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Abstract: We find a novel phenomenon in the solution to the Wheeler–DeWitt equation by solving
numerically the equation assuming O(4)-symmetry and imposing the Hartle–Hawking wave function
as a boundary condition. In the slow-roll limit, as expected, the numerical solution gives the most
dominant steepest-descent that describes the probability distribution for the initial condition of a
universe. The probability is consistent with the Euclidean computations, and the overall shape of the
wave function is compatible with analytical approximations, although there exist novel differences
in the detailed probability computation. Our approach gives an alternative point of view for the
no-boundary wave function from the wave function point of view. Possible interpretations and
conceptual issues of this wave function are discussed.
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1. Introduction

Understanding the origin of our universe is an important but unresolved problem in
modern theoretical physics. Due to the singularity theorem [1], the beginning of our uni-
verse must be a kind of singularity. This singularity can be directly resolved by quantizing
the spacetime and fields. We do not know the fundamental theory of quantum gravity
yet, but we can write and solve the wave equation of the quantized spacetime and matter
fields using the canonical approach [2]. The master equation of the quantum Hamiltonian
constraint in this approach is called the Wheeler–DeWitt equation. The application of the
canonical quantum gravity to the cosmological context is known as quantum cosmology.

It is well-known that one can write and solve the Wheeler–DeWitt equation, at least
in minisuperspace [3–5], where the O(4)-symmetry is essential to address cosmological
problems; if we have less symmetry, the Wheeler–DeWitt equation is no more a differential
equation but a functional equation. In the presence of a matter field ϕ, we may assume
that the wave function of the universe Ψ is a function (functional) of the metric a and ϕ.
The physical interpretation of Ψ in this case is not clear, but we can obtain some ideas of
possible interpretations from quantum mechanics.

1. Wave packet: If we consider a wave function as a superposition of eigenstates, we
obtain the following wave function:

Ψ(x, t) = ∑
n

cnΨn(x)e−iEnt, (1)

where Ψn denotes the n-th eigenstates and En is the corresponding energy eigenvalue.
In this wave packet, one can provide the meaning of the classicality: if a wave function
is highly localized, the Ehrenfest theorem shows that the expectation value of an
observable satisfies the classical equation of motion.
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2. Eigenstate: If we only choose one specific eigenstate, e.g., the ground state, we will
only focus on Ψn(x) with a fixed energy eigenvalue. The probability to measure at
x is |Ψn(x)|2. In the scattering state, if the wave function is oscillatory, say e±ikx, it
indicates a classical propagation, while if the wave function is exponentially varied,
say e±κx, it indicates a quantum regime. Here, the latter can be well approximated
by the Wentzel–Kramers–Brillouin (WKB) approximation, and this can provide a
tunneling or nucleation probability.

In this regard, we should rely on several alternative intuitions from quantum me-
chanics to understand the meaning of the wave function Ψ[a, ϕ]. There might be several
hypotheses:

1. Wave packet interpretation: If one interprets the wave function as a superposition of
various states, one can define a propagating wave packet [6]. From this wave packet,
one can read a classical trajectory that is consistent with the Ehrenfest theorem. If
the wave function is flat along the steepest-descent while its dispersion is bounded,
and hence, if the probability is not varied along the path, one can interpret that the
trajectory is classical; indeed, it can satisfy the classical equation of motion [7,8].
Therefore, one can reasonably recover an arrow of time. Thus, the wave function
describes the classical dynamics of the universe (although it can include non-classical
effects, e.g., quantum bounces, thanks to the wave nature of the wave function).

2. Eigenstate interpretation: If one interprets the wave function as a specific eigenstate,
one will first interpret that the wave function has two limits, where the wave function
shows exponential behaviors in the classically disallowed domain, while it shows
oscillatory behaviors in the classically allowed domain [3–5]. Hence, at the classically
disallowed domain, one will measure a specific a and ϕ, where the absolute square of the
wave function |Ψ|2 is the probability to measure a and ϕ. Once one measures a specific a
and ϕ, the universe will evolve along the classical path; hence, the measured a and
ϕ become a set of initial conditions. If one selects this interpretation, we cannot see
any subsequent classical dynamics from the wave function of the universe; this only
provides a probability distribution.

Now one can ask which interpretation is true. This is partly up to our interests. If we
consider a definite classical boundary condition for the beginning, the second interpretation
(wave packet interpretation) is the case, and hence we do not compare with other alternative
histories. However, if we consider a global probability distribution of the many-world,
one may not be able to find a classical trajectory from the steepest-descent; rather, one can
obtain a probability distribution as a function of initial conditions.

In this paper, we focus on the Hartle–Hawking wave function [9,10] (see also [11];
the recent updates are in [12,13]), which is supposed to be the ground state wave function
of the universe. Therefore, it is more natural to interpret the second interpretation. One
can distinguish the classical domain as well as the quantum domain by looking at the
oscillatory behavior of the wave function. In addition, we will go one step further by
solving the Wheeler–DeWitt equation numerically. Our approach is new in the sense that
we study the matter field direction and the metric field direction at the same time using the
numerical method, while the previous literature is restricted to only one direction (either
the metric direction [3–5] or the field direction [14,15] only) after approximations. Thanks
to this numerical approach, one could go beyond the WKB approximation, and one could
find a new kind of phenomenon that does not show up in simplified analytic approaches.

This paper is organized as follows. In Section 2, we describe how we can realize
the Hartle–Hawking wave function for the numerical method. In Section 3, we first
confirm that, in the slow-roll limit, our numerical results are consistent with previously
obtained results, e.g., instanton approaches; secondly, we show that our results show some
novel phenomena. Finally, in Section 4, we conclude with proposals of possible future
research topics.
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2. Preliminaries

In this section, we briefly review the Wheeler–DeWitt equation [16] with a minimal
content of matter in the universe, and a specific choice of the boundary condition, the
Hartle–Hawking wave function [9,10]. The metric signature was taken to be (−,+,+,+)
and Planck units are used throughout the paper.

2.1. Wheeler–DeWitt Equation

We consider a model of Einstein gravity with a scalar field as the matter content of the
universe, defined by the following action:

S =
∫

d4x
√
−g

[
R

16π
− 1

2
(∂ϕ)2 − V(ϕ)

]
, (2)

where R is the Ricci scalar, ϕ is a scalar field, and V(ϕ) is the potential of the scalar field.
Also, we assume the following metric ansatz:

ds2 = −N2(t)dt2 + a2(t)dΩ2
3, (3)

where N(t) is the lapse function, a(t) is the scale factor, and dΩ2
3 is the three-sphere. In this

minisuperspace model, the action with a homogeneous ϕ is reduced as follows:

S = 2π2
∫

dtN
[

3
8π

(
− aȧ2

N2 + a
)
+

1
2

a3 ϕ̇2

N2 − a3V(ϕ)

]
. (4)

From this action with a Lagrangian defined by S =
∫

dtL, the Hamiltonian H of the model
is found through the Legendre transformation:

H ≡ pa ȧ + pϕϕ̇ − L, (5)

where pa and pϕ are canonical momenta defined as

pa ≡ ∂L
∂ȧ

= −3πaȧ
2N

, (6)

pϕ ≡ ∂L
∂ϕ̇

=
2π2a3ϕ̇

N
. (7)

It leads to

H = N

[
− p2

a
3πa

+
p2

ϕ

4π2a3 − 3πa
4

+ 2π2a3V(ϕ)

]
. (8)

The quantum Hamiltonian constraint equation, or the Wheeler–DeWitt equation, is
obtained by substituting canonical momentum to operators:

pa → ∂

i∂a
, (9)

pϕ → ∂

i∂ϕ
, (10)

We use the following form of the Wheeler–DeWitt equation [16]:

Ĥψ[a, ϕ] =

[
1

3πap+1
∂

∂a

(
ap ∂

∂a

)
− 1

4π2a3
∂2

∂ϕ2 − 3πa
4

+ 2π2a3V(ϕ)

]
ψ[a, ϕ] = 0, (11)
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where p is an arbitrary constant coming from the ambiguity of the operator ordering. By
choosing the Laplace–Beltrami operator, we can set p = 1 [16]. The Wheeler–DeWitt
equation is then simplified as[

∂2

∂α2 − 3
4π

∂2

∂ϕ2 − 9π2

4
e4α + 6π3e6αV(ϕ)

]
ψ[α, ϕ] = 0, (12)

where α ≡ ln a. This is the equation that we will solve in this paper.

2.2. Hartle–Hawking Wave Function

Physically meaningful solutions of the Wheeler–DeWitt equation need a boundary
condition, e.g., ψ[α∗, ϕ], ψ[α, ϕmin], and ψ[α, ϕmax] with α∗, ϕmin, and ϕmax being a specific
set of parameters associated with a given model. One of the famous choices is the Hartle–
Hawking wave function [9,10]. In the formal sense, it is described by the Euclidean
path integral:

ψ[g̃, ϕ̃] =
∫

DgDϕ e−SE[g,ϕ], (13)

where we sum over all regular and compact Euclidean geometries that have the boundary
values g̃ = ∂g and ϕ̃ = ∂ϕ. This is a solution of the Wheeler–DeWitt equation, at least in
the formal sense.

There are technically two ways to evaluate this wave function. The first approach is
to compute the path integral in an approximate way using instantons [14,15]. Instantons
must be regular and compact, and hence this removes the initial boundary; this is the
reason why this wave function is called the no-boundary wave function. However, this
does not indicate that there is no beginning of the universe; the universe has a beginning in
terms of Lorentzian time. Therefore, this can be distinguished from the stationary universe.
The second approach is to solve the Wheeler–DeWitt equation and impose the boundary
condition on the wave function [3–5]. Both approaches are consistent in the spirit of the
WKB approximation; however, in the second approach, we lose the notion of the Euclidean
no-boundary condition. Two approaches must be equivalent, but since we need to rely on
approximations, these approaches will be technically complementary to each other.

In this work, we take the second approach and approximately solve the Wheeler–
DeWitt equation with the extremely slow-roll condition, i.e., ϕ = const. For sub-horizon
scales, i.e., a < 1/H with H(ϕ) ≡

√
8πV(ϕ)/3, the no-boundary wave function can be

approximated by

ψ[a, ϕ] ∝
1

(1 −H2a2)
1/4 exp

[
π

2H2

(
1 −

(
1 −H2a2

)3/2
)]

. (14)

This approximation is sufficiently good if a ≪ 1/H. Therefore, when we solve the Wheeler–
DeWitt equation in a region deep inside the horizon, i.e., a ≪ 1/H, we will impose the
boundary condition, using the analytic form of Equation (14). It will be a good implemen-
tation of the Hartle–Hawking wave function in numerical computations.

Interestingly, the Hartle–Hawking wave function, Equation (14), indicates that the
complete solution would have its maximum at the horizon, a = H−1 which corresponds
to the Wick rotation surface of de Sitter instantons. Also, it is worthwhile to mention
that in the classical limit (a > H−1, i.e., super-horizon regime), the wave function is well
approximated by the following function:

ψ[a, ϕ] ∝
1

(H2a2 − 1)1/4 exp
[ π

2H2

]
cos

[
π

2H2

(
H2a2 − 1

)3/2
− π

4

]
. (15)

This will be a useful guideline to compare with numerical computations for checking
its consistency.
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2.3. Model and Boundary Conditions

Technically, to obtain ψ[α, ϕ] using the hyperbolic equation, we need, for example,
the following boundary conditions: (1) ψ[α0, ϕ], (2) ψ[α, ϕa], and (3) ψ[α, ϕb], where α0 is a
constant and ϕa,b are arbitrary boundary values of the field space. For (1), we impose the
Hartle–Hawking wave function by imposing Equation (14) in the a ≪ H−1 limit. However,
it can be a little bit subtle to provide the boundary condition for (2) and (3). This problem
can be avoided if we can impose the periodic boundary condition, i.e., ψ[α, ϕa] = ψ[α, ϕb].
As an example, we consider a periodic potential model as follows: (Figure 1):

V(ϕ) = V0 +
m2

π2

(
1 + cos

π

∆
ϕ
)

, (16)

where V0 and m are constants and ∆ϕ is the periodicity of the field space. Apparently, this
model has the local minimum at ϕ = −∆ and ϕ = +∆.

-1.0 -0.5 0.0 0.5 1.0
/

0.1

0.2

0.3

0.4

V( )

Figure 1. The potential V(ϕ) for V0 = 0.1, m = 1, and ∆ = 3.

3. Novel Phenomena of the Hartle–Hawking Wave Function

In this section, we report the numerical results of the solution to the Wheeler–DeWitt
equation. We focus on the slow-roll limit and compare it with analytic results.

3.1. Wave Function

A numerical demonstration is shown in Figure 2 where we chose a parameter set
V0 = 0.075, m = 0.5, and ∆ = 3 which is within the slow-roll limit. The boundary
condition Equation (14) was set at α0 = −3 which satisfies a ≪ H−1. The typical behavior
of the numerical solution along the α axis is that, as analytically expected, there is the
first dominant peak near α ≃ 0.4 which corresponds to the horizon for the given set
of parameters. For α > ln(H−1) corresponding to super-horizon scales, there appears
small oscillations as we expect from the analytic function Equation (15). Comparing to
those analytic approximations of Equations (14) and (15) for sub- and super-horizon scales,
respectively (Figure 3), we see that our numerical result consistently describes the nature
of analytic solutions of the wave function except for the divergent artifact of analytic
approximations at the transition region a ∼ H−1.

3.2. Probabilities

A proper interpretation of our numerical solution requires more details of the most
dominant peak, e.g., the first steepest-descent. Especially, we are interested in the probabil-
ity. Figure 4 shows the detailed analysis along the first steepest-descent for the V0 = 0.1,
m = 1, and ∆ = 3 cases. In the left panel of the figure, α was depicted as a function of ϕ
along the first dominant peak. As a check, in the right panel, one can see that the same
points are lying on the first dominant peak.
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Figure 2. The probability P(α, ϕ) = |ψ[α, ϕ]|2 in the slow-roll limit (V0 = 0.075, m = 0.5, and ∆ = 3).

Figure 3. The analytic form of the probability P(α, ϕ) = |ψ[α, ϕ]|2 in the slow-roll limit (V0 = 0.075,
m = 0.5, and ∆ = 3).

-3 -2 -1 1 2 3
ϕ

0.05

0.10

0.15

0.20

0.25

α

Figure 4. α (left) and P(α, ϕ) (right) along the first peak (V0 = 0.1, m = 0.5, and ∆ = 3).
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It is worthwhile to compare with the analytic expectation P = A exp(3/8V) where A
is a constant. In order to check this, we define the measured quantity

η ≡ 3
8V(log P − log A)

. (17)

If the analytic formula is a good approximation, then η from the numerical solution would
be close to one, or if otherwise, then it deviates. The ambiguity of the overall normalization,
i.e., A-dependence can be removed by setting ηnum = 1 at a certain ϕ, e.g., the local
minimum. Then, the deviation at the local maximum of the potential will be a good
measure for comparison to the analytic solution.

The following measures are physically essential points of the probabilities.

1. Analytic limit: Interestingly, as V0 increases (equivalently, as the potential becomes
increasingly flat, satisfying the slow-roll condition), the measure η approaches to one
(Figure 5). This shows that the analytic approximation is very good for ultra-slow-roll
cases. Therefore, we confirm that this numerical approach is consistent with the
analytic expectations.

2. Beyond Hawking–Moss instantons: On the other hand, as the slow-roll parameter in-
creases, the bias from the analytic expectation becomes clearer. It is interesting to
observe that, as the potential becomes increasingly steep, the hierarchy between the
local minimum and the local maximum becomes smaller than the naive expectation

log
Pmax

Pmin
≃ 3

8

(
1

Vmax
− 1

Vmin

)
, (18)

which is known as the Hawking–Moss instantons [17], where Pmax and Pmin denote
the probability at the local maximum and the local minimum, respectively. This
shows that the Hawking–Moss instanton is just an approximate description and the
real tunneling (thermal excitation) process depends not only on the initial and final
conditions but also on the entire field space (see also [18]).

About the latter point, i.e., a bias of η from exact 1, one may understand it by assuming
that A is ϕ-dependent. In this case,

A(ϕ)e−SE(ϕ) = e−SE(ϕ)+log A(ϕ) = e−S′(ϕ), (19)

and hence, the Euclidean action SE(ϕ) can be modified due to the ϕ-dependence of A. This
might be a partial explanation for results beyond the Hawking–Moss instanton approximation.

-1.0 -0.5 0.5 1.0
/Δ

0.7

0.8

0.9

1.0

η

Figure 5. η by varying V0 = 0.1 (black), 0.2 (blue), and 0.5 (red) with m = 1 and ∆ = 3, where the
blue line is η = 1.
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4. Conclusions

In this paper, we investigated the Hartle–Hawking wave function by numerically
solving the Wheeler–DeWitt equation. Historically, our paper is the first trial to see the total
wave function without using the WKB approximation. In the slow-roll limit, the result
has turned out to be consistent with the analytic approximations. There exists the first
steepest-descent, the probability distribution is consistent with the instanton computations,
and as the potential becomes flatter and flatter, falling into an ultra-slow-roll regime,
the difference between analytic expectations and numerical results becomes smaller and
smaller. However, it is fair to say that there is little difference from the analytic results. This
is an interesting cross-check of the instanton approximation. However, this approach is
worthwhile compared to the previous work, because we did not rely on approximation,
e.g., the ultra slow-roll approximation with the WKB approximation [3–5,9,10] nor the
instanton approximation [14,15]; rather, we solved the Wheeler–DeWitt equation directly
using numerical methods.

For a clear definite interpretation over all regions of (α, ϕ) space, clarifications of some
concepts are necessary, but it is beyond the scope of this paper. One of the most important
topics is the decoherence. In the classical domain, if a classical universe is created, there must
be a connection with the decoherence. In other words, the decoherence condition must be
clarified for the parameters in the classical regime.

It is worthwhile to compare with the classicality condition of the Euclidean path
integral approach [14,15,19]. In our computations, we could not find any evidence to
exclude initial conditions that violate the classicality condition. However, as the potential
shape approaches the non-slow-roll regime, a new phenomenon may appear in the large α
limit. We leave this topic for a future investigation.

As the shape of the potential changes, numerical results deviate from the analytic
expectations. This is unsurprising since analytic results as approximations are expected to
have a validity limit, and instanton approximations are still relevant but their applicability
is limited. In this sense, it will be very worthwhile to compute the probabilities and compare
them with Euclidean computations not only with the local minimum but also with the
(steep) local maximum [20,21].

Finally, it will also be worthwhile to solve the Wheeler–DeWitt equation for non-
periodic models instead of the periodic potential we considered here. The periodic potential
can be motivated from axions, and applications for realistic inflationary cosmology will
be an interesting future research topic. Especially, applications for multi-field inflation
models might be an interesting future research direction. We will touch on these topics in
future works.
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