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Abstract: Chaotic dynamical systems often exhibit transient chaos, where trajectories behave chaoti-
cally for a short amount of time before escaping to an external attractor. Sustaining transient chaotic
dynamics under disturbances is challenging yet desirable for many applications. The partial control
approach exploits the inherent symmetry and geometric structure of chaotic saddles, the topological
object responsible of transient chaos, to enable surprising control with only small perturbations. Here,
we review the latest findings in partial control techniques with the aim to sustain chaos or accelerate
escapes by exploiting these intricate invariant sets. We introduce the fundamental concept of safe
sets regions where orbits persist despite noise. This paper presents recent generalizations through
safety functions and escape functions that automatically find the minimum control needed. Efficient
numerical algorithms are presented and several examples of application are illustrated. Rather than
eliminating chaos entirely, partial control techniques provide a framework to reliably control transient
chaotic dynamics with minimal interventions. This approach has promising applications across
diverse fields including physics, engineering, biology, and more.

Keywords: partial control; transient chaos; escaping orbits
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1. Introduction

Chaotic dynamics are widespread in nonlinear systems across diverse fields like
physics, engineering, biology, and ecology [1]. Though enabling complex behaviors, chaos
also leads to unpredictability and lack of control. Over recent decades, various techniques
have emerged to control chaos [2–6], typically by eliminating it entirely and stabilizing
fixed points or periodic behaviors. However, in some cases the inherent complexity of
chaos provides useful benefits worth preserving. Transient chaos [7] has been shown to
provide useful benefits in diverse applications. In lasers and chemical reactions, it can
increase efficiency and improve performance [8–11]. In structural and combustion systems,
it prevents unwanted resonances [12,13]. In ecology, transient chaos can enable healthy
population dynamics [14]. Recent work has also demonstrated techniques to control
transient chaos in a model of neuron [15] or a neural network affected by electromagnetic
radiation [16].

Sustaining the chaotic behavior in these scenarios can be challenging due to the com-
plexity of chaotic saddles and the influence of disturbances (noise). For chaotic systems,
even tiny disturbances become amplified exponentially fast, converting deterministic con-
trol schemes ineffective. For theses reasons, more robust control techniques that explicitly
account for uncertainty are required in the real world.

Here, we provide a comprehensive survey of recent theoretical and computational
advances in the emerging technique of partial control, which exploits properties of chaotic
saddles to sustain desirable transient chaotic behaviors despite disturbances.
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Partial control relies on the existence of embedded safe sets in the region containing
the chaotic saddle, where trajectories can be maintained indefinitely through occasional
small controls even with disturbances. The sculpting algorithm provides an efficient
computational technique to identify these safe sets in any chaotic system by recursively
discarding unsafe regions.

Recent promising generalizations using safety functions are introduced, which provide
a continuum characterization of the minimum bound of control required for any initial
condition [17]. Efficient numerical methods to compute these safety functions are presented
and analyzed.

On the other hand, if the aim of the controller is to accelerate the escape of the orbits,
we have developed the escape function, a function similar to the safety function but
computed to intentionally enable quick escapes from transient chaos regions using minimal
interventions [18]. Examples illustrate the power of escape functions to control orbits and
force the escape to an external attractor. Combining safety functions and escape functions
provide further flexibility in sustaining or escaping transient chaos as desired.

2. Partial Control Method

The partial control concept relies on the existence of special regions called safe sets
embedded within the phase space containing the chaotic saddle. Informally, safe sets are
areas near the saddle where trajectories can be sustained indefinitely through occasional
small controls, despite disturbances (noise).

To find safe sets, we assume the dynamics in region Q containing the chaotic saddle
can be described by the map:

qn+1 = f (qn) + ξn + un, with |ξn| ≤ ξ0, |un| ≤ u0.

Here, qn ∈ Rn represents certain phase state of the system, and we assume that the
map f acts on a region Q like a horseshoe map. The disturbance ξ affecting the map is
considered to be bounded such that |ξn| ≤ ξ0. To be realistic, the control term u is also
limited to |un| ≤ u0.

Without the action of a disturbance and control, nearly all orbits inside Q (except a
zero measure set) escape from it after some iterations. However with disturbances present,
all orbits eventually escape.

The safe set is defined as the subset Q∞ ⊂ Q. Any safe point q ∈ Q∞ satisfies that
the orbit qn+1 = f (qn) + ξn + un can be sustained in Q∞ indefinitely. At each iteration,
the control |un| ≤ u0 is chosen based on f (qn) + ξn to keep the orbit in Q∞.

In recent works [14], a significant advancement was achieved with the development
of the sculpting algorithm, which provides a general method to numerically compute safe
sets in essentially any chaotic system. By recursively discarding unsafe regions of the
initial region Q, this algorithm is able to compute Q∞ (the safe set) several times faster than
previous methods. The new procedure of finding the safe set is illustrated in Figure 1. We
start selecting the region Q0 = Q and setting the upper disturbance bound ξ0 and upper
control bound u0. The ith step of the sculpting algorithm can be summarized as follows:

1. Morphological dilation of the set Qi by u0, obtaining the set denoted by Qi + u0.
2. Morphological erosion of set Qi + u0 by ξ0, obtaining the set denoted by Qi + u0 − ξ0.
3. Let Qi+1 be the points q of Qi, for which f (q) is inside the set denoted Qi + u0 − ξ0.
4. Go back to the first step, except when Qi+1 = Qi, in which case we set Q∞ = Qi. We

call this final region, the safe set. If the selected u0 is too small, then no safe set exists,
so a larger u0 is necessary to obtain the safe set.

In practice, computing the safe set Q∞ requires a finite grid covering Q0, since eval-
uating an infinite number of points is unfeasible. Using higher grid resolutions yields a
more accurate safe set, which typically remains practically unchanged beyond a critical
resolution. This algorithm is valid in any dimension. For example in [14], safe sets of one,
two, and three dimensions have been computed for the paradigmatic Lorenz system [19].
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Figure 1. Graphical process used by the Sculpting Algorithm to obtain the safe set.

To show an example of this technique we use the well-known slope-3 tent map. This
map is given by:

xn+1 =

{
3xn + ξn + un for xn ≤ 1

2
3(1 − xn) + ξn + un for xn > 1

2
(1)

and exhibits transient chaos in the interval [0, 1]. We consider here that the orbits are
affected by an upper disturbance bound ξ0 = 0.040. An example of an uncontrolled orbit
is shown in Figure 2a. To avoid such escapes, we define the region Q = [0, 1] where
we want to sustain the orbits and set an upper control bound of u0 = 0.025. We then
apply the Sculpting Algorithm to compute the safe set shown in Figure 2b. By forcing the
orbit to pass through this safe set, the orbit can be confined in the interval [0, 1] using a
control |un| ≤ 0.025 at each iteration. Note that the control bound used is smaller than the
disturbance bound ξ0 affecting the system. However, if smaller values u0 are used, then no
safe set exist, making control impossible.

Figure 2. Partial control method. (a) Uncontrolled trajectory under disturbances bounded by
ξ0 = 0.04 (dots) escapes from Q = [0, 1] after a few iterations. (b) Safe set (brown bars at the bottom)
computed with upper control bound u0 = 0.025. The orbit is forced through the safe set applying a
control |un| ≤ u0 each iteration. It remains confined to the region Q = [0, 1] indefinitely.
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How Safe Sets Depends on ξ0?

A key advantage of the partial control approach is its robustness and adaptability
to varying noise intensities. Different noise intensities lead to different safe sets. In a
recent work [17] we investigate how the safe set changes for the tent map slope-three
(Equation (1)) when it is affected by different upper disturbance bound. In particular, we
show in Figure 3 different safe sets for increasing values of ξ0 in the interval [0.005, 0, 25].
For each ξ0, we compute the safe set with the minimum control u0 possible. As can
be seen in Figure 3, increasing the disturbance bound ξ0 results in larger safe sets with
fewer partitions. The control u0 increases nearly linearly with ξ0, with a constant ratio of
u0/ξ0 ≈ 0.6. This structure is reminiscent of the Cantor set, a feature typical of nonattracting
chaotic sets. A detailed discussion can be found in [17], where we also explore how the
safe sets changes with the parameter µ of the map.

Figure 3. Safe set variation with ξ0. Safe sets (black) computed for different disturbance bounds ξ0

from 0.005 to 0.25, keeping the tent map slope µ = 3 fixed. The corresponding control thresholds u0

are indicated with the blue line. The ratio u0/ξ0 remains near 0.6 as ξ0 varies.

In [20], we explore also how safe sets changes with the bound of disturbance ξ0.
However in this work we explore two-dimensional maps. In the first case we use the well
known Hénon map for a choice of parameters where the maps exhibits transient chaotic
dynamics in the region Q = [−4, 4]× [−4, 4]. The maps are given by:

xn+1 = a − byn − x2
n + ξx

n + ux
n

yn+1 = xn + ξ
y
n + uy

n.
(2)

with a = 6 and b = 0.4, Q = [−4, 4]× [−4, 4]. ∥ ξx
n, ξ

y
n ∥≤ ξ0 and ∥ ux

n, uy
n ∥≤ u0.

As shown in Figure 4a,b, when ξ0 = 0.30, there are 8 thinner strips, and for ξ0 = 0.05,
there are 16 very thin strips.

A similar trend can be seen in the bottom row of Figure 4 that shows the safe sets
obtained for the Lozi map for a choice of parameters where transient chaos is present. This
map is given by:

xn+1 = 1 − a|xn|+ byn + ξx
n + ux

n
yn+1 = xn + ξ

y
n + uy

n (3)

with a = 2, b = 0.5, Q = [−2, 2]× [−2, 2]. ∥ ξx
n, ξ

y
n ∥≤ ξ0 and ∥ ux

n, uy
n ∥≤ u0.
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In all cases, the control threshold satisfies u0 < ξ0.

Figure 4. Safe sets (in black) for different ξ0. (a–b) safe sets of the Hénon map computed with
different upper disturbance bounds. (c–d) safe sets of the Lozi map computed with different upper
disturbance bounds ξ0. In each case the safe set is computed with approximately the minimum upper
control bound u0 also indicated in the figures. The orange dots represent in each case a controlled
orbit (10,000 iterations). The controlled orbit converges to a subset of the safe set called the asymptotic
safe set.

Notice that, roughly speaking, the safe set reflects the coarse-grained structure of the
stable manifold of the chaotic saddle, being the disturbance ξ0 the parameter that mainly
determines the grain size.

In all the figures we also represent a controlled orbit (orange points) made of 10,000 it-
erations of the map. As shown the controlled orbit is confined in a subset of the safe set.
We call this set the asymptotic safe set. Once the controlled orbits enter in the asymptotic
safe set, it remains there indefinitely.

In conclusion, we have shown here that the safe sets are strongly dependent on the
disturbance level ξ0, which greatly impacts the structure of the controlled orbits. Smaller
ξ0 allows finer control of the orbits. In other words, we show that partial control method
takes into account the bound of disturbance affecting the system, producing a suitable safe
set to minimize the effort of control.

3. From Sets to Functions
3.1. A Generalization of the Safe Set: The Safety Function

Partial control technique based on safe sets rely on identifying subsets within the phase
space region Q where orbits can be controlled with minimal interventions. However, these
safe sets only guarantee minimum control for initial conditions starting inside. To generalize
this control approach, the novel work [17] introduces the concept of a safety function defined
across the entire region Q. Rather than a binary classification of ‘safe’ vs ‘unsafe’, the safety
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function provides a continuum, indicating how much upper control bound each orbit
needs to remain bounded within Q indefinitely. In other words, this function quantifies the
control effort required for any initial condition in Q.

3.2. The Computation of the Safety Function

Consider a dynamical system with the goal of sustaining chaotic transients within a
phase space region Q, subject to disturbances ξn:

qn+1 = f (qn) + ξn + un, (4)

where |ξn| ≤ ξ0. The control challenge is finding a bounded control sequence un that
contains trajectories within Q indefinitely, while minimizing the upper control bound
u0 ≥ |un| ∀n. Since this value will depends on each initial condition q ∈ Q, we define the
function U(q) to be the function that takes the minimum u0 in each point q ∈ Q.

Due to the chaotic dynamics and the action of disturbances, to find the function U
can be challenging. A major breakthrough was realizing that the safety function U can be
numerically computed through an iterative calculation process. Specifically, by recursively
computing a sequence of intermediate functions Uk that converge over time, one can
compute the final function U.

The intermediate function Uk is defined as follows: Given a point q ∈ Q, the value
Uk(q) represents the minimum upper control bound necessary to sustain the orbit in Q
the next k iterations. In other words, the controlled trajectory starting in the point q, can
be sustained in Q during k iterations, by using a control |un| ≤ Uk(q) in each iteration.
The sequence of k controls applied to the trajectory satisfy that max (|u1|, |u2|, .., |uk|) ≤
Uk(q).

The recursive algorithm to compute the functions Uk and eventually the function U is
as follows:

1. Discretize the region Q into N points q[i].
2. Numerically compute S disturbed images f (q[i]) + ξ[s] for each point.
3. Initialize U0(q[i]) = 0 ∀i and set k = 0.
4. Iterate until convergence:

Uk+1[i] = max
1≤s≤S

(
min

1≤j≤N

(
max ( u[i, s, j], Uk[j] )

) )

i ≡ index of the starting point q[i], i = 1 : N.
s ≡ index of the disturbance ξ[s], s = 1 : S.
j ≡ index of the arrival point q[j], j = 1 : N.

(5)

where u[i, s, j] represents the control applied to the image f (q[i]) + ξ[s] to reach the point qj,
that is, q[j] = f (q[i]) + ξ[s] + u[i, s, j]. Typically, for one dimensional maps, values around
N = 2000 and S = 20, are a good trade-off between accuracy and computational cost. More
detailed explanation of this algorithm and a the pseudocode can be found in [17].

The step 4 of the algorithm is repeated until it converges, that is when Uk+1 = Uk. This
last function is denoted as U which consequently satisfies, U = Uk = Uk+1 = ... = U∞ and
therefore the value U(q) provides the upper control bound to sustain the initial condition
q ∈ Q forever (infinite iterations). An orbit starting in q can be sustained indefinitely in Q
applying each iteration a control |un| ≤ U(q).

We can easily relate the safe sets with the safety function. Given the safety function of
a map affected by an upper disturbance bound ξ0, and selecting an upper control bound
u0 ≥ min(U), the corresponding safe set can be obtained directly as an u0-horizontal cut of
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the function U. Therefore, the safe set is the subset of points q ∈ Q that satisfy U(q) ≤ u0.
The minimum possible upper control bound (u0 = min(U)), defines the minimum safe set.

3.3. Safety Function for Different Maps

To demonstrate the application of the safety function, we start with a simple example,
the slope-three tent map (see Equation (1)) affected by disturbances |ξn| ≤ ξ0 = 0.06
(see Figure 5a). For this map, orbits starting in the interval Q = [0, 1] escape after a
chaotic transient. In order to sustain indefinitely the orbit in Q, we compute the safety
function (drawn in red in Figure 5b and then we extract the minimum safe set (eight
pieces drawn with black small bars on the bottom) that approximately corresponds with
u0 = min(U) = 0.04. In each iteration of the map the control |un| ≤ 0.04 is applied to put
the orbit back in the nearest safe point. Controlled orbits in this safe set are shown in gray
color. Since the value u0 selected is the minimum, no other controlled orbits are possible
with smaller control bound.

Figure 5. The 1D safety function for the slope-three tent map corresponding to Equation (1).
The map is affected by a uniform disturbance bounded by ξ0 = 0.06. The small dots represent the
distribution of the disturbance affecting the map. (a) An uncontrolled orbit escapes from Q = [0, 1]
after a few iterations. (b) The safety function in red has 8 minima with value u0 = 0.04. The set of
points that satisfied U(q) = 0.04 define the minimum safe set represented by the black segments at
the bottom. In blue, a controlled orbit. At each iteration, the orbit is forced through the safe set to
remain in Q = [0, 1] indefinitely.

We want to remark that the function U(q) is optimal. This means that U(q) gives
the smallest possible control bound for each initial condition q ∈ Q. Consequently, no
other control strategy can improve on this result by further reducing the control bound.
The safety function provides the best possible control policy to keep orbits bounded in Q
given the disturbance ξ0.

The algorithm to compute the safety functions can easily be extended to maps of
higher dimensions. To show that, we take the Hénon map (Equation (2)) and the Lozi
map (Equation (3)) shown before, and compute the safety function for a particular upper
disturbance bound ξ0. The results are presented in Figures 6 and 7. In this case, the safety
functions are represented in log scale to enhance the visualization. Notice that the set of
points that satisfies U(q) = min(U) defines the minimum safe set. This set corresponds to
the bluest points of the safe sets shown in Figures 6 and 7.
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Figure 6. The 2D safety function for the Hénon map corresponding to Equation (2) with disturbance
bound ξ0 = 0.20. The safety function is computed on Q = [−4, 4]× [−4, 4] using a 1000 × 1000 grid.
It converges after 18 iterations of the algorithm.

Figure 7. The 2D safety function for the Lozi map corresponding to Equation (3) with disturbance
bound ξ0 = 0.050. The safety function is computed on Q = [−2, 2]× [−2, 2] using a 1000 × 1000
grid. It converges after 16 iterations of the algorithm.

4. Safety Function to Approach any Orbit to the Safe Set

The introduction of the safety functions enables new potential applications of partial
control technique. Perhaps the most notably, it enables controlling orbits from arbitrary
initial conditions in Q, not just those confined to the safe set. Here, we present a general
strategy based on the safety function to gradually steer any initial condition in Q to the
minimum safe set with minimal interventions.
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The approach is illustrated using the slope-three tent map (Equation (1)) affected by
ξ0 = 0.05 as a classic example of transient chaotic dynamics in the region Q = [0, 1].

For this map, the corresponding safety function U is shown in blue in Figure 8a. As can
be appreciated, the function U has 8 minima (Umin = 0.03). The small regions at these
minima represent the smallest possible safe set. In consequence, an orbit in this safe set can
be sustained inside Q by applying controls |un| ≤ 0.03 at each iteration of the map. This
only applies for initial conditions already inside the safe set. Initial conditions outside, will
require larger, but transient, controls to gradually steer the orbit towards the minima of the
safety function, where control is minimized.

(a)

(c)

(b)

safety function

Figure 8. Controlling any initial condition in Q. (a) Black bars show 1000 initial conditions gradually
converging to the minimum safe set (green pieces) in at most 6 iterations. (b) A particular controlled
orbit (orange line) with the initial condition out of the minimum safe set. (c) First 100 controls |un| for
the controlled orbit, decreasing as it approaches the minimum safe set. Once inside, controls stay
below 0.03.

This gradual approach can be implemented following this control strategy:

1. Given an initial point qn ∈ Q, evaluate the noisy image q∗ = f (qn) + ξn.
2. Compute all the possible controls |ui| = |qi − q∗| with qi ∈ Q, being i = 1 : N the grid

points in Q.

3. Among all the possible controls, apply the control un = min
(

max
(
|ui|, U(qi)

) )
.

The final point will be qn+1 = f (qn) + ξn + un = q∗ + un.
4. Repeat the algorithm with the new point qn+1.

This approach keep the control as small as possible while the orbit is approaching
to the minima of U where the need of control is minimum. As an example we display in
the Figure 8a, many controlled orbits for initial conditions in Q. The black horizontal bars
(from bottom to top) indicate how starting points progressively move closer to the minima
of U. As shown in this case, any initial condition it will take at most six iterations to reach
the minima of the safety function (green pieces). In Figure 8b we display an individual
controlled orbit that initially starts outside the minimum safe set and gradually approaches
to this set. The controls |un| applied to this orbit are shown in Figure 8c. Once the orbit
reaches the minimum safe set, it remains there forever and the control needed is kept below
the value 0.03
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To evaluate the effectiveness of our control strategy in guiding different starting points
towards the minima of U, we present in Figure 9 the average number of iterations and in
Figure 10 the average of control that the orbits need to reach the minima of U. The results
are as expected with the exception of the central region of Figure 9, which seems to need an
smaller amount of iterations to reach the minima of U. This is due to the fact that the central
region maps directly outside Q, especially on the right side beyond Q. Consequently, these
points are reintegrated within Q through the application of substantial control, as illustrated
in Figure 10 where the central region demands the highest average control.

Figure 9. Average number of iterations to reach minimum the safe set. Averaged over 1000 orbits,
initial conditions farther from the minimum safe set (green pieces) take more iterations to reach it.
The central region is an exception, mapping directly outside Q = [0, 1] to the right. Points here are
reinserted into the right side of Q where the safety function is low, so the central area reaches the safe
set quickly despite larger controls.

Figure 10. Average control per iteration to reach the minimum safe set. For each orbit, the sum of
|un| is divided by the number of iterations (1000). The average control shape (red line) resembles
the safety function, with initial conditions needing larger control bounds also requiring larger
average control.

5. Forcing Controlled Escapes from Chaos

While the partial control technique has traditionally been used to sustain chaotic
transients by avoiding escapes, recent theoretical advances have enabled the intentional
control of escapes from transient chaos using minimal interventions. This is achieved
through the introduction and computation of the new tools escape functions and escape sets,
which allow transforming unpredictable chaotic escapes into predictable controlled exits.

Specifically, consider chaotic dynamics within a region Q modeled by the general
nonlinear map:

qn+1 = f (qn) + ξn + un, (6)
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The key innovation is the formulation of the escape function Uk(q). This function
quantifies the upper control bound needed to force orbits starting in the initial condition q ∈
Q, to escape outside the region Q in k iterations or less, despite the presence of disturbances
ξn ≤ ξ0. Correspondingly, for a chosen upper control bound u0, the escape set Ek ⊂ Q
can be defined as the subset of initial conditions q where Uk(q) ≤ u0. The smaller the u0,
the smaller the sets Ek. The minimum escape set corresponds to the case u0 = min(Uk).
Below this value, no escape sets exist.

The summarized steps to apply this control scheme are the following:

1. Select a target iteration N for escape
2. Compute the escape functions Uk for k = 1 : N. Select the upper control bound u0

and extract the corresponding sets Ek .
3. Control the orbit. With initial condition q ∈ EN , iterate the map qn+1 = f (qn) + ξn +

un and select the suitable |un| ≤ u0 to move the orbit inside the set EN−1. Iterate
again the map and select the suitable |un| ≤ u0 to move the orbit inside the set EN−2.
Repeat the process with EN−3, etc., until the orbit escapes from Q.

To illustrate the capabilities of this escape control framework, three possible scenarios
that we consider of interest are presented. The details of the algorithms are shown in [18].

Scenarios I and II are proven with the logistic map

xn+1 = µxn(1 − xn) + ξn + un, (7)

where µ > 4 allows the orbits to escape from Q = [0, 1] after a chaotic transient.

• Scenario I: Escape in N or fewer steps. This scenario seeks the fastest escape by
allowing the system to abandon the region Q within N iterations or less. By calcu-
lating escape functions, we control the trajectory towards escape points within this
specified timeframe. This concept is illustrated in Figure 11, while in Figure 11a the
logistic map is shown. The escape functions and the corresponding escape sets are
displayed in Figure 11b, and Figure 11c shows a controlled escape of an orbit in three
or fewer iterations.

• Scenario II: Escape in exactly N steps. Sometimes, a more controlled exit is desired.
Here, the system must remain confined within a region for N − 1 iterations before
escaping at exactly step N. The corresponding functions Uk and sets Ek are shown
in Figure 12. Notice that, for this case, the sets Ek, are smaller than before (Scenario
I) because the condition of escaping in exactly N iterations is more constrained than
escaping in N or less iterations.

• Scenario III: Alternate between transient chaotic regions. Consider a system with a
chaotic attractor consisting of two distinct chaotic regions (left and right). without
control, the orbit chaotically alternate between both, left and right regions. Imagine
we want to dictate how many iterations it spends in each region before switching.
As an example, in Figure 13b we display the functions Uk and Ek computed so that the
orbit spends three iterations in the right region and two iterations in the left region.
A controlled orbit starting in q ∈ Er

3 follows the sequence Er
3 → Er

2 → Er
1 → El

2 →
El

1 → Er
3 . . . repeated. A similar example is shown in Figure 13c, but in this case we

impose that the orbit spends 30 iterations on the region right and 20 on the region left.
In this case, we do not represent the functions Uk and sets Ek. We only show the time
series of the uncontrolled orbit (top panel) and the controlled orbit (middle panel),
while in the bottom panel the control used is displayed.
To illustrate the potential of the escape control method, we consider a system with
a global chaotic attractor formed by two transient chaotic regions. In this example,
the attractor is comprised of two parabola maps as shown in Figure 13a. An orbit,
after a few iterations in the region le f t (0 ≤ x ≤ 0.5), escapes to the region right
(0.5 < x ≤ 1), and here, after another chaotic transient, it comes back to the region
le f t. This produces a chaotic alternation that is repeated indefinitely. The goal is to
control the exact number of iterations the orbit spend in each side before change to the
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other. This generates a chaotic orbit modulated by a periodic switching. As a simple
example, in Figure 13b we display the functions Uk and Ek computed so that the
orbit spends three iterations in the right region and two iterations in the le f t region.
A controlled orbit starting in q ∈ Er

3 follows the sequence Er
3 → Er

2 → Er
1 → El

2 →
El

1 → Er
3 . . . repeated. A more complicated example is shown in In Figure 13c. For this

case, the functions Uk and sets Ek were computed to the case of 30 iterations on the
region right and 20 on the region le f t. We only show the comparison between the
uncontrolled orbit (top panel) and the controlled orbit (middle panel), while in the
bottom panel is displayed the controls used, always smaller than the upper control
bound u0 = 0.0135.

(a)   ((((b)                                          (c)

Figure 11. (a) The chaotic dynamics of the logistic map with control parameter µ = 4.7. (b) Escape
functions Uk (in red) and escape sets Ek (in blue) are computed for N = 3. Orbits starting in E3

are capable of escaping the chaotic region Q = [0, 1] within three or fewer iterations under the
control |un| ≤ u0 = 0.022. (c) An example of a controlled escape: an initial condition within
E3 is directed towards E2, then to E1, and ultimately escapes from Q. The control action at each
iteration is determined as the minimum distance either to the nearest escape set or to the boundary
of Q. The escape trajectory and the number of iterations required can vary depending on the initial
condition and the noise level ξn.

(a) ((((b)                                        (c)  

Figure 12. (a) The logistic map with µ = 4.7. (b) The escape functions Uk are computed for N = 3
and shown in red. The escape sets Ek are shown in blue. We have used ξ0 = 0.030 and u0 = 0.022.
Orbits starting in E3 will escape from Q = [0, 1] in exactly 3 iterations with a control |un| ≤ u0 at
each iteration. (c) Example of a controlled orbit. An initial condition in E3 is mapped to E2, then E1,
and finally it leaves the chaotic region Q = [0, 1] after a suitable control. All orbits starting in E3 will
escape Q = [0, 1] in exactly 3 iterations.
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left right

(a) ((((b)                                        (c)

Figure 13. (a) The double parabola map with µ = 10 and the global chaotic attractor in red. Orbits
starting in le f t have a transient chaotic behavior before escaping to the region right = [0.5, 1] where
after another chaotic transient the orbit comes back to le f t = [0, 0.5]. (b) The escape functions
computed for Nl = 2 (orange) and Nr = 3 (cyan). Furthermore, the escape sets Er appear as blue
boxes and El as red boxes. We have used ξ0 = 0.015 as the disturbance bound and u0 = 0.014
as the control bound, where this one corresponds to the minimum value of the escape functions.
(c) On the top panel, a typical orbit for the double parabola map (µ = 10). In the middle, we show an
orbit affected by a disturbance ξ0 = 0.0150 where we have used an upper control bound u0 = 0.0135
to keep the orbit Nl = 20 iterations in region le f t and Nr = 30 iterations in region right. At the
bottom, the absolute value of the control used during the 250 iterations is represented. Note that
all the applied controls remain below the control bound u0 = 0.0135 shown by the red line, which
corresponds to the minimum value of the escape functions.

6. Conclusions

This paper has provided an overview of recent advances in partial control tech-
niques for sustaining transient chaos. A key foundation described is the concept of safe
sets—regions within the phase space where orbits can be confined indefinitely through
bounded controls weaker than disturbances. Generalizations using safety functions that
directly quantify the minimum control magnitude required for each initial condition further
refine this capability. Taking advance of this function, an approach to steer trajectories to
the safe set using the safety function with minimal interventions is introduced.

Furthermore, by inverting the traditional goal of partial control, we have introduced
the escape functions, designed to intentionally force the escape of trajectories from the
region Q in a predictable manner, using small controls. Escape sets based on escape
functions enable escaping chaotic regions in precise steps. This new functions expands the
potential applications of partial control.

In summary, embracing rather than eliminating chaos, the partial control framework
enables predictable control of transiently chaotic dynamics in noisy environments through
occasional, tiny perturbations. The demonstrated ability to avoid or force escapes on
demand makes partial control a very powerful technique. Besides the use of this method
for applications, further theoretical and computational developments should focus on
extending these techniques to higher dimensional chaotic systems.
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