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1. Introduction

Slant submanifold geometry shows a growing development in differential geometry to
study submanifolds that have particular geometric characteristics. The notion of slant sub-
manifolds of an almost Hermitian manifold was introduced by Chen [1,2] as an extension
of both totally real submanifolds and complex submanifolds. Then, many geometers have
discussed the notion of these submanifolds in various ambient manifolds. As an extension
of slant submanifolds, N. Papaghiuc [3] introduced the notion of semi-slant submanifolds
of an almost Hermitian manifold, which includes the class of proper CR submanifolds and
slant submanifolds (see also [4–8]).

Furthermore, as a generalization of slant submanifolds of an almost Hermitian mani-
fold, F. Etayo [9] proposed the concept of pointwise slant submanifolds of almost Hermitian
manifolds under the name of quasi-slant submanifolds. Later, Chen and Garay [10] stud-
ied pointwise slant submanifolds of almost Hermitian manifolds. They obtained many
fundamental results of these submanifolds.

On the other hand, in the late 19th century, the notion of warped product manifolds
was introduced by Bishop and O’Neill [11]. The concept of warped products stands
out as an important extension of Riemannian products. Furthermore, warped products
assume significant significance in differential geometry and physics, particularly within
general relativity. Also, several fundamental solutions to the Einstein field equations can be
characterized as warped products [12]. Recently, Chen [13] initiated the study of warped
product CR submanifolds of Kähler manifolds. Since then, several researchers have been
motivated to investigate the geometry of warped product submanifolds following Chen’s
work in this field (see, e.g., [14–17]). Sahin proved [18] that there exist no proper warped
product semi-slant submanifolds of Kähler manifolds. Then, he introduced the notion of
warped product hemi-slant submanifolds of Kähler manifolds [19]. He proved that the
warped products of the form N⊥ × f N θ in a Kähler manifold M̃ do not exist and then
he introduced hemi-slant warped products of the form N θ × f N⊥, where N⊥ and N θ

are totally real and proper slant submanifolds of M̃. He provided many examples and
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proved a characterization theorem. Later, he investigated warped product pointwise slant
submanifolds of Kähler manifolds [20], (see also [21–23]).

Further, Bonanzinga and Matsumoto [24] introduced the warped product CR-submanifold
in LCK manifolds of the form N⊥ × fN T , where N T and N⊥ are holomorphic and totally
real submanifolds, respectively (see also [25–30]).

Motivated by the above studies, we investigate pointwise hemi-slant warped products
in a more general setting of almost Hermitian manifolds, namely LCK manifolds. The
notion of pointwise slant submanifolds in LCK manifolds extends the several results
regarding the Kähler manifold in a very natural way.

The structure of the paper is as follows: in Section 2, we provide the fundamental
background required for this paper. In Section 3, we define pointwise hemi-slant submani-
folds of LCK manifolds. Then, we investigate the geometry of the leaves of distributions
and prove some preparatory results in LCK manifolds. Section 4 proves characterization
theorems, while Section 5 shows various applications. We conclude with several non-trivial
examples of pointwise hemi-slant warped products.

2. Preliminaries

Let (M̃, J) be an almost complex manifold, dimM̃ ≥ 2, and g Riemannian metric
consistent with the almost complex structure J such that

g(JY1, JY2) = g(Y1, Y2), (1)

for all Y1, Y2 ∈ Γ(TM̃), then g is called a Hermitian metric on M̃. An almost complex
manifold with a Hermitian metric (M̃, J, g) is called an almost Hermitian manifold. The
vanishing of the Nijenhuis tensor field [J, J] = 0 on almost Hermitian manifolds leads to a
special class called Hermitian manifolds.

Futhermore, the fundamental 2-form Ω on M̃ defined as Ω(Y1, Y2) = g(Y1, JY2) for
all Y1, Y2 ∈ Γ(TM̃). This fundamental 2-form Ω is considered a closed form if dΩ = 0 and
an exact form if there exists a 1-form ω such that dω = Ω.

Moreover, if the fundamental 2-form is closed on almost Hermitian manifold M̃, then
Hermitian metric g on M̃ is called Kähler metric. Further, a complex manifold endowed
with a Kähler metric is said to be Kähler manifold.

The complex manifold (M̃, J) is called a locally conformally Kähler manifold (LCK
manifold) if it has a Hermitian metric g that is locally conformal to a Kähler metric.

Theorem 1 ([31]). The Hermitian manifold is called an LCK manifold if and only if there is a
closed 1-form α globally defined on M̃ such that dΩ = α ∧ Ω.

In Theorem 1, Ω is the 2-form associated with (J, g) and α is closed 1-form called the
Lee form of the LCK manifold M̃ such that the Lee vector field α# dual to α, (i.e., Ω(Y1, Y2) =
g(Y1 JY2), g(Y1, α#) = α(Y1) for Y1, Y2 ∈ T (̃M). If the 1-form α of the LCK-manifold is
exact, then an LCK manifold is called a globally conformal Kähler manifold (GCK manifold).

Let ∇̃ be the Levi-Civita connection on an LCK manifold M̃ we have for any Y1, Y2
on TM̃

(∇̃Y1 J)Y2 = −g(β#, Y2)Y1 − g(α#, Y2)JY1 + g(JY1, Y2)α
# + g(Y1, Y2)β#. (2)

where β is the 1-form provided by β(Y1) = −α(JY1), β# is the dual vector field of β, and α#

is the Lee vector field [31,32].
Let M be a Riemannian manifold of dimension n isometrically immersed in an LCK

manifold (M̃, J, g, α) of dimension m, where g denotes the induced metric tensor on M
and n ≤ m. Then, for any Y1, Y2 ∈ Γ(T M) and Z1 ∈ Γ(T ⊥M), we have

∇̃Y1Y2 = ∇Y1Y2 + h(Y1, Y2), (3)
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∇̃Y1Z1 = −AZ1Y1 +∇⊥
Y 1Z1, (4)

where ∇ is the covariant differentiation concerning the induced metric on M, ∇⊥ is the
normal connection, h is the second fundamental form, and AZ1 is the shape operator. The
shape operator and second fundamental form are related by

g(h(Y1, Y2), Z1) = g(AZ1Y1, Y2). (5)

For a vector Y1 tangent to M and a vector Z1 normal to M, we write

JY1 = T Y1 +FY1, (6)

JZ1 = tZ1 + f Z1, (7)

where T Y1 and FY1 (respectively, tZ1 and f Z1) are the tangential and normal components
of JY1 (respectively, JZ1).

Let M be a submanifold of an LCK manifold M̃. Then, we can prove that M is
pointwise slant if and only if

T 2 = −(cos2 θ)I, (8)

where θ is a real-valued function on M and I is the identity map of T M.
Further, the following relations are straightforward consequences from (8) for any

Y1, Y2 ∈ Γ(T M)

g(T Y1, T Y2) = (cos2 θ) g(Y1, Y2). (9)

g(FY1,FY2) = (sin2 θ) g(Y1, Y2). (10)

Clearly, for any Y1 ∈ Γ(T M), we have

tFY1 = − sin2 θ Y1, fFY1 = −FT Y1. (11)

3. Pointwise Hemi-Slant Submanifolds of an LCK Manifold

In this section, we define and study the proper pointwise hemi-slant submanifold of
an LCK manifold. Moreover, we investigate the geometry of the leaves of distributions.
We begin by recalling the following submanifolds:

Definition 1. Let N be a submanifold of an almost Hermitian manifold M̃. Then, the pointwise
hemi-slant submanifold N is a submanifold with a tangent bundle that has orthogonal direct
decomposition T N = D⊥ ⊕Dθ such that D⊥ is a totally real distribution and Dθ is a pointwise
slant distribution with slant function θ.

In the above definition, if we assume that the dimensions are n1 = dimD⊥ and
n2 = dimDθ , then we have

(i) N is a pointwise slant submanifold if n1 = 0.
(ii) N is a totally real submanifold if n2 = 0.
(iii) N is a holomorphic submanifold if θ = 0 and n1 = 0.
(iv) N is a slant submanifold if θ is globally constant and n1 = 0.
(v) N is a hemi-slant submanifold with slant angle θ if θ is constant on N and n1 ̸= 0.
(vi) N is a CR submanifold if θ = 0 and n1 ̸= 0, n2 ̸= 0.

We note that a pointwise hemi-slant submanifold is proper if neither n1 ̸= 0 nor n2 ̸= 0
and θ is not a constant. Otherwise, N is called improper.
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Definition 2. Let M be an almost Hermitian manifold and N is a submanifold of M.
Then, N is said to be a mixed totally geodesic if h(Y1, Z1) = 0 for all Y1 ∈ Γ(Dθ) and for all
Z1 ∈ Γ(D⊥).

Now, we provide the following useful results.

Lemma 1. Let M̃ be an LCK manifold and M is a proper pointwise hemi-slant submanifold of
M̃. Then, for any Y1 ∈ Γ(Dθ) and Z1, Z2 ∈ Γ(D⊥), we have

g(∇Z2Z1, Y1) = (sec2 θ) [g(AFT Y1 Z1 −AJZ1T Y1, Z2)− g(Z1, Z2)g(α#, Y1)].

Proof. For any Z1, Z2 ∈ Γ(D⊥) and Y1 ∈ Γ(Dθ), we have

g(∇Z2Z1, Y1) = g(J∇̃Z2Z1, JY1) = g(∇̃Z2 JZ1, JY1)− g((∇̃Z2 J)Z1, JY1).

Using (2) and (6), we obtain

g(∇Z2Z1, Y1) =g(∇̃Z2 JZ1,FY1) + g(∇̃Z2 JZ1, T Y1)− g(Z1, Z2)g(α#, Y1).

Then, from (4), we derive

g(∇Z2Z1, Y1) =g(Z1, J∇̃Z2FY1)− g(AJZ1 Z2, T Y1)− g(Z1, Z2)g(α#, Y1).

From (2), (2.6) and (11), we derive

g(∇Z2Z1, Y1) = − g(∇̃Z2 sin2 θY1, Z1)− g(∇̃Z2FT Y1, Z1)− g(AJZ1 Z2, T Y1)

− g(Z1, Z2)g(α#, Y1).

Since M is a proper pointwise hemi-slant submanifold, we obtain that

g(∇Z2Z1, Y1) = sin2 θg(∇̃Z2Z1, Y1)− sin 2θZ2(θ)g(Z1, Y1) + g(AFT Y1 Z2, Z1)

− g(AJZ1 Z2, T Y1)− g(Z1, Z2)g(α#, Y1).

By theorthogonality of two distributions and the symmetry of the shape operator, the above
equation takes the form

cos2 θ g(∇Z2Z1, Y1) = g(AFT Y1 Z1, Z2)− g(AJZ1T Y1, Z2)− g(Z1, Z2)g(α#, Y1),

Thus, the lemma follows from the above relation.

Lemma 1 implies the following result.

Corollary 1. The leaves of totally real distribution D⊥ in a proper pointwise hemi-slant submanifold
M of an LCK manifold M̃ are totally geodesic in M if and only if

g(AFT Y1 Z1 −AJZ1T Y1, Z2) = g(α#, Y1)g(Z2, Z1),

for any Y1 ∈ Γ(Dθ) and Z2, Z1 ∈ Γ(D⊥).

Now, we have the following results for the pointwise slant distribution Dθ .

Lemma 2. Let M̃ be an LCK manifold and M is a proper pointwise hemi-slant submanifold of
M̃ with proper pointwise slant distribution Dθ . Then, we have

g(∇Y1Y2, Z1) = (sec2 θ) [g(AJZ1T Y2 −AFT Y2 Z1, Y1)− g(Y1, T Y2)g(β#, Z1)]

− g(Y1, Y2)g(α#, Z1).
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Proof. For any Y1, Y2 ∈ Γ(Dθ) and Z1 ∈ Γ(D⊥), we have

g(∇Y1Y2, Z1) = g(J∇̃Y1Y2, JZ1).

From the covariant derivative formula of J, we obtain

g(∇Y1Y2, Z1) = g(∇̃Y1 JY2, JZ1)− g((∇̃Y1 J)Y2, JZ1).

Then, using (2), (5) and (6), the above equation takes the form

g(∇Y1Y2, Z1) = g(AJZ1T Y2, Y1) + g(∇̃Y1FY2, JZ1)− g(T Y1, Y2)g(α#, JZ1)

− g(Y1, Y2)g(α#, Z1).

Now, from (2), (5) and (11), we derive

g(∇Y1Y2, Z1) = g(AJZ1T Y2, Y1) + g(∇̃Y1 sin2 θY2, Z1)− g(AFT Y2 Z1, Y1)

+ sin2 θg(Y1, Y2)g(α#, Z1)− g(T Y1, Y2)g(α#, JZ1)− g(Y1, Y2)g(α#, Z1).

As M is a proper pointwise hemi-slant submanifold, we have

g(∇Y1Y2, Z1) = g(AJZ1T Y2 −AFT Y2 Z1, Y1) + sin2 θg(∇̃Y1Y2, Z1) + sin 2θY1(θ)g(Y2, Z1)

− g(T Y1, Y2)g(α#, JZ1)− cos2 θg(Y1, Y2)g(α#, Z1).

By using the orthogonality of the two distributions, the lemma is derived from the
relations stated above.

Lemma 3. Let M̃ be an LCK manifold and M is a proper pointwise hemi-slant submanifold of
M̃. Then, we have

cos2 θg([Y1, Y2], Z1) = g(AJZ1T Y2 −AFT Y2 Z1, Y1)− g(AJZ1T Y1 −AFT Y1 Z1, Y2)

− 2g(Y1, T Y2)g(β#, Z1),

for any Y1, Y2 ∈ Γ(Dθ), and Z1 ∈ Γ(D⊥).

Proof. Let M be a proper pointwise hemi-slant submanifold of an LCK manifold. Then,
from Lemma 3, we have

cos2 θ g(∇Y1Y2, Z1) =[g(AJZ1T Y2 −AFT Y2 Z1, Y1)− g(Y1, T Y2)g(β#, Z1)]

− cos2 θ g(Y1, Y2)g(α#, Z1),
(12)

for any Y1 ∈ Γ(Dθ) and Z1, Z2 ∈ Γ(D⊥). Then, using polarization identity and using
symmetry of g, we obtain

cos2 θ g(∇Y2Y1, Z1) =[g(AJZ1T Y1 −AFT Y1 Z1, Y2)− g(Y2, T Y1)g(β#, Z1)]

− cos2 θ g(Y1, Y2)g(α#, Z1).
(13)

Subtracting (13) from (12), as a result, the lemma is completely proven.

The following result is a consequence of Lemma 2 if Dθ is a totally geodesic distribution
in M.

Lemma 4. Let M̃ be an LCK manifold and M is a proper pointwise hemi-slant submanifold of
M̃. Then, the proper slant distribution Dθ defines a totally geodesic foliation if and only if

g(AJZ1T Y1 −AFT Y1 Z1, Y2) = cos2 θg(Y1, Y2)g(α#, Z1) + g(T Y1, Y2)g(β#, Z1),
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for any Y1, Y2 ∈ Γ(Dθ) and Z1 ∈ Γ(D⊥).

Next, we have the following theorems.

Theorem 2. Let (M̃, J, g) be an LCK manifold and M is a proper pointwise hemi-slant submani-
fold of M̃. Then, for any Z1 ∈ Γ(D⊥), Y1 ∈ Γ(Dθ), we have

(i) The totally real distribution D⊥ defines a totally geodesic foliation in M if and only if

AFT Y1 Z1 −AJZ1T Y1 = g(α#, Y1)Z1.

(ii) The proper pointwise slant distribution Dθ defines a totally geodesic foliation if and only if

AJZ1T Y1 −AFT Y1 Z1 = cos2 θg(α#, Z1)Y1 + g(β#, Z1)T Y1.

Proof. The first part (i) of the theorem follows from Lemma 1 and the second part (ii)
follows from Lemma 3.

Now, we provide the following integrability theorem for a totally real distribution D⊥

and slant distribution Dθ .

Theorem 3. Let (M̃, J, g) be an LCK manifold and M is a proper pointwise hemi-slant submani-
fold of M̃. Then, for any Z1, Z2 ∈ Γ(D⊥), Y1, Y2 ∈ Γ(Dθ), we have

(i) The totally real distribution D⊥ of M is integrable if and only if

AJZ2 Z1 = AJZ1 Z2.

(ii) The pointwise slant distribution Dθ of M is integrable if and only if

g(AJZ1T Y2 −AFT Y2 Z1, Y1) = g(AJZ1T Y1 −AFT Y1 Z1, Y2) + 2g(Y1, T Y2)g(β#, Z1).

Proof. We prove (i) as well as (ii) in the same way. We deduce from Lemma 1 by inter-
changing Z1 and Z2 and applying the symmetry of A, such that

cos2 θ g([Z1, Z2], Y1) = g(AJZ1 Z2, T Y1)− g(AJZ2 Z1, T Y1),

for any Y1, Y2 ∈ Γ(Dθ) and Z1 ∈ Γ(D⊥). Thus, the distribution D⊥ is integrable if and only
if g([Z1, Z2], Y1) = 0 for all Y1 ∈ Γ(Dθ) and Z1, Z2 ∈ Γ(D⊥); i.e.,

g(AJZ1 Z2, T Y1) = g(AJZ2 Z1, T Y1).

Hence,the statement (i) follows from the above relation. Similarly, we can prove (ii).

4. Pointwise Hemi-Slant Warped Products: N⊥ × f N θ

Sahin studied hemi-slant submanifolds of Kähler manifolds [19] as a generalized class
of CR submanifolds. He investigated their warped products in Kähler manifolds in the
same paper. Also, Sahin proved that there are no proper warped products of the type
N⊥ × f N θ in a Kähler manifold M̃, where N⊥ and N θ are totally real and proper slant
submanifolds of M̃.

Lately, Srivastava et al [33] introduced pointwise hemi-slant warped products in a Kähler
manifold of the form N⊥ × f N θ and N θ × f N⊥. They obtained fundamental results.

In this section, we study the pointwise hemi-slant warped product of the form N⊥ × f

N θ in a locally conformally Kähler manifold M̃ under the assumption that the Lee vector
field α# is tangent to N .

Now, we provide a brief introduction to warped product manifolds: consider the
Riemannian manifolds M1 and M2 endowed with Riemannian metrics g1 and g2, respec-
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tively, and let f be a positive differential function on M1. Then, the product manifold is
M1 ×M2 with its natural projections π1 : M1 ×M2 → M1 and π2 : M1 ×M2 → M2.
Then, the warped product manifold M1 × f M2 is the product manifold M1 ×M2 and the
function f is called the warping function on M. It is equipped with the warped product
metric g defined by

g(Y1, Y2) = g1(π1⋆Y1, π1⋆Y2) + ( f ◦ π1)
2g2(π2⋆Y1, π2⋆Y2)

for Y1, Y2 ∈ Γ(T M), where πi⋆ is the tangent map of πi.
If the warping function f of the warped products manifolds N1 × f N2 is constant,

then they are trivial.
First, we recall the following result.

Lemma 5 ([11]). Let M = N1 × fN2 be a warped product manifold with the warping function f ;
then, for any Y1, Y2 ∈ T (N1) and Z, Z2 ∈ T (N2), we have

(i) ∇Y1Y2 ∈ T (N1),
(ii) ∇Y1Z = ∇ZY1 = Y1(ln f )Z,
(iii) ∇ZZ2 = ∇N2

Z Z2 − g(Z, Z2)∇⃗ ln f ,

where ∇⃗ ln f is the gradient of the function ln f and ∇, ∇N2 are the Levi-Civita connections on
M, N2, respectively.

Definition 3. A warped product N⊥ × f N θ of an LCK manifold (M̃, J, g, α) such that N⊥ a
totally real submanifold and N θ a pointwise slant submanifold is called a warped product pointwise
hemi-slant submanifold.

If N θ is proper pointwise slant and N⊥ is totally real in M̃, then a warped product N⊥ × f

N θ is said to be proper pointwise hemi-slant submanifold. Otherwise, it is called non-proper.

For simplicity, we denote the tangent spaces of N⊥ and N θ by D⊥ and Dθ , respectively.
It is also important to note that, for a warped product N1 × f N2, N1 is totally geodesic and
N2 is totally umbilical in M [11].

Now, we prove the following useful lemmas.

Lemma 6. On a proper pointwise hemi-slant warped product M = N⊥ × fN θ in an LCK
manifold M̃, where the Lee vector field α# is tangent to M, we have

(i) g(h(Y1, Y2), JZ1) = [g(α#, Z1)− Z1(ln f )]g(T Y1, Y2) + g(h(Y1, Z1),FY2),
(ii) g(h(Z1, Z2),FY1) = g(β#, Y1)g(Z1, Z2) + g(h(Z1, Y1), JZ2), for any Z1 ∈ Γ(D⊥) and

Y1, Y2 ∈ Γ(Dθ).

Proof. We have for any Z1 ∈ Γ(D⊥) and Y1, Y2 ∈ Γ(Dθ)

g(h(Y1, Y2), JZ1) = g(∇̃Y1Y2, JZ1).

Hence, we obtain from the covariant derivative property of J

g(h(Y1, Y2), JZ1) = −g(J∇̃Y1Y2, Z1) = g((∇̃Y1 J)Y2, Z1)− g(∇̃Y1 JY2, Z1).

Thus, from (2) and (6), we obtain

g(h(Y1, Y2), JZ1) =g(JY1, Y2)g(α#, Z1)− g(Y1, Y2)g(α#, JZ1)− g(∇̃Y1T Y2, Z1)

− g(∇̃Y1FY2, Z1).

Then, it follows from (4) and the fact that α# is tangent to M
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g(h(Y1, Y2), JZ1) = g(T Y1, Y2)g(α#, Z1) + g(T Y2, ∇̃Y1Z1) + g(AFY2Y1,Z1).

Applying Lemma 5 (ii) and (5), we obtain

g(h(Y1, Y2), JZ1) = g(T Y1, Y2)g(α#, Z1) + Z1()g(T Y2, Y1) + g(h(Y1, Z1),FY2).

As a result, the above relation leads to the lemma’s first relation. For the second part,
we have

g(h(Z1, Z2),FY1) = g(∇̃Z2Z1,FY1) = g(∇̃Z2Z1, JY1)− g(∇̃Z2Z1, T Y1),

Applying Lemma 5 (ii) and the covariant derivative property of J, we derive

g(h(Z1, Z2),FY1) = g((∇̃Z2 J)Z1, Y1)− g(∇̃Z2 JZ1, Y1).

Now, from (2) and (4), we find

g(h(Z1, Z2),FY1) = g(Z2, Z1)g(Jα#, Y1) + g(AJ Z1Z2, Y1).

Thus, the last equation provides us the second part of the lemma.

Now, if we interchange Y1 with T Y1 in (6) (i), and then using (8), we can easily obtain
the following relation:

g(h(T Y1, Y2), JZ1) = cos2 θ[Z1(ln f )− g(α#, Z1)]g(Y1, Y2)+

g(h(Z1, T Y1),FY2).
(14)

Next, we provide the following result for later use.

Lemma 7. Let M = N⊥ × fN θ be a proper pointwise hemi-slant warped product submanifold of
an LCK manifold M̃ and the Lee vector field α# is tangent to M. Then, the following holds:

g(h(T Y1, Z1),FY2)− g(h(Y2, Z1),FT Y1) = 2 cos2 θ[g(α#, Z1)− Z1ln f ]g(Y1, Y2),

for any Y1, Y2 ∈ Γ(Dθ), and Z1 ∈ Γ(D⊥).

Proof. From Lemma 6, we have

g(h(Y1, Y2), JZ1) = [g(α#, Z1)− Z1(ln f )]g(T Y1, Y2) + g(h(Y1, Z1),FY2) (15)

for any Y1, Y2 ∈ Γ(Dθ), and Z1 ∈ Γ(D⊥). By interchanging Y1 and Y2 in (15), we find

g(h(Y1, Y2), JZ1) = [g(α#, Z1)− Z1(ln f )]g(T Y2, Y1) + g(h(Y2, Z1),FY1). (16)

Subtracting (16) from (15), we obtain

g(h(Z1, Y2),FY1)− g(h(Z1, Y1),FY2) = 2[g(α#, Z1)− Z1(ln f )]g(T Y1, Y2). (17)

Now, interchange Y1 by T Y1 in the above relation and use (6). This completes the proof of
the lemma.

Let M = N⊥ × fN θ be a proper pointwise hemi-slant warped product in an LCK
manifold M̃. Then, the normal bundle can be decomposed by

T ⊥M = JD⊥ ⊕ FDθ ⊕ ν, JD⊥ ⊥ FDθ , (18)
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where ν is the invariant normal subbundle of T ⊥M.

Theorem 4. Let M = N⊥ × fN θ be a pointwise hemi-slant warped product submanifold of
an LCK manifold M̃. If h(Y1, Z1) ∈ ν for any Z1 ∈ Γ(D⊥) and Y1 ∈ Γ(Dθ), then we have
α(Z1) = Z1(ln f ).

Proof. By the fact of Lemma 7 and the hypothesis of the theorem, we have

2 cos2 θ[g(α#, Z1)− Z1(ln f )]g(Y1, Y2) = 0, (19)

for any Z1 ∈ Γ(D⊥) and Y1, Y2 ∈ Γ(Dθ). Equation (19) leads to a required result as M is
proper pointwise hemi-slant and g is the Riemannian metric.

The provided theorem immediately results in the following corollary.

Corollary 2. Let N⊥ × fN θ be a mixed totally geodesic pointwise hemi-slant warped product in
an LCK manifold M̃. Then, α(Z1) = Z1(ln f ) for any Z1 ∈ Γ(D⊥).

Theorem 5. Let N⊥× fN θ be a warped product pointwise hemi-slant submanifold in an LCK
manifold M̃ such that M is mixed totally geodesic. Then, M is a locally direct product submanifold
of the form N⊥ × f N θ if and only if the Lee form α normal to for any (D⊥).

The following result is an immediate consequence of Lemma 6.

Theorem 6. Let M = N⊥ × fN θ a proper pointwise hemi-slant warped product in an LCK
manifold M̃ and the Lee vector field α# is tangent to M. Then,

g(AFT Y1 Z1 −AJZ1T Y1, Y2) = cos2 θ[Z1(ln f )− g(α#, Z1)]g(Y1, Y2)

for any Z1 ∈ Γ(D⊥) and Y1, Y2 ∈ Γ(Dθ).

Proof. Follows from Lemma 6 (i) and using (6).

From the above lemma, we have

Corollary 3. There does not exist a mixed totally geodesic warped product CR submanifold of the
form N⊥ × fN T in a Kähler manifold M̃.

Proof. Follows from Theorem 6.

5. Characterizations Theorems

In this section, we first provide some important lemmas. Then, we derive the char-
acterization results for proper pointwise hemi-slant warped product submanifolds of an
LCK manifold and then deduce the necessary and sufficient conditions for a pointwise
hemi-slant submanifold to be a warped product.

Lemma 8. Let M = N⊥ × fN θ be a pointwise hemi-slant warped product submanifold of an
LCK manifold M̃, where the Lee vector field α# is tangent to M. Then, we have

g(h(Z1, Y1),FY2)− g(h(Z1, Y2),FY1) = 2 tan θZ1(θ)g(T Y1, Y2), (20)

for any Y1, Y2 ∈ Γ(Dθ) and Z1 ∈ Γ(D⊥).

Proof. For any Y1, Y2 ∈ Γ(Dθ), and Z1 ∈ Γ(D⊥), we have

g(∇̃Z1Y1, Y2) = Z1(ln f )g(Y1, Y2). (21)
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On other hand,

g(∇̃Z1Y1, Y2) = g(J∇̃Z1Y1, JY2).

From the covariant derivative formula of J, we derive

g(∇Z1Y1, Y2) = g(∇̃Z1 JY1, JY2)− g((∇̃Z1 J)Y1, JY2).

Then, from (2), (3), (5) and (6), we arrive at

g(∇Z1Y1, Y2) = g(AFY2T Y2, Z1) + Z1(ln f ) cos2 θg(Y1, Y2) + g(∇̃Z1FY1, JY2),

which implies

g(∇Z1Y1, Y2) = g(AFY2T Y1, Z1) + Z1(ln f ) cos2 θg(Y1, Y2)− g(J∇̃Z1FY1, Y2).

Using the covariant derivative formula of J again and (5), we derive

g(∇Z1Y1, Y2) = g(AFY2T Y1, Z1) + Z1(ln f ) cos2 θg(Y1, Y2)− g(∇̃Z1tFY1, Y2)

− g(∇̃Z1 fFY1, Y2).

Using (11), we derive that

g(∇Z1Y1, Y2) = g(AFY2T Y1, Z1) + Z1(ln f ) cos2 θg(Y1, Y2) + g(∇̃Z1 sin2 θY1, Y2)

+ g(∇̃Z1FT Y1, Y2).

Since M is a proper pointwise hemi-slant submanifold and from (5), we have

g(∇Z1Y1, Y2) =g(AFY2T Y1, Z1) + Z1(ln f ) cos2 θg(Y1, Y2) + sin2 θg(∇Z1Y1, Y2)

+ sin 2θZ1(θ)g(Y1, Y2)− g(AFT Y1Y2, Z1).

which implies that

cos2 θg(∇Z1Y1, Y2) = g(AFY2T Y1, Z1) + Z1(ln f ) cos2 θg(Y1, Y2)

+ sin 2θZ1(θ)g(Y1, Y2)− g(AFT Y1Y2, Z1).
(22)

Thus, it follows from (21) and (22) that

g(h(Z1, Y2),FT Y1)− g(h(Z1, T Y1),FY2) = sin 2θZ1(θ)g(Y1, Y2). (23)

Thus, the lemma follows from the above relations by interchanging Y1 by T Y1.

Theorem 7. Let M = N⊥ × fN θ a proper pointwise hemi-slant warped product in an LCK
manifold M̃ with its Lee vector field α# tangent to M. Then, we have

Z1(ln f ) = tan θ Z1(θ) + α(Z1), (24)

for any Z1 ∈ Γ(D⊥).

Proof. From (17) and Lemma 8, we have

[tan θ Z1(θ) + g(α#, Z1)− Z1(ln f )]g(T Y1, Y2) = 0. (25)

Now, by interchanging Y1 by T Y1 in Equation (25) and using relation (9), we obtain

cos2 θ [tan θ Z1(θ) + g(α#, Z1)− Z1(ln f )]g(Y1, Y2) = 0, (26)
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for any Z1 ∈ Γ(D⊥) and Y1, Y2 ∈ Γ(Dθ).
Since M is a proper pointwise hemi-slant and g is the Riemannian metric, the desired

result follows from Equation (26).

Now, recall Hiepko’s Theorem to establish the main theorem characterization for
pointwise hemi-slant warped products.

Theorem 8 ([34]). Let D1 and D2 be two orthogonal distributions on a Riemannian manifold M.
Suppose that both D1 and D2 are involutive such that D1 is a totally geodesic foliation and D2 is
a spherical foliation. Then, M is locally isometric to a non-trivial warped product M1 × f M2,
where M1 and M2 are integral manifolds of D1 and D2, respectively.

Now, we can prove the main characterization theorem of proper pointwise hemi-slant
warped product submanifolds of the form N⊥ × f N θ in an LCK manifold.

Theorem 9. Let M be a proper pointwise hemi-slant submanifold of an LCK manifold M̃ with
the Lee vector field α# tangent to M. Then, M is locally a warped product submanifold of the form
N⊥ × f N θ if and only if the shape operator for any Y1 ∈ Γ(Dθ) and Z1 ∈ Γ(D⊥) satisfies

AFT Y1 Z1 −AJZ1T Y1 = cos2 θ(Z1(µ)− α(Z1))Y1, (27)

for some smooth function µ on M satisfying Y2(µ) = 0 for any Y2 ∈ Γ(Dθ).

Proof. Let M be a pointwise hemi-slant warped product submanifold of an LCK manifold
M̃. Then, by Theorem 6, we derive condition (27) for any Z1 ∈ Γ(D⊥) and Y1 ∈ Γ(Dθ)
with µ = ln f and α(Z1) = g(α#, Z1).

In contrast, consider M to be a proper pointwise hemi-slant submanifold of an LCK
manifold M̃, where M satisfies the condition (27).

Consequently, from the given condition (27) and Lemma 1, we have that
cos2 θ g(∇Z1Z2, Y1) = 0 for Z1, Z2 ∈ Γ(D⊥) and Y1 ∈ Γ(Dθ). Since M is a proper point-
wise hemi-slant submanifold, g(∇Z1Z2, Y1) = 0 holds. Hence, the leaves of the distribution
D⊥ are totally geodesic in M. Conversely, condition (27) and Lemma 4 indicate that
cos2 θ g([Y1, Y2], Z1) = 0 holds for any Z1 ∈ Γ(D⊥) and Y1, Y2 ∈ Γ(Dθ). Since M is a
proper pointwise hemi-slant submanifold, then cos2 θ ̸= 0; thus, we find that the pointwise
slant distribution Dθ is integrable.

Moreover, let hθ be a second fundamental form of a leaf N θ of Dθ in M. Then, for any
Y1, Y2 ∈ Γ(Dθ), and Z1 ∈ Γ(D⊥), we have

g(hθ(Y1, Y2), Z1) = g(∇Y1Y2, Z1) = g(∇̃Y1Y2, Z1) = g(J∇̃Y1Y2, JZ1).

Using (2) and (6), we have

g(hθ(Y1, Y2), Z1) = g(∇̃Y1T Y2, JZ1) + g(∇̃Y1FY2, JZ1)− g((∇̃Y1 J)Y2, JZ1)

= g(∇̃Y1T Y2, JZ1) + g(∇̃Y1FY2, JZ1)− g(JY1, Y2)g(α#, JZ1)

− g(Y1, Y2)g(α#, Z1).

By the hypothesis of the theorem and applying the covariant derivative property of J,
we find

g(hθ(Y1, Y2), Z1) = g(h(Y1, T Y2), JZ1)− g(∇̃Y1 JFY2, Z1) + g((∇̃Y1 J)FY2, Z1)

− g(α#, Z1)g(Y1, Y2).
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Therefore, by (2), (5), (6) and (11), we derive that

g(hθ(Y1, Y2), Z1) = g(AJZ1T Y2, Y1) + g(∇̃Y1 sin2 θY2, Z1)− g(AFT Y2Y1, Z1)

− g(α#, Z1)g(Y1, Y2).

Since M is a proper pointwise hemi-slant submanifold, we obtain

g(hθ(Y1, Y2), Z1) = g(AJZ1T Y2 −AFT Y2 Z1, Y1) + sin2 θ g(∇̃Y1Y2, Z1)

+ sin 2θ Y1(θ)g(Y2, Z1)− g(α#, Z1)g(Y1, Y2),

= g(AJZ1T Y2 −AFT Y2 Z1, Y1) + sin2 θ g(∇Y1Y2, Z1)

− g(α#, Z1)g(Y1, Y2).

From the condition (27), we obtain cos2 θ g(hθ(Y1, Y2), Z1) = − cos2 θ Z1(µ)g(Y1, Y2). Hence,
we arrive at hθ(Y1, Y2) = −∇⃗µg(Y1, Y2), from the definition of gradient. Then, N θ is to-
tally umbilical in M with the mean curvature vector provided by Hθ = −∇⃗µ. Since
Y2(µ) = 0, for all Y2 ∈ Dθ , then we can prove that the mean curvature is parallel con-
cerning the normal connection. Hence, N θ is an extrinsic sphere in M. Therefore, we
conclude that M is a warped product submanifold N⊥ × f N θ with the warping function
µ according to Theorem 8. Thus, the theorem is proved complete.

6. Some Applications

In this section, we introduce various special cases derived from our prior results; some
of them represent significant theorems established in earlier works. This signifies that the
outcomes delineated in this paper serve as expansions and generalizations of fundamental
theorems. Now, we provide the following consequences:

The warped product in Theorem 7 would be a hemi-slant warped product in an
LCK manifold if we assume θ is constant. Then, we have the following theorem for the
hemi-slant warped product submanifold of an LCK manifold M̃.

Theorem 10. Let N⊥ × f N θ be a proper hemi-slant warped product submanifold of an LCK
manifold M̃ with its Lee vector field α# tangent to M, where N⊥ and N θ are totally real and
proper slant submanifolds of M̃, respectively. Then, we have

Z1(ln f ) = α(Z1) ∀ Z1 ∈ Γ(D⊥). (28)

Moreover, the warped product in Theorem 7 would be a warped product CR submanifold
in an LCK manifold if we assume θ = 0. In this particular case, Theorem 7 implies the
following result for the warped product CR submanifold in an LCK manifold M̃.

Theorem 11 ([24]). A proper warped product CR submanifold M of an LCK manifold M̃ such
that the Lee vector field α# orthogonal to D⊥ is a CR product.

It is clear that Theorem 11 is Theorem 2.2 in [24]. Thus, the fundamental result of [24]
is generalized by Theorem 7.

Now, if we consider α# = 0 in Theorem 7, i.e., M̃ is Kählerian, Theorem 7 also implies
the following.

Theorem 12 ([35]). Let N⊥ × f N θ be a warped product pointwise hemi-slant submanifold of a
Kähler manifold M̃, such that N⊥ and N θ are totally real and proper pointwise slant submanifolds
of M̃, respectively

Z(ln f ) = tan θZ(θ) ∀ Z ∈ Γ(D⊥). (29)
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Clearly, Theorem 12 is Theorem 4.7 of [35]. Thus, Theorem 7 also generalizes the main
result in [35].

Moreover, in Theorem 7, if we consider that α# = 0 and θ is a constant, then the
warped product will be a hemi-slant warped product submanifold of a Kähler manifold in
the form M = N⊥ × f N θ , where N⊥ and N θ are the totally real and proper slant of M,
respectively [19].

Theorem 13 ([19]). Let M̃ be a Kähler manifold. Then, there does not exist any proper hemi-slant
warped product submanifold of the form M = N⊥ × f N θ , where N⊥ and N θ are the totally real
and proper slant of M, respectively.

Theorem 13 is the main result (Theorem 4.2) of [19]. As a consequence, Theorem 4.2
of [19] is a special case of Theorem 7.

Now, assume that α# = 0 and the slant function θ = 0 in Theorem 7. Then, the
submanifold M in Theorem 7 is a CR submanifold of a Kähler manifold.

Theorem 14 ([36]). Let M̃ be a Kähler manifold. Then, there does not exist any proper warped
product CR submanifold of the form M = N⊥ × f N T , where N⊥ and N T are the totally real
and holomorphic submanifolds of M, respectively.

Theorem 14 is the main result (Theorem 3.1) of [36]. Therefore, Theorem 3.1 of [36] is a
special case of Theorem 7.

A characterization theorem for the hemi-slant submanifold of an LCK manifold
manifold is provided in the following.

If θ is constant on M in Theorem 9, then the warped product in Theorem 9 would
be a hemi-slant warped product in an LCK manifold. Hence, the following theorem is an
immediate consequence of Theorem 9.

Theorem 15. A hemi-slant submanifold M of an LCK manifold M̃ with its Lee vector field α#

tangent to M is locally a non-trivial warped product manifold of the form M = N⊥ × f N θ such
that N⊥ is a totally real submanifold and N θ is a proper slant submanifold in M̃ if and only if the
shape operator A for any Y1 ∈ Γ(Dθ) and Z1 ∈ Γ(D⊥) satisfies

AFT Y1 Z1 −AJZ1T Y1 = cos2 θ(Z1(µ)− α(Z1))Y1, (30)

for some smooth function µ on M satisfying Y2(µ) = 0 for any Y2 ∈ Γ(Dθ).

Furthermore, the characterization theorem for the pointwise hemi-slant submanifold
of Kähler manifolds is provided in the following.

Hence, Theorem 9 implies the following characterization theorems (Theorem 4.1)
of [33] and (Theorem 4.10) of [35] if α# = 0 and θ is a slant function in Theorem 9.

Theorem 16 ([35]). Let M be a pointwise hemi-slant submanifold of a Kähler manifold M̃. Then,
M is locally a non-trivial warped product manifold of the form M = N⊥ × f N θ such that N⊥ is
a totally real submanifold and N θ is a proper pointwise slant submanifold in M̃ if the following
condition is satisfied

AFT Y1 Z1 −AJZ1T Y1 = (cos2 θ)Z1(µ)Y1, ∀ Z1 ∈ Γ(D⊥), Y1 ∈ Γ(Dθ), (31)

where µ is a function on M such that Y2(µ) = 0, for every Y2 ∈ Γ(Dθ).

7. Non-Trivial Examples

In this section, we construct some examples that guarantee the existence of a pointwise
hemi-slant warped product submanifold of form M = N⊥ × f N θ of an LCK manifold
M̃. Now, we consider the Euclidean 2n-space E2n equipped with the Euclidean metric
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g0 and the Cartesian coordinates (x1, · · · , xn, y1, · · · , yn). Then, the flat Kähler manifold
Cn = (E2n, J, g0) equipped with the canonical almost complex structure J is provided by

J(x1, · · · , xn, y1, · · · , yn) = (−y1, · · · ,−yn, x1, · · · , xn). (32)

The next proposition can be proven similarly to Proposition 2.2 of [10].

Proposition 1. Let M = N⊥ × f N θ be a pointwise hemi-slant warped product of submanifolds
in a Kähler manifold M̃. Then, M is a warped product pointwise hemi-slant submanifold with the
same slant function in an LCK manifold (M̃, J, g̃) with g̃ = e− f g, where f is any smooth function
on M̃.

Example 1. Let C3 = (E6, J, g0) be a flat Kähler manifold defined above. Consider sub-
manifold M of C3 provided by

x1 = u, x2 = kw cos φ, x3 = cos w, y1 = u, y2 = kw sin φ, y3 = sin w, (33)

where k is a positive number and u, φ, and w are non-vanishing functions on M.
Thus, the tangent bundle T M of M is spanned by the vectors

U1 =
∂

∂x1
+

∂

∂y1
, U2 = −kw sin φ

∂

∂x2
+ kw cos φ

∂

∂y2
,

U3 = k cos φ
∂

∂x2
− sin w

∂

∂x3
+ k sin φ

∂

∂y2
+ cos w

∂

∂y3
.

Obviously, JU1 is orthogonal to T M. Hence M is a proper hemi-slant submanifold such that
the totally real distribution D⊥ = Span {U1} and the slant distribution Dθ = Span{U2, U3}.
Thus, the slant angle provided by θ = cos−1(k/

√
k2 + 1). Moreover, it is easy to verify

that both D⊥ and Dθ are integrable and totally geodesic in M. The metric tensor ĝ on
M = M⊥×Mθ , where M⊥ and Mθ are the integral manifolds of D⊥ and Dθ , respectively,
is provided by

ĝ = g⊥ + gMθ , g⊥ = 2du2, gMθ = k2w2dφ2 + (1 + k2)dw2. (34)

Consider that f = f (x1, y1) is a non-constant smooth function on C3 that depends on
coordinates x1, y1. Moreover, M̃ = (E6, J, g̃) is an GCK manifold since the Riemannian
metric g̃ = e− f g0 on C3 is conformal to the standard metric g0. Thus, the warped product
metric is the metric on M induced from the GCK manifold:

gM = gM⊥ + e− f gMθ , gM⊥ = e− f g⊥ . (35)

Furthermore, we conclude that (M, gM) is a proper warped product hemi-slant submani-
fold in M̃ by employing Proposition 1. Moreover, the Lee form is provided by

α = d f =
∂ f
∂x1

dx1 +
∂ f
∂y1

dy1, (36)

since f = f (x1, y1) is a non-constant smooth function on C3 that depends only on coordi-
nates x1, y1.

According to (35) and (36), the Lee vector field α# is tangent to M⊥; therefore, it is
tangent to M.

Example 2. Let M be a submanifold of C4 provided by the equations:

x1 = v, x2 = ks cos s∗, x3 = h1(s), x4 = g1(s∗),

y1 = v, y2 = ks sin s∗, y3 = h2(s), y4 = g2(s∗),
(37)
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defined on an open subset of E8 with a positive number k and non-vanishing functions
v, s and s∗ on M. Also, the curves γ and δ are unit speed planar curves on M, where
γ(s) = (h1(s), h2(s)) and δ(s∗) = (g1(s∗), g2(s∗)). Then, the tangent bundle T M is
spanned by Z1, Z2 and Z3, where

Z1 =
∂

∂x1
+

∂

∂y1
, Z2 = k cos s∗

∂

∂x2
+ k sin s∗

∂

∂y2
+ h′1(s)

∂

∂x3
+ h′2(s)

∂

∂y3
,

Z3 = −ks sin s∗
∂

∂x2
+ ks cos s∗

∂

∂y2
+ g′1(s

∗)
∂

∂x4
+ g′2(s

∗)
∂

∂y4
.

Further, M is a proper pointwise hemi-slant submanifold such that the totally real
distribution is provided by D⊥ = Span {Z1} and the proper pointwise slant distribution is
Dθ = Span{Z2, Z3}. Clearly, the Wirtinger function θ of Dθ satisfies

cos θ =
k2s√

(k2s2 + 1)(k2 + 1)
.

Moreover, both D⊥ and Dθ are integrable and totally geodesic in M. It easy to see that the
metric ĝ on M = M⊥ ×Mθ such that M⊥ and Mθ are integral manifolds of D⊥, and Dθ ,
respectively, is provided by

ĝ = g⊥ + gMθ , (38)

where

g⊥ = 2dv2, gMθ = (1 + k2)ds2 + (1 + (ks)2)ds∗2. (39)

As in Example 1, we consider the Riemannian metric g̃ = e− f g0 on C4 such that
f = f (x1, y1) is a non-constant smooth function on C4 that depends only on coordinates
x1, y1. Thus, the warped product metric is the induced metric on M:

gM = gM⊥ + e− f gMθ , gM⊥ = e− f g⊥ . (40)

Moreover, we apply Proposition 1 to show that (M, gM) is a proper pointwise hemi-
slant warped product submanifold in M̃.

Thus, the Lee form of M̃ is provided by (36) since f = f (x1, y1) is a smooth function
on C4. It is clear that the Lee vector field α# is tangent to M from (36), (39) and (40).

8. Conclusions

The study of warped product submanifolds has recently garnered heightened interest
owing to their importance in mathematics and their application in diverse fields such as
mathematical physics. The research introduces a significant contribution to the warped
product submanifolds field as it defines pointwise hemi-slant submanifolds in locally
conformal Kahler manifolds. It explores the properties of these submanifolds, particularly
focusing on their integrability conditions and totally geodesic nature. Additionally, the
research has extended to include warped product pointwise hemi-slant submanifolds
and has established sufficient and necessary conditions for the classification of pointwise
submanifolds as warped products of the form N⊥ × f N θ . Moreover, the research provides
non-trivial examples to illustrate and support the results by elucidating the relationships
and properties of these submanifolds. It is also crucial to highlight that some of the results
obtained in this study serve as a generalization of the previously established results in the
following papers [19,24,35,36]. Overall, the study represents a significant advancement in
understanding these submanifolds and their warped products, paving the way for further
research in the field of differential geometry.
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