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Abstract: The saturation properties of symmetric and asymmetric nuclear matter have been computed
using the finite range simple effective interaction with Yukawa form factor. The results of higher-order
derivatives of the energy per particle and the symmetry energy computed at saturation, namely,
Q0, Ksym, Kτ , Qsym, are compared with the corresponding values extracted from studies involving
theory, experiment and astrophysical observations. The overall uncertainty in the values of these
quantities, which results from a wide spectrum of studies described in earlier literature, lies in
the ranges −1200 ≲ Q0 ≲ 400 MeV, −400 ≲ Ksym ≲ 100 MeV, −840 ≲ Kτ ≲ −126 MeV and
−200 ≲ Qsym ≲ 800 MeV, respectively. The ability of the equations of state computed with this
simple effective interaction in predicting the threshold mass for prompt collapse in binary neutron
star merger and gravitational redshift has been examined in terms of the compactness of the neutron
star and the incompressibility at the central density of the maximum mass star. The correlations
existing between neutron star properties and the nuclear matter saturation properties have been
analyzed and compared with the predictions of other model calculations.

Keywords: nuclear matter saturation properties; landau parameters; incompressibility of nuclear
matter; neutron star properties; binary neutron star merger; gravitational redshift

1. Introduction

The empirical properties of infinite nuclear matter (NM) at saturation are key features
in the study of any phenomenon resulting from the nucleon–nucleon (NN) interactions
in a many-body system. Ideally, the solution to the many-body problem with the NN
interaction would be the way to determine the NM properties. But in the absence of
comprehensive knowledge of NN interaction, microscopic many-body models, such as
Dirac-Brueckner-Hartree-Fock (DBHF) and its non relativistic counterpart BHF [1–9], vari-
ational methods [10,11], chiral effective field theory [12,13], etc., use realistic potentials
whose parameters are fitted to phase shift data in different partial wave channels and
properties of few-body systems (deuteron and triton). The inadequacy of our understand-
ing of the in-medium NN interaction is reflected by the fact that in the aforementioned
many-body calculations, the saturation density ρ0 of symmetric nuclear matter (SNM) is
over-predicted. This could be brought within the empirical range by incorporating the
three-body and higher-order many-body effects in an ad hoc phenomenological manner.
The consensus range for the value of saturation density ρ0 = 0.17 ± 0.03 fm−3 has been
estimated from studies of various kinds, which include different variants of the liquid drop
model, optical model of NN scattering, muonic atoms, and Hartree–Fock (HF) calculations
of nuclear density distributions [14]. The values of energy per nucleon at saturation density
e(ρ0) have been extracted to be ∼−16 MeV from the mass analysis over the periodic table.
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An alternate method, adopted in contrast to the microscopic realistic calculations to
handle the many-body problem, is to use phenomenological effective interactions. Though
less fundamental compared to the microscopic calculations, its ability in the analytical
calculations of nuclear properties makes it highly popular. Skyrme [15], Gogny [16], and
M3Y effective forces [17] are some of those successful forces. The basic idea to build up
these interactions is to parameterize the effects of the microscopic NN interaction upon
averaging over the spin, parity and isospin of the interacting nucleons and constrain the
parameters from the ground state properties of finite nuclei and nuclear matter. A drawback
of this approach is that the parameter set is not unique, and higher-order nuclear matter
properties at saturation cannot be unambiguously predicted. Moreover, many parameters
of the effective force become strongly correlated in the course of their fixation. Of late,
another effective force, the so-called finite range simple effective interaction (SEI) [18],
which has a similar predicting ability as that of Skyrme and Gogny in the NM and finite
nuclei domain, has been established. The parameter fitting protocol adopted in the case
of SEI makes it different from other effective forces, minimizing the correlation effects.
The SEI parameters are systematically fitted in SNM and pure neutron matter (PNM),
which allows the study of both SNM and asymmetric nuclear matter (ANM). Moreover,
the parameters responsible for the momentum dependence of the mean-field are fixed
from the experimental/empirical constraints exclusively so that each of the two aspects
of the mean-field, the density dependence and the momentum dependence, could be
studied independently without altering the predictions of the other one [19]. Further, in
the determination of nine parameter combinations of the eleven SEI parameters required
for the study of ANM, one is required to assume only three standard values of saturation
properties, namely, ρ0, e(ρ0) and symmetry energy Esym(ρ0). Within this parameter fixation
protocol, we shall use the SEI to compute higher-order derivatives of the energy per particle
and the symmetry energy at saturation density and compare these values with the results
extracted from various different studies. The stability conditions, in terms of Landau
parameters of the interacting Fermi liquid model, serve as an acid test for the reliability
of an effective force for its applicability in the different channels of spin and isospin. We
shall check to which extent the observance of the Landau stability conditions is fulfilled by
our SEI.

In Section 2, we have given a brief account of SEI and its parameter-fitting protocol.
In Section 3, we have obtained different properties of SNM at saturation, which are re-
evaluated in the framework of the interacting Fermi liquid model by computing the Landau
parameters using SEI. In the same section, the high-order derivatives of the energy per
particle and the symmetry energy are calculated and compared with the empirical range of
values extracted from theory, experiment and astrophysical observations. In Section 4, we
explore the predictive power of the SEI EoSs in the domain of high-density neutron-rich
matter pertaining to the recent NS phenomenology associated with the binary neutron
star merger (BNSM) and gravitational redshift. Finally, Section 5 contains the summary
and outlook.

2. Formalism

The SEI in this work was initially proposed by Behera et al. [18] and has the following
explicit expression if a form-factor of Yukawa type is used.

Ve f f = t0(1 + x0Pσ)δ(⃗r) +
t3

6
(1 + x3Pσ)

(
ρ(R)

1 + bρ(R)

)γ

δ(⃗r)

+ (W + BPσ − HPτ − MPσPτ)
e−r/α

r/α
+ Spin-orbit part (1)

We denote this force as SEI-Y thereafter.
The SEI-Y in Equation (1) has 12 parameters in total, namely, α, γ, b, x0, x3, t0, t3, W, B, H,

and M plus the spin-orbit strength parameter W0, which enters in the description of finite
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nuclei. The energy density in isospin asymmetric nuclear matter for the SEI-Y interaction
in Equation (1) is given by,

HY(ρn, ρp) =
3h̄2

10m
(k2

nρn + k2
pρp) +

εl
0

2ρ0
(ρ2
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where ρn, ρp are neutron (n) and proton (p) densities, ρ = ρn + ρp is the total NM den-
sity, Λ(=1/α) is the inverse of the range of the Yukawa form-factor, and ki = (3π2ρi)

1/3

(i = n, p) is the respective Fermi momentum. The study of ANM involves altogether nine
parameters, γ, b, α, εl

0, εul
0 , εl

γ, εul
γ , εl

ex, εul
ex. The connection of these new parameters to the

interaction parameters of Equation (1), which was derived in Ref. [20], is also reported
in Appendix A. Here, the indexes l and ul denote the interaction between like and unlike
pairs of nucleons, respectively.

The Fitting Procedure of SEI

The formulation of NM and PNM using SEI and the parameter fixation protocol has
been discussed at length in Refs. [20,21]. We briefly outline it in the following. The SNM
only requires the following three combinations of the strength parameters,(

εl
0 + εul

0
2

)
= ε0,

(
εl

γ + εul
γ

2

)
= εγ,

(
εl

ex + εul
ex

2

)
= εex, (3)

which, together with γ, b and α, are the six parameters needed to determine the SNM
completely. For a given value of the exponent γ, which characterizes the stiffness parameter
and determines the incompressibility K in SNM, the remaining five parameters ε0, εγ, εex, b
and α of SNM are determined as follows assuming the standard values of the nucleon mass
(mc2 = 939 MeV), the saturation density ρ0 and the energy per particle at saturation e(ρ0).
The range α and the exchange strength εex are determined simultaneously by adopting an
optimization procedure [18], using the condition that the nuclear mean-field in SNM at sat-
uration density vanishes for the kinetic energy of the nucleon of 300 MeV, a result extracted
from the optical model analysis of nucleon–nucleus scattering data [22–25]. The parameter
b is determined to avoid supra-luminous behavior [26]. The two remaining parameters,

namely εγ and ε0, are obtained from the saturation conditions, Tf0 =
h̄2k2

f0
2m = 37 MeV, which

allow us to obtain k f0 and, therefore, the saturation density ρ0, and e(ρ0) = −16 MeV.
The stiffness parameter γ, kept as a free parameter, is chosen from the range of values
for which the pressure–density relation in SNM lies within the region extracted from the
analysis of flow data in heavy-ion collision experiments at intermediate energies [27]. It
is verified that γ = 1 is the upper limit for which the pressure-density relation is obeyed,
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which corresponds to the nuclear matter incompressibility K(ρ0) = 269 MeV for the SEI-Y
model. Therefore, we can study the nuclear matter properties by assuming different values
of γ up to a limiting value γ = 1. In this work, we will use three EoS corresponding to
γ = 1/3, 1/2, and 2/3. In order to study ANM, we need to know how the strength param-
eters εex, εγ and ε0 of Equation (3) split into the like and unlike components. The splitting
of εex into εl

ex and εul
ex is decided to be εl

ex = 2εex/3 [28] using the condition that the entropy
in PNM does not exceed that of the SNM [28]. The splittings of the remaining two strength
parameters, εγ and ε0, are decided from the values of the symmetry energy parameter

Esym(ρ0) and its derivative E
′
sym(ρ0) = ρ0

dEsym(ρ0)
dρ0

at saturation density ρ0. For a given
Esym(ρ0) within its empirical range [29], we can produce different density dependence of
symmetry energy Esym(ρ) by assigning arbitrary values to E

′
sym(ρ0). The slope parameter

in each case will be L(ρ0) = 3E
′
sym(ρ0). In the study where the variation in L(ρ0) is not an

explicit requirement, the value of E
′
sym(ρ0) is fixed from the condition that the asymmetric

contribution of the nucleonic part of the energy density in charge-neutral β-equilibrated
neutron star n + p + e + µ matter (NSM), i.e., SNSM(ρ) = [H(ρ, Yp)− H(ρ, Yp = 1/2)] is
maximum, where Yp is the equilibrium proton fraction. The characteristic E

′
sym(ρ0) value

thus obtained predicts a density dependence of the symmetry energy, which is neither
stiff nor very soft [30]. With the parameters determined in this way, the SEI is able to
reproduce the trends of the EoS and the properties of the momentum dependence of the
mean-field with similar quality as predicted by microscopic calculations [10,28,31–33]. As a
consequence of this fitting procedure, one can also vary the n and p effective mass splitting,
which only depend on the εl

ex and εul
ex parameters, while the density dependence of Esym(ρ),

i.e., the slope parameter L, which depends on the splitting of εγ and ε0, remains invariant
and the vice-versa [28,33].

We now have three open parameters that we have chosen as t0, x0 and W0. However,
to describe ANM, the explicit value of the t0 and x0 parameters is not necessary because
they enter as specific combinations that can be determined from the εl

0 and εul
0 [21]. In our

work [20], we further constrained x0 by using the DBHF predictions on the effective mass
splitting between spin-up and spin-down neutrons in spin-polarized neutron matter. It was
found that the SEI predictions agree well with the DBHF ones [34] for εl,l

ex = εl
ex/3, where

the superscript (“l,l”) (and its counterpart (“l,ul”)) symbolizes the exchange strength for
parallel (and anti-parallel) spin orientations in polarized neutron matter. This consideration

allows us to determine x0 in a unique way as [20], x0 = 1 − 2εl
0−εl

ex
ρ0t0

, if t0 is known. The two
remaining free parameters, t0 and W0, have to be fitted to finite nuclei data, as explained
in detail in Refs. [21,35], in the case of a SEI with a Gaussian form factor. For the sake
of completeness, the twelve numbers of parameters of the SEI-Y EoSs corresponding to
γ = 1/3, 1/2 and 2/3 are given in Table 1. The inputs corresponding to the saturation den-
sity, energy per particle in SNM, and symmetry energy needed to obtain these parameters
are given in Table 2.

Table 1. The twelve parameters for the SEI-Y EoSs corresponding to γ = 1/3, 1/2 and 2/3.

γ b [ f m3] α [fm] εex [MeV] εl
ex [MeV] ε0 [MeV]

1/3 0.4161 0.4232 −129.344 −86.229 −82.245
1/2 0.5880 0.4242 −127.707 −85.138 −50.600
2/3 0.7796 0.4250 −126.390 −84.260 −34.904

εl
0 [MeV] εγ [MeV] εl

γ [MeV] t0 [MeV f m3] x0 W0 [MeV f m5]

−47.189 104.428 74.006 333.5 1.151 119.3
−27.509 73.124 54.250 566.7 0.664 118.4
−17.859 58.095 44.690 647.4 0.520 118.2
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Table 2. Nuclear matter properties at saturation density ρ0 for three EoSs—SEI-Y (γ = 1/3), SEI-Y
(γ = 1/2) and SEI-Y (γ = 2/3).

SEI-Y (γ = 1/3) SEI-Y (γ = 1/2) SEI-Y (γ = 2/3)

ρ0 [fm−3] 0.161 0.158 0.156
e0 [MeV] −16.04 −16 −16
(m∗

s /m) 0.664 0.686 0.666
(m∗

v/m) 0.685 0.621 0.622
K0 [MeV] 220.346 237.643 253.219
Q0 [MeV] −478.763 −461.807 −437.529

ρsat,2 [fm−3] −0.163 −0.149 −0.138
Esym [MeV] 35.5 35 34.5

L [MeV] 74.4 74.7 74.7
Ksym [MeV] −103.487 −101.471 −99.252
Qsym [MeV] 273.008 252.462 234.0525

Kτ [MeV] −388.232 −404.509 −418.381
ePNM [MeV] 19.46 19 18.5
KPNM [MeV] 116.858 136.172 153.966
QPNM [MeV] −205.754 −209.345 −203.476

3. Symmetric and Asymmetric Nuclear Matter Properties

The equation of state of ANM can be expressed as a power series in the isospin
asymmetry δ = (ρn − ρp)/ρ, as given by

e(ρ, δ) = e0(ρ) + Esym(ρ).δ2 + O(δ4) (4)

where e0(ρ) is the energy per nucleon in SNM, while Esym(ρ) is the symmetry energy. The
energy per nucleon in SNM can also be Taylor expanded around the saturation density as:

e0(ρ) = e0(ρ0) +
K0

2!
χ2 +

Q0

3!
χ3 + O(χ4), (5)

where χ =
(

ρ−ρ0
3ρ0

)
and K0 = 9ρ2

0
∂2e0(ρ)

∂ρ2 |ρ=ρ0 and Q0 = 27ρ3
0

∂3e0(ρ)
∂ρ3 |ρ=ρ0 are the incompress-

ibility and skewness parameter, respectively, in SNM. Notice that the first derivative does
not appear in this expansion due to the saturation condition.

The symmetry energy is the energy cost to convert SNM in PNM [6,36,37]. It is
defined as

Esym(ρ) =
1
2!

∂2e(ρ, δ)

∂δ2 |δ=0 (6)

The odd-order terms in δ will not appear in Equation (4) due to the isospin invariance of
nuclear force in nuclear matter when one neglects the Coulomb interaction. The nuclear
symmetry energy Esym(ρ) corresponds to the lowest-order coefficient in the expansion of
the energy per particle in ANM in terms of the isospin asymmetry. The contribution from
higher-order terms δn, n ≥ 4 is very small and has been estimated to be less than 1 MeV
in microscopic many-body, as well as effective model calculations [37]. Keeping up to the
δ2-term in Equation (4) refers to the parabolic approximation (PA) of the EoS of ANM. The
density dependence of e0(ρ) is much better understood than that of Esym(ρ), which is still
elusive, even more so in the supra saturation regime that makes the study of ANM an
important area of contemporary nuclear research. The analysis of the density dependence
of Esym(ρ) is performed in terms of the various coefficients in its Taylor expansion about
normal NM density ρ0, given by,

Esym(ρ) = Esym(ρ0) + Lχ +
Ksym

2!
χ2 +

Qsym

3!
χ3 + O(χ4) (7)
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where χ has been defined before. The coefficients

L = 3ρ0
∂Esym(ρ)

∂ρ
|ρ=ρ0 , Ksym = 9ρ2

0
∂2Esym(ρ)

∂ρ2 |ρ=ρ0 , and Qsym = 27ρ3
0

∂3Esym(ρ)

∂ρ3 |ρ=ρ0 (8)

are the slope parameter, curvature parameter and skew symmetry parameter, respectively,
and they characterize the density dependence of the nuclear symmetry energy around the
normal nuclear density ρ0, and thus carry important information about the properties of
nuclear symmetry energy at both high and low density regions.

The incompressibility of ANM, which depends on both the density and isospin asym-
metry, is given by

K(ρ, δ) = 9
∂P(ρ, δ)

∂ρ
= 18ρ

∂e(ρ, δ)

∂ρ
+ 9ρ2 ∂2e(ρ, δ)

∂ρ2

= 18
P(ρ, δ)

ρ
+ 9ρ2 ∂2e(ρ, δ)

∂ρ2 , (9)

where P(ρ, δ) = ρ2 ∂e(ρ,δ)
∂ρ is the pressure in ANM, and e(ρ, δ) is given in Equation (4). At

saturation density ρsat(δ) of ANM, the pressure P(ρsat, δ) = 0 and the incompressibility in

Equation (9) becomes a function of δ only, Ksat(δ) = 9ρ2
sat

∂2e(ρ,δ)
∂ρ2 |ρ=ρsat , and is referred to

as the isobaric incompressibility coefficient. The saturation density in ANM, ρsat(δ), is a
function of isospin asymmetry and differs from normal NM density ρ0. The corrections to
ρ0 on account of the isospin asymmetry δ have been worked out in Ref. [37] in terms of
expansion in even powers of δ. For the lowest-order correction ρsat(δ) = ρ0 + ρsat,2δ2 =

ρ0 −
(

3L
K0

ρ0

)
δ2. Under the PA of EoS of ANM, the isobaric incompressibility coefficient

reads Ksat(δ) = K0 + Kτ(ρ0)δ
2, where K0 is the incompressibility of SNM at saturation

density and Kτ =
(

Ksym − 6L − Q0
K0

L
)

is the isospin part of Ksat(δ) [37,38]. The value of
the nuclear matter saturation properties, such as isoscalar effective mass (m∗

s /m), isovector
effective mass (m∗

v/m), energy per particle in PNM (ePNM), neutron matter incompressibility
(KPNM = K0 + Ksym), neutron matter skewness (QPNM = Q0 + Qsym), etc., for the SEI-Y
(γ = 1/3, 1/2, and 2/3) EoSs at saturation density are given in Table 2.

The incompressibility of SNM at saturation density K0(ρ0) is mainly obtained from
the analysis of experimental data of the giant monopole resonance (GMR) in open- and
closed-shell nuclei. Theoretical studies using non-relativistic and relativistic mean-field
models and the analysis of PREX-II and CREX data also provide useful information about
K0(ρ0). Relevant works using these techniques, which predict different values of K0(ρ0),
are collected in Table 3. The K0(ρ0) values predicted by the SEI-Y models, which are given
in Table 2, lie in the range 220–253 MeV within the limiting values extracted from the
analysis of the experimental GMR [39,40] and PREX-II and CREX [41] data as well from the
compilation of the predictions of a large set of relativistic and non-relativistic mean-field
models [29,42].

Table 3. Symmetric nuclear matter incompressibility.

Expt./Theory K0 [MeV]

Analysis of experimental data of the GMR
S. Shlomo et al. (2006) [39] 240 ± 20
U. Garg et al. (2018) [40] 240 ± 20
J.R. Stone et al., 2014 [43] 250–315

P. Avogadro and C.A. Bertulani, 2013 [44] 200
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Table 3. Cont.

Expt./Theory K0 [MeV]

Relativistic and non-relativistic mean-field calculations of the GMR
E. Khan et al., 2012 [45] 230 ± 40

D. Vretenar et al., 2003 [46] 250–270
M. Dutra et al., 2012 [29] 246 ± 41
M. Dutra et al., 2014 [42] 271 ± 86

Analysis of PREX-II and CREX data
S. Tagami et al., 2022 [41] 210–275

3.1. Landau Parameters

In the framework of the Landau theory of normal Fermi liquids [47–50], the bulk
properties of nuclear matter can be written in terms of a two-body interaction expressed as
a functional of the second derivative of the energy per particle with respect to the occupation
numbers at the Fermi surface. The interaction energy has the following form [51,52],

⟨k1k2|V|k1k2⟩ = N−1
0 {F(θ) + F′(θ)τ1.τ2 + G(θ)σ1.σ2

+ G′(θ)σ1.σ2τ1.τ2}, (10)

where N−1
0 = h̄2π2

2kFm∗
s

is the inverse of the level density at the Fermi surface. The quantity
m∗ is the effective mass associated with the interaction, and σ and τ are the Pauli matrices
in spin and isospin space, respectively. Since both particles are on the Fermi surface, F, F′,
G, and G′ are functions of θ, the angle between k1 and k2, which are expanded in terms of
Legendre polynomials [53] as,

F = ∑
l

Fl Pl(cosθ) (11)

and likewise for F′, G, and G′. For a spherical Fermi surface to be stable against any
deformation, the parameters must satisfy the relations

Fl > −(2l + 1) (12)

F′
l > −(2l + 1) (13)

Gl > −(2l + 1) (14)

G′
l > −(2l + 1). (15)

We have calculated the Landau parameters for the SEI-Y interaction. The corresponding
analytical expressions for Fl , F′

l , Gl , and G′
l with l = 0, 1 and 2 are given in Appendix B.

Landau parameters at ρ0 predicted by the SEI-Y (γ = 1/3, 1/2, and 2/3) EoSs together
with the results of different Skyrme, Gogny, and chiral effective interactions are shown in
Figure 1. The density dependence of different Landau parameters is shown for the SEI-Y
(γ = 1/2) parameter set in Figure 2. All the Landau parameters satisfy the condition given
in Equations (13)–(15) at all densities, except F0, which violates the condition Equation (13)
for densities less than 0.09 fm−3. The violation of the stability condition of F0 in the
density range ρ ≤ 0.09 fm−3, as shown in Figure 2, has no significance, as the physical
quantity associated with it, the incompressibility K0, has no physical meaning in this range
of density.

The values of the Landau parameters at saturation for the three SEI-Y sets for
(γ = 1/3, 1/2, and 2/3) are given in Table 4.



Symmetry 2024, 16, 215 8 of 28

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
F

0

0

0.5

1

1.5

2

F
0
’

SLy4

SLy5

SLy6

SLy7

SLy10

SLy230a

SLy230b

SV-bas

SV-m56-O

SV-m64-O

SV-min

-2 -1.5 -1 -0.5 0F
1

-1

-0.5

0

0.5

1

1.5

F
1
’

SEI-Y(γ=1/3)
SEI-Y(γ=1/2)
SEI-Y(γ=2/3)

-3 -2 -1 0 1

G
0

-0.5

0

0.5

1

1.5

2

G
0
 ’

T6
KDE0
KDE0v1
KDEX
LNS
MSk7
NRAPR
RATP

-1 0 1 2 3 4 5 6 7

G
1

-1

-0.5

0

0.5

1

1.5

G
1
’

SAMI
SGII
SIII
SII
SI
BLV1
SK255
SK272
SKI2
SKI3
SKI4
SKI5
SkM*
SkMP
SkP
SkUFF
M3Y-P1
M3Y-P2
D1S
T5
NLO

N
2
LO

Figure 1. Landau parameters for SEI-Y (γ = 1/2) parameter sets compared with different Skyrme sets
(SLy4, SLy5, SLy6, SLy7, SLy10, SLy230a, SLy230b, SI, SII, SIII, BLV1, SGII, SkM∗, RATP, SkP, T6, KDE0,
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T5, KDEX, NRAPR, SAMi, SK272, SkUFF [54–63]), Gogny interaction (M3Y-P1, M3Y-P2, D1S [64]),
and chiral effective interactions [65].
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Figure 2. Landau parameters as a function of density using the SEI-Y (γ = 1/2) set. Saturation
density ρ0 = 0.158 fm−3 is denoted by a grey dashed vertical line.

These dimensionless parameters Fl , F′
l , Gl , and G′

l are directly related to quantities
describing SNM and ANM properties, such as effective mass, incompressibility, symmetry
energy, the speed of sound, etc., through relationships [66,67],

Incompressibility, K = 3
h̄2k2

F
m∗

s
(1 + F0) (16)

Isoscalar effective mass,
m∗

s
m

= 1 +
F1

3
, (17)
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Isoscalar/Isovector effective mass ratio,
m∗

s
m∗

v
= 1 +

F′
1

3
, (18)

Symmetry energy, Esym =
h̄2k2

F
6m∗

s
(1 + F′

0) (19)

Spin asymmetry coefficient, Eσ =
h̄2k2

F
6m∗

s
(1 + G0) (20)

Spin-Isospin asymmetry coefficient, Eστ =
h̄2k2

F
6m∗

s
(1 + G′

0) (21)

The sound velocity is directly related to the compression modulus K(ρ), which can be
expressed in terms of the Landau parameters F0 and F1 :

mv2
s =

h̄2k2
F

3m∗
s
(1 + F0) =

1
9

K =
h̄2k2

F
3m

1 + F0

1 + F1
3

. (22)

The values of these NM properties at saturation are listed in Table 5 for the three EoSs
of SEI-Y, corresponding to γ = 1/3, 1/2, and 2/3. These results are in agreement with the
saturation properties predicted under the parameter fitting protocol given in Table 2.

Table 4. Landau parameters at the saturation density for SEI-Y (γ = 1/3), SEI-Y (γ = 1/2), and SEI-Y
(γ = 2/3) EoS.

EoS F0 F1 F2 F′
0 F′

1 F′
2

SEI-Y (γ = 1/3) −0.31 −0.913 −0.247 0.89 0.304 0.0826
SEI-Y (γ = 1/2) −0.257 −0.939 −0.253 0.914 0.313 0.0845
SEI-Y (γ = 2/3) −0.195 −0.9091 −0.2447 0.8771 0.303 0.0816

EoS G0 G1 G2 G′
0 G′

1 G′
2

SEI-Y (γ = 1/3) 0.617 0.0321 0.0087 0.474 0.3739 0.1013
SEI-Y (γ = 1/2) 0.627 0.0479 0.0129 0.514 0.3690 0.0998
SEI-Y (γ = 2/3) 0.584 0.0744 0.02001 0.5401 0.3297 0.0887

Table 5. Nuclear matter properties predicted using Landau parameters at saturation density for SEI-Y
(γ = 1/3), SEI-Y (γ = 1/2), and SEI-Y (γ = 2/3) sets.

SEI-Y (γ) ρ0 K0 m∗
s

m
m∗

s
m∗

v

Esym Eσ Eστ mv2
s

(γ) [fm−3] [MeV] [MeV] [MeV] [MeV] [MeV]

(1/3) 0.161 230.59 0.695 1.101 35.10 30.02 27.38 24.47
(1/2) 0.158 237.74 0.686 1.104 34.048 28.95 26.94 26.38
(2/3) 0.156 263.14 0.696 1.101 34.10 28.79 27.97 27.94

3.2. High-Order Derivatives of the Energy per Particle in Asymmetric Nuclear Matter

The symmetry energy is an important quantity in nuclear physics, which rules many
properties in the isovector sector of the energy density and has a relevant impact in nuclear
astrophysics. The symmetry energy parameter, Esym(ρ0), is constrained somewhat less
rigorously as compared to the energy per particle, e(ρ0), of SNM. It is determined from
the analysis of the predictions of a large set of mean-field models [29] and from data
of astrophysical observations [68–70] but also using experimental nuclear data, such as
charged pion spectra at high transverse momenta [71] or charge exchange and elastic
nuclear reactions [72]. The values of Esym(ρ0) extracted from these works are reported
in the upper panel of Table 6. The symmetry energy values used in the SEI-Y models lie



Symmetry 2024, 16, 215 10 of 28

between 34.5 and 35.5 MeV (see Table 2), which are within the ranges predicted by almost
all the analyses displayed in Table 6. Heavy-ion collision (HIC) studies have provided
relevant constraints on the EoS of SNM at supra-saturation densities, which allow us to
predict e0(ρ) up to about 4.6 times the normal nuclear matter density [27]. In the recent work
of Ref. [73], the value for e0(4ρ0) is constrained in the range 63.3+19.7

−6.6 at a 68% confidence
level. However, the EoS of the high-density neutron-rich matter is still highly uncertain due
to the limited progress in the analysis of isospin-sensitive observables of HIC experiments.
It also remains an open question whether the symmetry energy is stiffer or super-soft at
supra-saturation densities.

In Table 6, the available data found in the literature on nuclear symmetry energy
at two times the saturation density, Esym(2ρ0), together with the corresponding predic-
tions provided by the SEI-Y (γ = 1/3, 1/2, and 2/3) EoSs, are given. These results are
based on theoretical analysis of data from laboratory experiments, such as the ASY-EoS
experiment at GSI [74] and HIC [75,76], astrophysical data of different types, as outlined in
Refs. [73,77–83], theoretical calculations within chiral EFT [84,85] and effective mean-field
models [86]. From this table, we see that the SEI-Y predictions are in good agreement with
the available data reported in Table 6, in particular with the predictions of Refs. [75,77–82]
obtained using different techniques. The symmetry pressure at twice saturation density pre-
dicted by the SEI-Y (γ = 1/3, 1/2, and 2/3) EoSs are 10.659, 10.572, and, 10.488 MeV fm−3,
respectively, which lies within the range Psym(2ρ0) = (35± 32) MeV fm−3 extracted from the
experimentally derived density functional [87]. The nuclear symmetry energy at three
times the saturation density, Esym(3ρ0), for SEI-Y (γ = 1/3, 1/2, and 2/3) EoS are 69.64,
69.38, and 69 MeV, respectively. These SEI-Y values are consistent with the results extracted
from the GW170817 data (76.91+25.96

−25.96 MeV) [79] but are slightly higher than the predictions
of Dutra et al., 2012, which range from 33.65 to 60.92 MeV [29].

Table 6. Symmetry energy at several densities.

Expt./Observation/Theory Esym(ρ0) [MeV]

Mean-field calculations and Astrophysical Observations
Dutra et al., 2012 [29] 27–36

B A Li and Han, 2013 [68] 31.6 ± 0.92
Oertel et al., 2017 [69] 31.7 ± 3.2

PREX II Experiment Reed et al., 2021 [70] 38.1 ± 4.7
Charged Pion Spectra at high momenta Estee et al., 2021 [71] 32.5–38.1

Charge exchange and elastic scattering data Danielewicz et al., 2017 [72] 33.5–36.4

Expt./Observation/Theory Esym(2ρ0) [MeV]

SEI-Y (γ = 1/3) 55.74
SEI-Y (γ = 1/2) 55.38
SEI-Y (γ = 2/3) 54.93

HIC and Transport Calculations
ASY-EoS experiment at GSI [74] 46–54

UrQMD transport calculation [75] 55 ± 5
Zhang et al., 2020 [76] 35–55

Gravitational Waves Zhang and Li, 2019 [77] 46.9 ± 10.1
Xie and Li, 2019 [73] 39.2+12.1

−8.2
Tong et al., 2020 [78] 60.7 ± 10.9

Chiral Effective Field Theory
Drischler et al., 2020 [84] 45 ± 3

Lonardoni et al., 2020 [85] 45 ± 5
Neutron Star Observables B A Li et al., 2021 [79] 51 ± 13

Nakazato and Suzuki, 2019 [80] 40–60
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Table 6. Cont.

Expt./Observation/Theory Esym(ρ0) [MeV]

Yue et al., 2022 [81] 62.8 ± 15.9
Xie and Li, 2020 [82] 47+23

−22
Zhou et al., 2019 [83] [39.4−6.4

+7.5, 54.5−3.2
+3.1]

Mean-Field Calculations Chen et al., 2015 [86] 40.2 ± 12.8

The parameters associated with higher-order derivatives of the energy per particle
and symmetry energy at saturation, specifically Q0, L, Ksym, and Qsym, remain poorly
constrained and present challenges for experimental measurements. Among these param-
eters, the slope of the symmetry energy L is of particular relevance, as this quantity is
nicely correlated with some finite nuclei properties; for example, the neutron skin thickness
in heavy neutron-rich nuclei is 208Pb. This parameter has been estimated using infor-
mation extracted from the analysis of terrestrial nuclear experiments and astrophysical
observations [68,69,73,82,88], the analysis of the PREX-II data [70], from results of charge ex-
change and elastic scattering involving isobaric analog states [72], charged pion spectra [71]
and isospin diffusion [89], and, very recently, from the charge radii difference in mirror
nuclei [90]. The range of the values of the slope parameter L is relatively large and covers
from about 40 MeV to 120 MeV depending on the inputs used in the different analyses
carried out, as can be seen in the upper panel of Table 7. The L value predicted by the SEI-Y
models is about 75 MeV, which lies approximately in the middle of the range of the various
estimates considered.

Table 7. L, Ksym and Kτ at saturation density from different experimental and theoretical analyses
along with the results of SEI-Y (γ = 1/3, 1/2, and 2/3) EoS.

Expt./Observation/Theory L [MeV]

Terrestrial Experiments and Astrophysical Observations
Li and Han, 2013 [68] 58.9 ± 16.5
Oertel et al., 2017 [69] 58.7 ± 28.1

Lattimer and Lim, 2013 [88] 40.5–61.9
Xie et al., 2019, 2020 [73,82] 66+12

−20
PREX-II Experiment
Reed et al., 2021 [70] 106 ± 37

Charge exchange and elastic scattering data Danielewicz et al., 2017 [72] 70–101
Charged Pion Spectra at high momenta Estee et al., 2021 [71] 42–117

Isospin Diffusion Data Chen et al., 2005 [89] 63–113
Charge radii difference in mirror pairs

Bano et al., 2023 [90] 70–100

Expt./Observation/Theory Ksym [MeV]

Analysis of Different Neutron Star Observables Li et al., 2020 [91] −120+80
−100

d’Etivaux et al., 2019 [92] −85+82
−70

Carson et al., 2019 [93] −259 to +32
Choi et al., 2021 [94] −128 to −33

Chiral Effective Field Theory
Drischler et al., 2016 [95] −240 to −70

Newton and Crocombe, 2021 [96] −209+270
−182

Grams et al., 2022 [97] −200 to +50
Terrestrial Nuclear Experiments and Mean-Field Predictions

Sagawa et al., 2019 [98] −120 ± 40
Tews et al., 2017 [99], Zhang et al., 2017 [100] −400 to +100

Mondal et al., 2017 [101] −118.8 ± 71.3



Symmetry 2024, 16, 215 12 of 28

Table 7. Cont.

Expt./Observation/Theory L [MeV]

Expt./Theory Kτ [MeV]

Experimental data of Isoscalar Giant Monopole Resonances
Sagawa et al., 2008 [102] −500 ± 50
Li et al., 2010 [103,104] −550 ± 100
Stone et al., 2014 [43] −840 to −350

Theoretical calculations of GMR with MDI interactions Chen et al., 2009 [37] −370 ± 120
Cozma, 2018 [105] −354 ± 228

Neutron skin sizes across the mass table
Centelles et al., 2009 [106] −500+125

−100

The incompressibility parameter in ANM, Ksym, has been estimated from astrophysical
inputs provided by astrophysical observations [91–94], from nuclear and neutron matter
calculations using chiral effective field theory [95–97], from terrestrial experiments [98] and
from the analysis of mean-field predictions [99–101]. This parameter is, in general, negative
and of the order of a few hundred MeV. The SEI-Y predictions, given in Table 2, are in line
with the estimates obtained from terrestrial experiments and astrophysical observations
reported in the middle panel of Table 7.

In Ref. [101], a correlation between the Ksym and 3Esym − L parameters is obtained
from the analysis of 500 Skyrme and RMF models. However, in the case of SEI-Y, Ksym is
also strongly correlated with L in addition to the 3Esym − L correlation. In particular, in
the case of SEI-Y (γ = 1/2), we find the linear relation Ksym = 4.1165L − 408.98 MeV. The
isovector incompressibility parameter Kτ is mainly extracted from experimental data of
the isoscalar giant monopole resonance [43,102–104] from theoretical mean-field model
calculations for different MDI interactions [37,105] and from information extracted from
measurements of neutron skins across the mass table [106]. These estimates have an average
value of approximately -500 MeV but with large error bars, as can be seen in the lower panel
of Table 7. The values predicted by the SEI-Y models, given in Table 2, are in agreement
with the values extracted using different techniques given in the lower panel of Table 7.

Experimental constraints on the skewness parameter in both symmetric and asym-
metric nuclear matter, Q0 and Qsym, respectively, are currently lacking in precision. Based
on the analysis of different experimental and observational data [99,107–110], it is found
that the skewness in SNM is negative, and its range is approximately between ≃−1200
and 400 MeV. The situation is similar for the skewness parameter of the symmetry en-
ergy, where different estimates constrain its value within the range between −200 and
800 MeV [77,99–101]. The values of Q0 in SNM predicted by SEI-Y (γ = 1/3, 1/2, and 2/3)
EoSs are listed in Table 2 and lie consistent with the values extracted from other different
analyses. In the same table, we display the skewness parameter of the symmetry energy
computed with the SEI-Y models, which are in the range 234–273 MeV, which is in good
agreement with the value of Qsym = 296.8 ± 73.6 MeV suggested in Ref. [101]. With the
SEY-Y model, we also find a strong anti-correlation between the Qsym and L parameters,
which in the case of SEI-Y (γ = 1/2) EoS reads Qsym = −8.805L + 910.26 MeV.

4. Neutron Star Phenomenology
4.1. The Radius of Neutron Stars and the Slope of the Isoscalar Incompressibility

The density derivative of the isoscalar incompressibility of symmetric nuclear matter,
which is defined as K

′
(ρ) = 3ρ

dK(ρ)
dρ , can be written at saturation density as a combination

of the skewness and the incompressibility of SNM as K
′
0(ρ0) = Q0 + 12K0 [111]. The

value of this parameter, estimated from a large set of non-relativistic and relativistic mean-
field models, lies in the range K

′
0 = 1800 − 2400 MeV [112]. A relatively wider range,

1556 ≤ K
′
0 ≤ 4971 MeV, is extracted from the analysis of the tidal deformability measure-
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ment in the BNSM event GW170817 [93]. In Ref. [112], the correlation of the radius of
the NS with the linear combinations of the slopes of the nuclear matter incompressibility
and the symmetry energy coefficients at saturation, which is almost independent of the
NS mass in the range 0.6 M⊙–1.8 M⊙, is shown. Here, we explore, using the SEI-Y EoSs
with (γ = 1/3, 1/2, and 2/3), the possible correlations between the NS radius and the
slope of the incompressibility at saturation for NS of 1.4 M⊙ and 1.6 M⊙. To obtain the
radii predicted by these EoSs, we solve the Tolman–Oppenheimer–Volkoff (TOV) equation,
where the BPS-BBP EoS [113,114] is used up to 0.07468 fm−3 (the crust-core transition
density for SEI) and our EoS thereafter.

The values of the radii of these 1.4 M⊙ and 1.6 M⊙ NSs, R1.4 and R1.6 are shown as a
function of the slope of the incompressibility parameter K

′
0 in Figures 3 and 4, respectively,

for the three aforementioned SEI EoSs. The vertical shaded region in brown in the Figures
correspond to the K

′
0 values predicted in Refs. [112,115]. The data for NS radii, obtained

from various recent studies, are taken from Refs. [70,92,116–121] (for R1.4) and [122,123] (for
R1.6) and displayed by different color areas in Figures 3 and 4, respectively. The LIGO-Virgo
measurement leads to an upper limit of R1.4 at 13.6 km [124], and that from the BNSM
ascertained to be R1.4 < 13.76 km [125]. The minimum limit for an R1.6 radius of non-
rotating NS, constrained from GW170817 data by Bauswein et al., is 10.68+0.15

−0.04 km [126].
This value is shown as an orange band in Figure 4. R1.4, R1.6 and K

′
0 values predicted by

44-EoSs of Skyrme, RMF and microscopic interactions, which are taken from Table I of the
Supplemental Material given in Alam et al., 2016 [112], are also shown in the two figures
by green squares.
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Using these 44-EoSs data, a moderate linear correlation between the NS radii and K
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[Raaijmakers et al., 2021 (PP model and CS model), respectively [117]], blue [Miller et al., 2021 [118]],
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Maroon line [Fattoyev et al., 2018 [125]]. The vertical shaded region in brown [De et al., 2015 [115]].

Using these 44-EoSs data, a moderate linear correlation between the NS radii and K
′
0

is obtained, as was also pointed out by Alam et al. in Ref. [112], whereas a rather strong
correlation over the mass range 0.8 M⊙–1.8 M⊙ was obtained with a linear combination of
K

′
0 and L0, as we mentioned before. However, our three SEI-Y EoSs, with the γ parameter



Symmetry 2024, 16, 215 14 of 28

equal to 1/3, 1/2 and 2/3, show a strong correlation between the radii and the slope of
the incompressibility alone for both NS masses, namely, 1.4 M⊙ and 1.6 M⊙. We have also
verified that another strong linear correlation exists between R1.4 and R1.6 and the linear
combination of K

′
0 and L0, which is in agreement with the previous findings in [112].
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4.2. Neutron Star Merger and Incompressibility of Asymmetric Nuclear Matter

The incompressibility of ANM in Equation (9) depends on both density and isospin
asymmetry, and it is found to have important implications in BNSM studies [127,128].
The threshold mass Mth for prompt collapse (PC) to form a black hole (BH) in BNSM is
scaled in terms of maximum mass Mmax of the non-rotating NS as Mth = κMmax, where the
scaling parameter κ is EoS dependent [129,130]. Bauswein et al. [127], from a simulation
study of the BNSM for symmetric binary NS, found that using temperature-dependent
nuclear EoSs, there was a strong correlation of κ with the compactness Cmax = GMmax

c2Rmax
of

the TOV configuration (Mmax, Rmax) of the NS, where c and G are the speed of light and
the gravitational constant, respectively. A universal ansatz proposed by Bauswein et al.
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values of the linear-fit constants a and b of different works, given in Table II of Ref. [132],
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and 2/3), which are reported in Table 8. In the case of delayed/no collapse, the estimated
total binary mass of GW170817 provides a lower bound on the threshold mass for direct
BH formation, Mth > MGW170817

tot = 2.74+0.04
−0.01 M⊙ [126]. SEI-Y predictions of Mth for the

three sets of values of a and b in Table 8 closely conform to this limiting value.

Figure 4. R1.6 of 1.6 M⊙ neutron stars versus the slope of the incompressibility obtained using different
EoS of SEI-Y of γ = 1/3, 1/2, and 2/3. The green square are the results taken from supplementary
material given in Alam et al., 2016 [112]. The violet and cyan horizontal shaded region data of R1.6

are calculated from Table IX of [122] and Table I of [123]. The orange band refers to the minimum
limit of R1.6 in the work of Bauswein et al., 2017 [126]. The vertical shaded region in brown [De et al.,
2015 [115]].

4.2. Neutron Star Merger and Incompressibility of Asymmetric Nuclear Matter

The incompressibility of ANM in Equation (9) depends on both density and isospin
asymmetry, and it is found to have important implications in BNSM studies [127,128].
The threshold mass Mth for prompt collapse (PC) to form a black hole (BH) in BNSM is
scaled in terms of maximum mass Mmax of the non-rotating NS as Mth = κMmax, where the
scaling parameter κ is EoS dependent [129,130]. Bauswein et al. [127], from a simulation
study of the BNSM for symmetric binary NS, found that using temperature-dependent
nuclear EoSs, there was a strong correlation of κ with the compactness Cmax = GMmax

c2Rmax
of

the TOV configuration (Mmax, Rmax) of the NS, where c and G are the speed of light and
the gravitational constant, respectively. A universal ansatz proposed by Bauswein et al.
(2013) is

κ = aCmax + b, (23)

which is independent of the EoS. Such a linear ansatz represents a reasonable first approxi-
mation to the data, but it is not the most general one [131]. By using weighted averaged
values of the linear-fit constants a and b of different works, given in Table II of Ref. [132],
we computed the threshold mass Mth predicted by the three EoSs of SEI-Y (γ = 1/3, 1/2,
and 2/3), which are reported in Table 8. In the case of delayed/no collapse, the estimated
total binary mass of GW170817 provides a lower bound on the threshold mass for direct
BH formation, Mth > MGW170817

tot = 2.74+0.04
−0.01 M⊙ [126]. SEI-Y predictions of Mth for the

three sets of values of a and b in Table 8 closely conform to this limiting value.
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Table 8. Threshold mass Mth for the three EoSs of SEI-Y (γ = 1/3, 1/2, and 2/3) using the values of
constants a and b from the literature, given in Table II of Ref. [132].

SEI-Y (γ = 2/3)

Ref a b RTOV
max CTOV

max k Mth

[127] −3.342 2.42 10.523 0.275 1.499 2.937
[126] −3.38 2.43 10.523 0.275 1.498 2.936
[132] −3.36+0.20

−0.20 2.35+0.06
−0.06 10.523 0.275 1.424+0.115

−0.115 2.790+0.225
−0.225

SEI-Y (γ = 1/2)

Ref a b RTOV
max CTOV

max k Mth

[127] −3.342 2.42 10.243 0.272 1.5095 2.846
[126] −3.38 2.43 10.243 0.272 1.5091 2.845
[132] −3.36+0.20

−0.20 2.35+0.06
−0.06 10.243 0.272 1.434+0.114

−0.114 2.705+0.215
−0.215

SEI-Y (γ = 1/3)

Ref a b RTOV
max CTOV

max k Mth

[127] −3.342 2.42 9.943 0.267 1.5252 2.7437
[126] −3.38 2.43 9.943 0.267 1.5250 2.7434
[132] −3.36+0.20

−0.20 2.35+0.06
−0.06 9.943 0.267 1.45+0.113

−0.113 2.609+0.204
−0.204

In recent work, Perego et al. [128] performed a BNSM simulation study taking asym-
metric masses in the NS binary. These authors have shown that the nuclear incompress-
ibility at the central density ρc of Mmax, Kmax = K(ρmax

c , δ), contains information on Mth
for PC in the BNS merger. Consequently, if Mth is known, then Kmax can potentially be
predicted, which is not possible nowadays in any laboratory experiment. In Ref. [128], the
authors examined the correlation between Kmax and compactness Cmax of maximum mass
NS considering a large sample of EoSs comprising the nucleonic part, as well as containing
hyperons and the transition to the quark phase.

A strong power law correlation has been obtained among these data. We have com-
puted the density dependence of K(ρ, δ) for the three SEI-Y EoSs, where δ for each ρ is
obtained by solving the charge neutral β-equilibrated NSM, and the results are shown
as a function of the density in panel (a) of Figure 5. The values of the Kmax computed
at the central density of Mmax predicted by the SEI-Y EoSs are shown as a function of
the compactness Cmax in panel (b) together with the data of the 66-EoSs taken from the
supplementary material of Ref. [128]. The values of the Cmax, shown in panel (b) of Figure 5
for different EoSs, lie below the empirical limit of compactness allowed by general relativity,
C = 4/9 [133], and the Tolman VII analytical solution of the TOV equation, C = 0.3428.
These limiting values are the universal upper bounds for compactness, as corroborated
by the incorporation of realistic EoS [134,135]. The three SEI data points lie in the tighter
threshold region of Kmax ≈ 12 GeV of Perego et al., 2022 (Figure 4 of [128]). They have also
suggested that the information of Mth at different mass asymmetries q of the two NSs in
the binary can provide constraints on the velocity of sound vs close to the central density ρc
of Mmax.
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Figure 5. (a) K (ρ, δ) as a function of density in NSM for the SEI-Y (γ = 1/3), SEI-Y (γ = 1/2), and
SEI-Y (γ = 2/3) EoS, (b) Kmax as a function of the compactness of the heaviest NS for the three EoSs
of SEI-Y. The green diamonds are the 66 EoS results taken from [128].

4.3. Sound Speed in Neutron Star Matter

The adiabatic speed of sound in ANM evaluated at constant entropy is given
by [97,136,137].

v2
s

c2 =

(
∂P
∂H

)
s
=

K(ρ, δ)

9(mc2 + e(ρ, δ) + P(ρ, δ)/ρ)
(24)

where H is the energy density given by Equation (2), and m is the average nucleon mass.
The square of the speed of the sound vs in NSM, where δ for each ρ in Equation (24)

is the equilibrium value obtained from the β-stability condition, predicted by the three
SEI-Y EoSs γ = 1/3, 1/2, and 2/3, is displayed as a function of density in panel (a) of
Figure 6. From this figure, we can see that the square of the speed of sound increases with
the density without exceeding the causality limit, and it also increases linearly with the
incompressibility of nuclear matter, as predicted by Equation (24). The magenta line in
panel (a) of Figure 6 represents the conformal limit ( vs

c ⩽ 1√
3
) [138]. More recently, by

studying maximally rotating neutron stars, Margaritis et al., 2020, claimed that the sound
speed likely exceeds the conformal limit [134,139].

In panel (b) of Figure 6, we display the speed of sound in NSM as a function of
nucleonic pressure at density 1.85ρ0 computed with the SEI-Y (γ = 1/2 and 2/3) EoSs
with different slopes of the symmetry energy L in the range 60–110 MeV, together with
the results of the EoSs from Bauswein et al., 2012 [123]. The SEI-Y predictions show a
nice linear behavior between the speed of the sound and the pressure, with a correlation
coefficient r = 0.998 for both EoSs. This linear behavior is, however, weaker with the set
of EoSs selected by Bauswein et al. [123], probably due to the different origin and fitting
protocols of these EoSs.

Panels (c), (d) and (e) of Figure 6 show, as a function of the NS radius, the square of the
speed of sound, v2

s , computed at the central densities, ρc, of the 1.8 M⊙, 1.6 M⊙ and 1.4 M⊙
NSs obtained by solving the TOV equations using the SEI-Y (γ = 1/2 and 2/3) EoSs with
different values of the slope parameter L in the range 70–110 MeV. For the three considered
masses, the square of the speed of the sound shows an inverse linear relationship with the
radius of NS, with correlation coefficients close to unity, which show a moderate decreasing
trend as the NS mass decreases. The inverse linear relationship in each given mass NS
is due to the following. When the slope of the symmetry energy L increases in an EoS
of given γ, the M

R ratio decreases owing to the growth of the radius R, and therefore, the
compactness also decreases, which implies a reduction in the incompressibility K(ρ, δ).



Symmetry 2024, 16, 215 17 of 28

0 2 4 6 8 10ρ/ρ0

0

0.2

0.4

0.6

0.8

1

v2 s/c
2

Conformal limit: v
2
/c

2 ≤1/3

Causality limit: v
2
 /c

2 ≤1
(a)SEI-Y(γ=1/3)

SEI-Y(γ=1/2)
SEI-Y(γ=2/3)

0 2 4 6 8 10
P(1.85ρ0)  [10

34
 dyne/cm

2
]

0.3

0.4

0.5

0.6

0.7

0.8

v s(1
.8

5 
ρ 0) [

c]

r=0.9985

r=0.797

(b)

r=0.9985

Bauswein et al., 2012

SEI-Y(γ=1/2) 
SEI-Y(γ=2/3)

11 12 13 14

R
1.6

 [km]

0.34

0.36

0.38

0.4

0.42

v2 s [
c2 ]

r= -0.9986

(d)

M=1.6 M
0

r=-0.9953
SEI-Y(γ=2/3)

11 12 13 14

R
1.4

 [km]

0.28

0.3

0.32

0.34

V
2 s [

c2 ]

r= -0.9899

(e)

M=1.4 M
0

r=-0.9775

10 11 12 13 14

R
1.8

 [km]

0.4

0.44

0.48

0.52

0.56

v2 s [
c2 ]

r = -0.9997

(c)
M=1.8 M

0

r=-0.9977

SEI-Y(γ=1/2)

Figure 6. (a) Speed of sound in NSM as a function density, where δ for each ρ is the β−equilibrium
value, obtained for the three EoS corresponding to γ = 1/3, 1/2, and 2/3 of SEI-Y. The magenta
and green lines are the conformal and casual limit, respectively. (b) Speed of sound as a function
of pressure at density (1.85ρ0) in NSM for SEI-Y (1/2 and 2/3) EoS compared with the results of
Bauswein et al., 2012 [123]. The square speed of sound at the central densities of 1.8 M⊙, 1.6 M⊙ and
1.4 M⊙ NSs as a function of radius R1.8, R1.6 and R1.4 for the SEI (1/2 and 2/3) EoSs corresponding
to different values of L in the range 70–110 MeV are shown in panels (c–e), respectively.

4.4. Gravitational Redshift

The gravitational redshift of a signal from the star’s surface can be written as,

Zsur f =

(
1 − 2GM

c2R

)−1/2
− 1. (25)

Measurements of the gravitational redshift of spectral lines can provide direct insights
into the stellar compactness parameter and, as a result, can constrain the EoS for dense
matter. The Zsur f calculated using the SEI-Y (γ = 1/2) and SEI-Y (γ = 2/3) EoSs as a
function of gravitational mass is shown in Figure 7. From this figure, we can see that Zsur f
increases as the mass of the NS rises for both considered EoSs. In the lower mass range,
the Zsur f values for both EoS models are almost the same, but they diverge notably in the
higher mass range. EoS having a higher value of incompressibility predicts a lower value
of Zsur f .

The magenta horizontal line in Figure 7 corresponds to Zsur f = 0.35. This value
was obtained by Cottam et al. from the X-ray burst source in the low-mass X-ray binary
EXO 07482-676 [140]. The gravitational redshift of RBS 1223, RX J0720.4-3125, and RX
J1856.5-3754, which are members of the so-called “The Magnificent Seven”, are 0.16+0.03

−0.02
[green shaded region], 0.205+0.006

−0.003 [orange shaded region], and 0.22+0.06
−0.12 [maroon shaded

region] [141,142] with masses 1.08+0.2
−0.11 M⊙, 1.23+0.10

−0.05 M⊙, and 1.24+0.29
−0.29 M⊙, respectively, at

68% confidence level [143]. These observational data, which are also displayed in Figure 7,
are well reproduced by our theoretical calculation using the SEI-Y EoSs, which pass well
through the shaded areas representing the uncertainties in the respective observed data.
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Figure 7. Gravitational redshift at the neutron star surface as a function of the stellar gravitational
mass for the SEI-Y (γ = 1/2) and SEI-Y (γ = 2/3) EoSs. The magenta horizontal line corresponds to
the results of Cottam et al., 2002 from the X-ray burst source in the low-mass X-ray binary EXO 07482-
676 [140]. The extracted ranges for the three members of the so-called “The Magnificent Seven” NSs
are RBS 1223 [Green shaded region], RX J0720.4-3125 [orange shaded region], and RX J1856.5-3754
[maroon shaded region] [141–143].

The gravitational redshift Zsur f in different masses, NSs, namely (a) 1.8 M⊙, (b) 1.6 M⊙,
and (c) 1.4 M⊙, are shown as a function of the auxiliary parameter η = (K0L2)1/3 in Figure 8
for the SEI-Y (γ = 1/2) and SEI-Y (γ = 2/3) EoSs. The auxiliary parameter η, which was
proposed in Refs. [144,145], is a combination of incompressibility in SNM, K0, and the
slope of the symmetry energy, L. The values of L and K0 extracted from different nuclear
experiments and observations constrain the value of η in the range 60.8 ≤ η ≤ 174.5 MeV
from SπRIT, RCNP and PREX-II data, as can be seen in Figure 8. From this figure, we can
also observe a strong anti-correlation between Zsur f and η predicted by the two considered
SEI-Y EoSs for the three NS masses analyzed, namely 1.8 M⊙, 1.6 M⊙, and 1.4 M⊙. The
correlation coefficient results for the two EoSs are displayed in the respective panels, which
predict a relatively strong correlation coefficient for the stiffer EoS. The Zsur f values as a
function of η, predicted by the 44 EoSs of Skyrme, RMF and microscopic interactions used
by Alam et al. [112], have been computed for the same masses and shown in the respective
panels of Figure 8 as green diamonds. The inverse relation between Zsur f and η is also
observed for these EoSs (although it is much weaker) can be assigned due to the different
origins of the EoSs considered in [112].
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Figure 8. Zsur f as a function of η for (a) 1.8 M⊙, (b) 1.6 M⊙, and (c) 1.4 M⊙ NS for SEI-Y (γ = 1/2)
and SEI-Y (γ = 2/3) EoSs. The shaded region is the constrained value of η for PREX II [Blue], RCNP
[magenta], and SπRIT [yellow] [145]. The green diamonds are the data for the 44-EoSs of Ref. [112].

4.5. Neutron Star Mass, Radius and Gravitational Redshift at Different Central Densities

The correlations between the mass M, radius R, and gravitational redshift Zsur f of NSs
with central densities of ρ0, 2ρ0, 3ρ0, 4ρ0, and 6ρ0 are studied as a function of the slope L in
the range 60–110 MeV, using the SEI EoS (γ = 2/3). The corresponding results are shown in
the three panels of Figure 9, which correspond to masses, radii and gravitational redshift
from left to right, respectively.
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Figure 9. (a) Neutron star masses, (b) neutron star radius (c) Zsur f corresponding to central densities
of ρ0, 2ρ0, 3ρ0, 4ρ0, and 6ρ0 as a function of L.

A linear correlation has been observed between L and mass M for the NSs at all central
densities ρ0, 2ρ0, 3ρ0, 4ρ0, and 6ρ0. The correlation coefficients are r = 0.999, 0.993, 0.966,
0.926, and 0.858, respectively. The correlation becomes weaker as the density increases—a
trend similar to the one found in the work of Ref. [146]—which reflects the role of other
empirical parameters governing the density dependence of the EoS [146]. For NSs with
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central densities 2ρ0, 3ρ0, 4ρ0, and 6ρ0, a strong linear correlation between the NSs radii
and L is also found. However, for a central density ρc = ρ0, the radius decreases as the slope
of the symmetry energy L increases. The reason for this behavior is given in Ref. [146].
A higher value of L implies a softer EoS for densities below ρ0, which explains the anti-
correlation observed in the central panel of Figure 9 for NSs having a central density ρ0. In
contrast, at higher densities, a larger value of the slope parameter L results in a stiffer EoS
above ρ0 and, consequently, the radius, which is correlated with L in this region, shows an
increasing trend. In the right panel of Figure 9, we also found a strong linear correlation
between the Zsur f and L for NSs with central densities ρ0, 2ρ0, 3ρ0, 4ρ0, and 6ρ0, which
gradually degrades as the central density increases and is a feature similar to the correlation
between mass M and L displayed in the left panel of Figure 9.

5. Summary and Outlook

We have used the so-called finite-range simple effective interaction with a Yukawa
form-factor to study some non-standard properties of symmetric and asymmetric nuclear
matter, such as the Landau parameters associated with this interaction and the high-order
derivatives of the energy per particle in symmetric matter and the symmetry energy at
saturation density. In addition, we have explored the predictive power of SEI-Y in the high-
density neutron-rich domain in describing recent neutron star phenomenology associated
with a binary neutron star merger and gravitational redshift.

SEI-Y is a phenomenological effective interaction whose parameters, except the one
fitted to finite nuclei data, are systematically fitted under very generic considerations to
experimental or empirical data of symmetric nuclear matter and pure neutron matter, which
provides a satisfactory account of the nuclear matter properties. An important characteristic
of SEI-Y is the fact that the parameters that determine the momentum dependence of the
mean-field are decoupled from the ones that fix their density dependence in such a way
that each part in the isovector sector can be studied independently of the other without
affecting the isoscalar predictions.

We have computed the Landau parameters for the SEI-Y EoSs that give an overall
satisfactory account of the nuclear matter saturation properties as well as the sum rules.
The nuclear matter properties predicted from the Fermi liquid formulation given in Table 5
are reproduced within a relative difference of approximately ∼ 4 % by the corresponding
values computed directly with the parameters of the SEI-Y interaction (see, in this respect,
Table 2 for comparisons).

The properties of the higher-order derivatives of the energy per particle e0(ρ) and
the symmetry energy Esym(ρ) in nuclear matter at saturation density, namely, Q0, L, Ksym
and Qsym, have remained unconstrained, and their extraction from theoretical calculations,
various terrestrial laboratory experiments and astrophysical observations predict values
with largely differing uncertainties, as can be seen in Table 7. The results obtained with the
different SEI-Y EoSs considered in this work are −478 ≲ Q0 ≲ −437 MeV, −103 ≲ Ksym ≲
−99 MeV, −418 ≲ Kτ ≲ −388 MeV and 234 ≲ Qsym ≲ 273 MeV, at it can be seen in Table 2.
These values are found to lie within the range of values extracted from the different studies
summarized in Table 7.

However, the main aim of this study is to discuss some recent phenomenology of
neutron stars related to the binary neutron star merger and gravitational redshift. The
compactness Cmax of the maximum mass of a neutron star predicted by the three SEI-Y
EoSs lies in the range of 0.267 ≲ Cmax ≲ 0.275, which approximately covers the range of
incompressibilities between 220 and 260 MeV, predicting the threshold mass Mth for prompt
collapse in the range between 2.61 and 2.94 M⊙, which satisfies the minimum threshold
mass constraint assessed from the binary masses in the GW170817 event. The Kmax of these
SEI-Y EoSs lies in the tighter threshold region of Kmax ≈ 12 GeV of Perego et al.’s, 2022,
analysis using 34 EoSs of different types. The velocity of sound, vs, computed with the
SEI-Y model EoSs, is also found to remain causal in neutron star matter and does not exceed
the velocity of light. Using SEI-Y EoSs with given symmetry stiffness (given γ) but different



Symmetry 2024, 16, 215 21 of 28

slope parameter L in a given neutron star, we find an antilinear relationship between its
radius, R, and the square of its sound speed, vs

2, computed at its central density. These
results are shown in panels (c), (d) and (e) of Figure 6 for neutron stars with masses 1.8 M⊙,
1.6 M⊙ and 1.4 M⊙. We have also used the SEI-Y EoSs to study the gravitational redshift
at the surface of a neutron star, Zsur f , which is intrinsically connected to the compactness
parameter, as a function of the mass of the neutron star. The SEI-Y predictions of Zsur f
conform to the values constrained from the astrophysical observations on the three neutron
stars, namely, RBS 1223, RX J0720.4-3125, and RX J1856.5-3754 in the X-ray binary shown in
Figure 7 and whose observed redshifts are 0.16+0.03

−0.02, 0.205+0.006
−0.003, and 0.22+0.06

−0.12, respectively.
In a neutron star of a given mass, the redshift parameter Zsur f shows a decreasing trend
if the slope parameter, L, increases when the incompressibility modulus, K0, is kept fixed.
This implies that for a neutron star of a given mass, when the slope parameter L increases,
the compactness, C, decreases. This behavior is also verified using the 44 EoSs of Skyrme,
RMF and microscopic type given in the work of Alam et al. shown in Figure 8. On the
other hand, Zsur f in a neutron star also grows with increasing central density, which in turn
increases the compactness parameter that is a relevant parameter in order to understand
the EoS of dense neutron-rich matter. Our immediate objective is to use SEI-Y to study the
neutron star phenomenology at finite temperature and finite nuclei properties at non-zero
temperature, as well as taking deformation into account.
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Appendix A. Relations between the Six Strength Parameters and the
Interaction Parameters

The relationships between the six strength parameters in Equation (2) and the interac-
tion parameters in Equation (1) are as follows:

εl
0 = ρ0

[
t0

2
(1 − x0) +

(
W +

B
2
− H − M

2

)
(4πα3)

]
(A1)

εul
0 = ρ0

[
t0

2
(2 + x0) +

(
W +

B
2

)
(4πα3)

]
(A2)

εl
γ =

t3

12
ρ

γ+1
0 (1 − x3) (A3)

εul
γ =

t3

12
ρ

γ+1
0 (2 + x3) (A4)

εl
ex = ρ0

(
M +

H
2
− B − W

2

)
(4πα3) (A5)
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εul
ex = ρ0

(
M +

H
2

)
(4πα3) (A6)

where the superscript indices l and ul denote the contributions resulting from the nucleon
interactions between a like-pair and an unlike-pair. By inverting this set of equations
and replacing the strength parameters with their values given in Table 1, one obtains the
interaction parameters that are reported in Table A1.

Table A1. The twelve parameters for the SEI-Y EoSs corresponding to γ = 1/3, 1/2, and 2/3.

γ b [ f m3] α [fm] x3 t3 [MeVfm3(γ+1)] W [MeV]

1/3 0.4161 0.4232 −0.0630 9536.129 −1380.539
1/2 0.5880 0.4242 −0.112 9277.281 −1321.847
2/3 0.7796 0.4250 −0.153 10228.257 −1214.475

B [MeV] H [MeV] M [MeV] t0 [MeV f m3] x0 W0 [MeV]

128.0918 −630.968 −808.871 333.5 1.151 119.3
100.950 −575.215 −832.339 566.7 0.664 118.4
49.094 −470.284 −881.144 647.4 0.520 118.2

Appendix B. Landau Parameters

The expression of Landau parameters for SEI-Y EoS are given as follows:

F0 = N0

{
3
4

t0 +
t3

16

(
ρ

1 + bρ

)γ
[
(γ + 1)(γ + 2)− 2γ(γ + 2)

(
bρ

1 + bρ

)
+ γ(γ + 1)

(
bρ
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)2
]

+ 4πα3
(

W +
B
2
− H

2
− M

4

)
+

(
πα

k2
F

)(
M +

H
2
− B

2
− W

4

)
ln(1 + 4α2k2
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}
(A7)
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2
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2
− W

4
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1
2α2k2

F
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ln(1 + 4α2k2

F)− 2

]}
(A8)
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(A9)
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G0 = N0
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24
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G
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)(
W
4
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(A17)

G
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−
(

5πα

2k2
F

)(
W
4

)3
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1 +

1
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− 1
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where the normalization constant N0 = 2kFm∗
s

h̄2π2 is the level density at the Fermi surface.
The numerical values of the Landau parameters reported in Table 4 are obtained with the
help of the interaction parameters given in Table A1 and the effective mass and Fermi
momentum at saturation taken from Table 2.
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