence for the methods NWMMb

8 can be proved in
similar manner. The proof is complete.

4. Numerical Experiments

In this section, we examine the performance and the computational efficiency of the
newly developed with and without-memory methods discussed in Sections 2 and 3 and
compare with some methods of similar nature available in the literature. In particular, we
have considered for the comparison the following derivative-free three-parametric meth-
ods: FZM4(4.1) [15], VTM4(28) [16], and SM4(4.1) [17], and the following four-parametric
methods: AJM8 [13], ZM8 ( ZR1 from [18]), and ACM8 (M1 from [19]).

All numerical tests have been executed using the multi-precision arithmetic program-
ming software Mathematica 12.2. For all methods, we have chosen the same values of the
parameters γ0 = β0 = λ0 = θ0 = −1 in all the test functions in order to start the initial
iteration. These same values are used for the corresponding parameters of all the compared
methods in order to have uniform and fair comparison in all the test functions.

Numerical test functions which comprise a standard academic example and some
real-life chemical engineering problems along with their simple roots (α) and initial guesses
(s0) are presented below.

Example 1. A standard academic test function given by

Ω1(s) = e−s2
(1 + s3 + s6)(s− 2). (61)

It has a simple root α = 2. We use s0 = 2.3 as the initial guess and the results are displayed
in Table 1.
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Table 1. Comparison of test function Ω1(s).

Methods n |s1− s0| |s2− s1| |s3− s2| |Ω1(s3)| COC

Without memory
FZM4 5 0.33009 0.030086 9.2612× 10−7 9.2120× 10−25 4.0000
VTM4 5 0.31989 0.019888 2.0505× 10−7 2.6989× 10−27 4.0000
SM4 5 0.33009 0.030086 9.2612× 10−7 9.2120× 10−25 4.0000
MMa

4 5 0.29425 0.0057493 4.0008× 10−10 1.2989× 10−38 4.0000
MMb

4 5 0.30077 0.00076940 1.3367× 10−13 1.6187× 10−52 4.0000
ZM8 4 0.29937 0.00062516 6.3288× 10−26 9.4210× 10−202 8.0000
ACM8 4 0.30459 0.0045854 1.0110× 10−20 7.6376× 10−162 8.0000
AJM8 4 0.28708 0.012920 7.4714× 10−15 1.4745× 10−112 8.0000
MMa

8 4 0.30000 1.2807× 10−6 1.6291× 10−48 1.4926× 10−383 8.0000
MMb

8 4 0.30000 2.2530× 10−6 1.4939× 10−46 7.4639× 10−368 8.0000

With memory
FZM4 4 0.33009 0.030087 9.0157× 10−15 2.2995× 10−100 7.6456
VTM4 4 0.31989 0.019888 1.3343× 10−15 1.0917× 10−108 7.6031
SM4 4 0.33009 0.030087 1.4778× 10−13 5.4594× 10−90 7.2871
NWMMa

4 4 0.29425 0.0057493 6.0134× 10−18 2.7847× 10−131 7.5271
NWMMb

4 4 0.30077 0.00076940 4.1128× 10−26 2.1806× 10−189 7.5603
ZM8 4 0.29937 0.00062516 3.6733× 10−50 4.7977× 10−749 15.145
ACM8 4 0.30459 0.0045854 1.6369× 10−39 1.3451× 10−598 15.541
AJM8 4 0.28708 0.012920 8.6225× 10−26 1.4868× 10−350 14.000
NWMMa

8 3 0.30000 1.2807× 10−6 4.4603× 10−96 1.7660× 10−1486 15.544
NWMMb

8 3 0.30000 2.2530× 10−6 6.8171× 10−91 3.0895× 10−1398 15.470

Example 2. The Michaelis–Menten model [20] describes the kinetics of enzyme-mediated reactions
and has the following expression:

dS
dt

= −νm
S

Ks + S
, (62)

where S is the substrate concentration (moles/L), νm is the maximum uptake rate (moles/L/d), and Ks
is the half-saturation constant, which is the substrate level at which uptake is half of the maximum
(moles/L).

If S0 is the initial substrate level at t = 0, then the above equation can be solved for S as
follows:

S = S0 − νmt + Ks log(S0/S). (63)

For a particular case where t = 10, S0 = 8 moles/L, νm = 0.7 moles/L/d, and
Ks = 2.5 moles/L, the above equation reduces to the following nonlinear function.

Ω2(s) = s− 2.5 log
(8

s

)
− 1, (64)

where s denotes the substrate concentration S to be determined. The nonlinear equation Ω2(s) = 0
has a simple root α ≈ 3.2511115053800575. We use s0 = 3.8 as the initial guess and the results
are displayed in Table 2.

Example 3. Let us consider the conversion of the fraction of Nitrogen–Hydrogen feed into Ammonia,
called fractional conversion, at a pressure of 250 atm and temperature of 500 ◦C (see [21] for details).
When reduced to the polynomial form, the problem has the following expression:

Ω3(s) = s4 − 7.79075s3 + 14.7445s2 + 2.511s− 1.674. (65)

The nonlinear equation Ω3(s) = 0 has a simple root α ≈ 0.27775954284172066. We take s0 = 0.6
as the initial guess and the results are displayed in Table 3.
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Table 2. Comparison of test function Ω2(s).

Methods n |s1− s0| |s2− s1| |s3− s2| |Ω2(s3)| COC

Without memory
FZM4 5 0.52278 0.026103 3.6376× 10−7 2.5627× 10−26 4.0000
VTM4 5 0.52808 0.020806 1.0009× 10−7 9.7869× 10−29 4.0000
SM4 5 0.52278 0.026103 3.6376× 10−7 2.5627× 10−26 4.0000
MMa

4 5 0.53110 0.017791 3.5680× 10−8 1.0391× 10−30 4.0000
MMb

4 5 0.53031 0.018583 4.2589× 10−8 2.1093× 10−30 4.0000
ZM8 4 0.54884 0.000043546 2.1311× 10−36 1.2407× 10−286 8.0000
ACM8 4 0.54976 0.00086944 3.0625× 10−25 1.2791× 10−196 8.0000
AJM8 4 0.54818 0.00070892 1.1467× 10−26 9.5186× 10−209 8.0000
MMa

8 4 0.54923 0.00034385 2.5135× 10−29 3.6221× 10−230 8.0000
MMb

8 4 0.54924 0.00034685 2.6942× 10−29 6.3116× 10−230 8.0000

With memory
FZM4 4 0.52278 0.026104 1.8327× 10−20 7.9524× 10−153 7.5500
VTM4 4 0.52808 0.020806 3.0179× 10−21 9.7288× 10−159 7.5491
SM4 4 0.52278 0.026104 8.1149× 10−20 5.7816× 10−140 7.2839
NWMMa

4 4 0.53110 0.017791 1.1641× 10−21 5.3718× 10−162 7.5518
NWMMb

4 4 0.53031 0.018583 1.6423× 10−21 7.3086× 10−161 7.5520
ZM8 3 0.54884 0.000043546 1.4128× 10−80 1.4045× 10−1223 15.145
ACM8 3 0.54976 0.00086944 3.5527× 10−64 4.1590× 10−995 15.420
AJM8 4 0.54818 0.00070892 2.1494× 10−58 4.0336× 10−814 14.000
NWMMa

8 3 0.54923 0.00034385 1.7197× 10−70 5.4863× 10−1093 15.426
NWMMb

8 3 0.54924 0.00034685 1.9715× 10−70 4.5987× 10−1092 15.426

Table 3. Comparison of test function Ω3(s).

Methods n |s1− s0| |s2− s1| |s3− s2| |Ω3(s3)| COC

Without memory
FZM4 - Divergent Divergent Divergent Divergent −
VTM4 - Divergent Divergent Divergent Divergent −
SM4 - Divergent Divergent Divergent Divergent −
MMa

4 6 0.28422 0.037789 2.2754× 10−4 6.5335× 10−14 4.0000
MMb

4 6 0.28258 0.039391 2.7277× 10−4 1.3208× 10−13 4.0000
ZM8 - Divergent Divergent Divergent Divergent −
ACM8 5 0.28268 0.039558 1.7645× 10−6 1.2870× 10−45 8.0000
AJM8 4 0.32808 0.0058362 4.7720× 10−16 8.2224× 10−121 8.0000
MMa

8 4 0.32322 0.00098388 2.3084× 10−24 9.2316× 10−189 8.0000
MMb

8 4 0.32335 0.0011099 6.9239× 10−24 6.0483× 10−185 8.0000

With memory
FZM4 5 0.021086 0.34332 5.6284× 10−6 2.5093× 10−42 7.7424
VTM4 5 0.024773 0.34701 5.9869× 10−6 4.1983× 10−42 7.7424
SM4 5 0.021086 0.34332 5.1371× 10−6 9.9324× 10−43 7.7423
NWMMa

4 4 0.28422 0.038016 8.7889× 10−14 3.8698× 10−105 7.7335
NWMMb

4 4 0.28258 0.039664 2.1998× 10−13 3.8297× 10−102 7.7325
ZM8 5 0.59976 0.28631 8.7926× 10−3 9.9619× 10−33 16.000
ACM8 4 0.28268 0.039560 1.2422× 10−23 3.3101× 10−366 16.000
AJM8 4 0.32808 0.0058362 2.8373× 10−31 9.0156× 10−427 14.000
NWMMa

8 4 0.32322 0.00098388 1.7162× 10−51 1.9333× 10−862 17.000
NWMMb

8 4 0.32335 0.0011099 1.3326× 10−50 2.6215× 10−847 17.000

Example 4. The equation of state for a van der Waals fluid takes the following form [22]:(
P +

a
V2

)
(V − b) = RT, (66)
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where a, b, and R are positive constants, P is the pressure, T is the absolute temperature, and V is
the molar volume.

Now, let us substitute p = P
Pc

= 27b2P
a , t = T

Tc
= 27RbT

8a and v = V
Vc

= v
3b , where Pc =

a
27b2

is the critical pressure, Tc = 8a
27Rb is the critical temperature, and Vc = 3b is the critical molar

volume.
Then, the above Equation (66), in which the pressure, temperature, and volume are expressed

in terms of their critical values, becomes(
p +

3
v2

)
(3v− 1) = 8t, (67)

where p, t, and v are called the reduced pressure, temperature, and volume, respectively. For particular
values of p = 6 and t = 2, Equation (67) reduces to the following nonlinear equation.

Ω4(s) = 18s3 − 22s2 + 9s− 3 = 0, (68)

where s represents the reduced volume v to be determined. Equation (68) has a simple root α ≈
0.86728815393727851. We use s0 = 1.2 as the initial guess and the results are displayed in Table 4.

Table 4. Comparison of test function Ω4(s).

Methods n |s1− s0| |s2− s1| |s3− s2| |Ω4(s3)| COC

Without memory
FZM4 − Divergent Divergent Divergent Divergent −
VTM4 − Divergent Divergent Divergent Divergent −
SM4 − Divergent Divergent Divergent Divergent −
MMa

4 6 0.21298 0.10244 0.017273 1.6018× 10−4 4.0000
MMb

4 6 0.21292 0.10228 0.017481 3.0615× 10−4 4.0000
ZM8 5 0.42172 0.088533 4.7739× 10−4 8.4089× 10−20 8.0000
ACM8 5 0.21344 0.11153 7.7426× 10−3 2.1579× 10−8 8.0000
AJM8 4 0.31961 0.013099 3.3791× 10−9 2.5912× 10−61 8.0000
MMa

8 4 0.31144 0.021272 8.9028× 10−10 1.9552× 10−68 8.0000
MMb

8 4 0.31130 0.021408 7.1073× 10−10 3.2256× 10−69 8.0000

With memory
FZM4 5 0.0039485 0.32818 5.8627× 10−4 8.0061× 10−24 8.0000
VTM4 5 0.0045984 0.32754 5.7705× 10−4 7.0536× 10−24 8.0000
SM4 5 0.0039485 0.32818 5.8627× 10−4 8.0061× 10−24 8.0000
NWMMa

4 5 0.21298 0.11973 4.4869× 10−7 4.6843× 10−49 8.0000
NWMMb

4 5 0.21292 0.11979 4.2775× 10−7 3.1960× 10−49 8.0000
ZM8 4 0.42172 0.089010 2.2383× 10−13 2.4905× 10−198 16.000
ACM8 4 0.21344 0.11927 1.7133× 10−12 3.4570× 10−184 16.000
AJM8 4 0.31961 0.013099 1.0088× 10−23 3.6015× 10−318 14.000
NWMMa

8 4 0.31144 0.021272 2.9242× 10−26 9.3185× 10−431 17.000
NWMMb

8 4 0.31130 0.021408 2.8163× 10−26 4.9186× 10−431 17.000

All the results and analysis of the numerical computations are displayed in Tables 1–4.
The aim of these tables is to showcase the performance of the iterative methods in terms
of their convergence speed and accuracy. We measure the convergence by tracking the
number of iterations (n) required to satisfy the stopping criterion:

|sn − sn−1|+ |Ω(sn)| < 10−60, (69)

where sn represents the current iterate and |Ω(sn)| denotes the absolute residual error of
the function. To provide further insights, we also include in the tables the estimated error
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in consecutive iterations, |sn − sn−1|, for the initial three iterations. Moreover, we calculate
the computational order of convergence (COC) using the formula [23]:

COC =
log|Ω(sn)/Ω(sn−1)|

log|Ω(sn−1)/Ω(sn−2)|
. (70)

From Tables 1–4, the numerical results reveal the good performance and better effi-
ciency of the proposed with and without-memory methods, thus confirming their theoreti-
cal results. The proposed methods show better accuracy with high efficiency in terms of
minimal errors after three iterations as compared to the existing methods in comparison.
Tables 2–4 confirm the applicability of the proposed families of methods when applied
to some real world chemical problems. In addition, some of the compared methods fail
to converge to the required roots and diverge away from the roots, which is not the case
for the proposed families of methods, as can be observed from Figures 1–4. Further, the
numerical test results reveal that the COC supports the theoretical convergence order of
the new proposed with and without-memory methods in the test functions.
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Figure 1. Graphical comparison based on Log of |sn − sn−1| for Ω1(s).
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(b) Eighth-order methods
Figure 2. Graphical comparison based on Log of |sn − sn−1| for Ω2(s).
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(b) Eighth-order methods
Figure 3. Graphical comparison based on Log of |sn − sn−1| for Ω3(s).
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Figure 4. Graphical comparison based on Log of |sn − sn−1| for Ω4(s).

Comparison by Basins of Attraction

In this section, we explore the dynamical properties of the proposed methods discussed
in Section 2. To analyse their behaviour in the complex plane, we examine the basins of
attraction associated with each method. Specifically, we compare MMa

4 with Method (5),
MMb

4 with Method (6), MMa
8 with Method (18), and MMb

8 with Method (19), respectively.
We used a 401× 401 grid to represent the complex plane region R = [−2, 2]× [−2, 2].

Each point z0 in R was assigned a colour based on the root it converged to using an
iterative method. Divergent points were marked in black if they failed to converge within
100 iterations or within a tolerance of 10−4. Simple roots were represented by white
circles. Brighter colours indicated faster convergence, while darker colours indicated slower
convergence. In Figure 5, we illustrate the basins of attraction obtained by applying the
fourth and eighth-order methods to the function p(z) = z3 + z. To have a fair comparison,
we take the same values of the parameters γ = β = 0.001 for all compared methods.

In Figure 5, it is evident that all the compared methods exhibit large basins of attraction
with only a few divergent points. However, the proposed modified methods outperform the
biparametric methods due to the inclusion of additional parameters. In fact, the proposed
methods MMb

4 and MMb
8 are the best with no divergent points.

(a) Method (5) (b) Method (6) (c) Method (18) (d) Method (19)

(e) MMa
4 (f) MMb

4 (g) MMa
8 (h) MMb

8
Figure 5. Basins of attraction for the proposed methods and the biparametric methods applied to the
function p(z) = z3 + z.

Moreover, we can observe from Tables 5 and 6 that each of the proposed methods
show significant improvements in terms of fewer divergent points. In particular, MMa

4
shows an improvement of 71.4% over method (5), and 100% improvement for method
MMb

4 over method (6). Similarly, MMa
8 and MMb

8 show 48.1% and 100% improvements
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over methods (18) and (19), respectively. Notably, both methods MMb
4 and MMb

8 show
no divergent points, as observed from Tables 5 and 6, respectively. This underscores the
crucial role of the extra parameters in enhancing stability and reducing divergent points in
the proposed methods.

Table 5. Number of divergent points on the function p(z) for the fourth-order methods.

Method (5) and MMa
4 Method (6) and MMb

4

Methods Method (5) MMa
4 Improv. (%) Method (6) MMb

4 Improv. (%)

Parameters γ, β γ, β, λ = 0.3 γ, β γ, β, λ = −1
No. of div. pts. 105 30 71.4% 14 0 100%
% of div. pts. 0.065% 0.019% 0.0087% 0%

Abbreviations used: div. = divergent, pts. = points, Improv. = Improvement.

Table 6. Number of divergent points on the function p(z) for the eighth-order methods.

Method (18) and MMa
8 Method (19) and MMb

8

Methods Method (18) MMa
8 Improv. (%) Method (19) MMb

8 Improv. (%)

Parameters γ, β γ, β, λ = −4, θ = 0.4 γ, β γ, β, λ = −4, θ = 0.4
No. of div. pts. 79 41 48.1% 14 0 100%
% of div. pts. 0.049% 0.025% 0.0087% 0%

5. Concluding Remarks

In this paper, we have presented new derivative-free three- and four-parametric
with and without-memory methods for finding simple roots of nonlinear equations. The
methods are based on the modifications of the derivative-free without-memory methods
developed in [14]. The use of accelerating parameters in the with-memory methods has
enabled us to increase the convergence order of the without-memory methods and obtain
very high computational efficiency index of 7.53111/3 ≈ 1.9601 for the three-point and
15.51561/4 ≈ 1.9847 for the four-point with-memory methods. The numerical test results
have demonstrated the good performance and applicability of the proposed with and
without-memory methods. They are found to have better accuracy and efficiency as
compared to the existing methods in the comparison in terms of minimal residual errors
and errors in consecutive iterations for convergence towards the required simple roots in
minimal number of iterations. Moreover, the study of the dynamical aspects through the
basins of attraction further confirms the crucial role of the extra parameters in enhancing
stability and reducing divergent points in the proposed methods.
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