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Abstract: The content of this study combines city safety, optimum excavation situation, mining,
geology, and civil engineering principles. Tunnel boring machines (TBM) are the most commonly
used machines in the excavation of urban tunnels. These machines prevent the inward movement of
the tunnel face and control the amount of settlement formed on the ground by applying pressure
to the tunnel face. The most important question here is to determine the amount of pressure to be
applied to the tunnel face. There are many widely accepted formulas used in the calculation of the
face pressure and these formulas generally attempt to limit the settlements on the ground by using
parameters such as groundwater level, overburden thickness, physical and mechanical properties of
the surrounding rocks, etc. In this study, a new formula was developed. This new formula calculates
the face pressure required to be applied by EPB to the tunnel face in order to prevent damage to a
structure located on the route and within the area to be affected by tunnel excavation, instead of only
preventing settlements on the surface. In the formula, produced within the scope of this study, in
addition to other studies, 3D distances of the structure to which the deformation limitation will be
made to prevent damage is also one of the parameters.

Keywords: soft rock tunneling; EPB; tunnel excavation; face pressure; structure damage

1. Introduction

Population in cities will increase rapidly in the coming years, and even small cities
will turn into metropolises [1]. The increasing population brings a requirement for more
living space and therefore more energy, transportation, and infrastructure systems. This
requirement has brought with it distinctive designs and applications, and the importance
of tunnel systems in daily life has increased to a great extent. The structures needed in
expanding cities require studies involving more than one engineering branch. Especially
during subway excavations, it is very important to maintain city safety at the maximum
level by ensuring optimum excavation performance. By keeping up with the advancing
age and developing technology, tunnel constructions have advanced in many fields such as
safety, construction, shortening of the commissioning time, and reduction in costs. Con-
ventional methods used during tunnel construction have also left their place in rapidly
developing mechanized excavation systems. Because, of all of the environmental problems,
blast-induced vibrations often cause concern to surrounding residents [2]. On the other
hand, rock masses remain under constant load due to the engineering structures in rocks [3].
In this way, systems that recognize the formations to be excavated have been developed
and it has become easier to predetermine the loads and risks to be encountered and take
precautions. The fact that conventional tunneling methods have a higher probability of
damaging the structures and topography on the ground compared to mechanized excava-
tions has increased the interest in these machines. Especially, mechanized excavations have
started to be preferred in order to prevent the problems encountered in urban tunneling.
The shield tunneling method featured a great improvement in safety, convenience, and
construction speed, as well as minimal impacts on the surrounding environment in urban
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areas [4,5]. Key features such as high excavation capacity and safety have also increased the
interest in mechanized excavation. On the other hand, the high initial investment cost and
limited mobility are among the important disadvantages. There are three crucial factors
affecting mechanized excavation; geological and geotechnical factors, operational (mechan-
ical) factors, and environmental factors [6–13]. When a large diameter tunnel passes near
some important existing buildings or residential sensitive infrastructure, special attention
should be paid to the ground deformation caused by the shield tunnel, as the safety of
the geological environment is of great importance and may cause potential damage to the
building [14].

In soils below the groundwater level, it is very likely that face flows will occur in the
excavation face during excavation. EPBs are designed to be used in such formations, that
is, rocks and soils that cannot hold themselves even slightly during excavation. In these
machines, it is aimed to control the water input or the flow in the formation during the
excavation phase. Ref. [15] stated that the basic working principle of these machines is to
keep the face cavity under pressure by making it a closed volume in order to control the
water input or soil flow of the land. They defined it as “allowing the formation of a natural
pressure in the cutting head and face cavity by the effect of water pressure in the field
itself”. The critical point here is to balance the face pressure, to control the face material
flow and water flow, and to prevent the formation of settlements on the surface. During
tunneling in the delicate ground, different techniques were developed for the prediction of
surface settlement [16].

At this stage, one of the first and most important questions that come to mind is how
much pressure will be applied to the face in order to prevent any damage to the structures
on the surface. The answer to this question has so many parameters that it is very complex,
especially in difficult ground conditions. Within the scope of this study, an answer to this
complexity was sought and as a result, a mathematical formula was developed.

2. Previous Studies

Although there are many approaches to this issue, some of the most common ap-
proaches in the literature are given in this article. As a result of the excavation process,
depending on the rock properties of the excavated formation, flowing on the face and,
accordingly, settlements occur on the surface. It was determined that the collapse curve (set-
tlement) formed as a result of excavation should be below a certain value so that settlements
do not cause any damage to the surrounding structures, and this value should be in the
range of 1/500 m–1/250 m for light damage level [17]. The face pressure in the tunnel is the
sum of the formation pressure, the groundwater pressure, and the additional (surcharge)
loads caused by the traffic-building loads on the ground (Figure 1). This total pressure
determines the pressure that the EPB machine will apply to the excavation face [18].
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Another approach includes the “N” value, known as the face stability measure. The N
value can be determined by using the given equation [19,20]:

N =
σek + γ·Zo − σa

Cu
(1)

σek: Surcharge from building and traffic loads
According to the values of N, face stability is distinguished as follows:

• 0 < N < 2—Low flowing elastic conditions;
• 2 < N < 4—Limited flowing;
• 4 < N < 6—Plastic flowing;
• N > 6—Serious stability problems on the face can be seen.

Several formulas used to calculate the face pressure that should be applied to the
tunnel face during excavation are given below.

• Ground loss rate [21]

K =
Cu

Em
exp·σek + σsu + γ·Z0 − σa

2Cu
(2)

• Maximum settlement amount [22]

Smax = 0.314·K·D2

i
(3)

• Inflection point value [18,23].

2i
D

= A·
[

Z0

D

]n
(4)

• The maximum slope of the settlement curve [18][
dS
dX

]
max

= 0.606·
[

Smax

i

]
(5)

The given formula is obtained when the above-given relations are combined, and the
necessary simplifications are made [18]:

σf = (σsur + σw + γ·Z0)− 2Cu·
{

ln

(
2.544·

[
Z0

D

]−1.408
·
[

dS
dX

]
max

− ln
(

Cu

Em

))}
(6)

In this formula:

σf = Tunnel face pressure;
σek = Surcharge from building and traffic loads;
σw = Water pressure;
h1 = Depth of the groundwater level from the surface;
γ = Average unit weight of soil;
Z0 = Depth of tunnel axis;
Cu = Cohesion of the excavated formation;
Em = Modulus of elasticity of the excavated formation;
Smax = Settlement value measured on the surface in the tunnel axis;
i = Distance of inflection point from tunnel axis;
A, n = Coefficients depending on the formation and the applied technology.

Face stability in homogeneous soil is evaluated by considering the boundary balance
of a wedge-shaped mass loaded by the prismatic soil mass. The visual in Figure 2 shows
this situation [24,25].
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In Figure 3, the forces acting on the wedge surface in front of the face are given [24].
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In this situation:

• G′, surcharge weight;
• V′ is the vertical force at the intermediate CDEF interface of the wedge-prism resulting

from the effective force;
• Fx, Fz, Fz leakage forces, (Fy forces in the two opposite wedges will cancel each other,

so the force in this direction is not taken into account);
• S′, normal force from the mud support in the tunnel face;
• N′, normal stress on the inclined sliding surface;
• T, shear force on inclined sliding surface.
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Ref. [24], using dimensional analysis and taking into account the linearity of the equi-
librium and failure equations, proposed the following general equation for the boundary
equilibrium state:

s′ = F0γ′D − F1c + F2γ′∆h − F3c∆h/D (7)

In this equation:

• s′, effective support pressure at limit equilibrium;
• D, tunnel diameter;
• H, depth of cover layer (overburden);
• ∆h, h0-hf (where hf, piezometric head in the chamber and h0 elevation of the water table);
• c, cohesion;
• F0, F1, F2, and F3, parameters depending on the internal friction angle of the formation;
• γ′, is the water-saturated unit volume weight of the soil.

The main purpose of the face pressure formulas detailed above is to prevent face
collapse and thus to prevent settlement on the surface (especially in shallow tunnels).
These formulas are successfully used, but there is an absolute settlement on the surface. In
this study, in addition to the other formulas, a new formula that will provide the calculation
of the magnitude of face pressure that will prevent damage to a structure in the tunnel
effect area by limiting the deformation has been emphasized. In the proposed formula,
the structure need not be directly above the tunnel. With this formula, the face pressure
that should be applied to the tunnel face can be calculated with the 3D position in order
to prevent a structure from being damaged by the excavation works from the moment it
enters the affected area by tunnel excavation to the moment it leaves the affected area.

In order to develop the formula, the study was carried out within the scope of the
construction of the III. Stage of the Izmir Metro, the Fahrettin Altay-Ucyol Metro Line.
The feature of the line is that it has very difficult ground conditions. Within the scope of
this study, geological–geotechnical studies, hydrogeological studies, geophysical studies
(GPR measurements), topographic measurement studies, and face pressure observations
on the EPB machine were made. Finally, numerical modeling studies were carried out by
integrating the developed formula with numerical modeling software. The results obtained
are highly similar to the actual data. When the results were examined, it was determined
that there was a significant correlation between the data measured in the field and the data
calculated with the formula. According to these results, an important contribution has been
made to previous research.

3. Material and Methods
3.1. Study Area Location and Geological and Geotechnical Setting

The study area is located on an alluvial plain extending in the E–W direction, 10 km
west of İzmir Province. The south of the area is limited to high regions and the north is the
Aegean Sea. The location map of the study area is presented in Figure 4.

When the western part of Anatolia is examined in terms of tectonic belts, as seen in
Figure 5, there is the Karaburun Belt in the western part, the metamorphic rocks known
as the Menderes Massif in the east, and the İzmir–Ankara Zone in the middle [26]. The
Menderes Massif, which is composed of metamorphic rocks, has gneiss and micaschists in
the lower part and a thick carbonate structure in the upper part [27–29]. Ophiolites, mafic
volcanites, and flysch-type rocks are found in the western part of the Menderes massif.

The Karaburun Zone is located on the west side of the İzmir–Ankara Zone. At the
bottom of this belt are the lower-middle carboniferous limestones and overlying it is a
continuum from the Lower Triassic to the Lower Cretaceous [26,30]. The stratigraphic
section of the study area is given in Figure 6.

The RMR Rating and GSI Rating values and rock classes of the rock structure in the
route as a result of the studies carried out in the drilling holes are given in Table 1 below.
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Table 1. Rock mass ratings and rock definitions in the study area.

Drilling No. RMR Rating RMR Rock Class GSI Rock Identification

YSK-1 29 Weak Rock Blocky/Disturbed
YSK-1 29 Weak Rock Laminated/Foliated/Sheared
YSK-1 49 Medium Rock Very Blocky
YSK-2 42 Medium Rock Blocky/Disturbed
YSK-2 29 Weak Rock Laminated/Foliated/Sheared
YSK-3 29 Weak Rock Laminated/Foliated/Sheared
YSK-3 37 Weak Rock Laminated/Foliated/Sheared
YSK-4 29 Weak Rock Laminated/Foliated/Sheared
YSK-6 29 Weak Rock Laminated/Foliated/Sheared
YSK-6 26 Weak Rock Laminated/Foliated/Sheared
YSK-7 32 Weak Rock Blocky/Disturbed
YSK-8 32 Weak Rock Laminated/Foliated/Sheared
YSK-9 32 Weak Rock Laminated/Foliated/Sheared

YSK-10 30 Weak Rock Laminated/Foliated/Sheared
YSK-12 30 Weak Rock Laminated/Foliated/Sheared
YSK-14 30 Weak Rock Laminated/Foliated/Sheared
YSK-15 32 Weak Rock Laminated/Foliated/Sheared
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Table 1. Cont.

Drilling No. RMR Rating RMR Rock Class GSI Rock Identification

YSK-15 37 Weak Rock Laminated/Foliated/Sheared
YSK-16 32 Weak Rock Laminated/Foliated/Sheared
YSK-16 32 Weak Rock Blocky/Disturbed
YSK-16 32 Weak Rock Laminated/Foliated/Sheared
YSK-17 25 Weak Rock Laminated/Foliated/Sheared
YSK-17 54 Medium Rock Blocky/Disturbed
YSK-18 32 Weak Rock Blocky/Disturbed
YSK-18 34 Weak Rock Blocky/Disturbed
YSK-19 44 Medium Rock Blocky/Disturbed
YSK-19 34 Weak Rock Laminated/Foliated/Sheared
YSK-20 44 Medium Rock Blocky/Disturbed
YSK-20 34 Weak Rock Laminated/Foliated/Sheared
YSK-22 29 Weak Rock Laminated/Foliated/Sheared
YSK-22 32 Weak Rock Blocky/Disturbed
YSK-23 32 Weak Rock Laminated/Foliated/Sheared

3.2. Hydrogeological Studies

Permeability tests were determined in the alluvial sections in the drillings along the
route and permeability values were determined by pressurized water test in the Bornova
Melange unit. Permeability values of the excavation route in general are given in Table 2.

Table 2. Permeability values of geological units.

Bornova Melange
(LU)

Alluvium
(cm/s)

Min. 1.73 9.16 × 10−5

Max. 7.60 1.14 × 10−3

Average 3.91 4.66 × 10−4

3.3. GPR Studies

Ground penetrating radar (GPR), which is one of the fast and non-destructive geophys-
ical methods offering high discrimination, is widely used in the investigation of shallow
underground structures. GPR studies were carried out to determine the water condition of
the ground structure on the tunnel route and whether there is any gap in the ground or
whether there is a geological structure that will cause the EPB machine to be forced within
the scope of this research. Figure 7 shows one of these surface studies and Figure 8 shows
one of the measurements made on the tunnel face.
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of the route.

3.4. Deformation Measurements with LIDAR

LiDAR technology has developed in recent years and has become one of the most
frequently used methods for measuring the effects of excavation in tunneling. The merging
of point clouds can be accomplished in two steps: point clouds contain congruent points
because they are implicitly scanned over each other during acquisition. With the help of
these points, approximate point clouds are subject to the registration process. In the second
stage, it is optimized with the ICP (iterative closest point) algorithm to combine more
precisely, and thus it is combined with the least error rate between different scans. With
these merging techniques, the width of the areal measurements can be increased. Point
cloud merging techniques are given in Figure 9.
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Long-term LiDAR measurements were made to reveal the surface movements along
the metro line on different dates. The periods of these measurements are given in Table 3
and the measurement results are given in Figure 10.
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Table 3. LiDAR measurement dates.

Measurement No. Date

1 December 2020–January 2021
2 May 2021–June 2021
3 November 2021–December 2021
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4. Empirical Development of the Face Pressure Formula

Pressure is applied to the tunnel face to ensure stability in the excavation face in tunnel
excavations made with EPB machines. This pressure must be symmetrical to the pressure
on the excavation face. Some empirical formulas are used to calculate the amount of face
pressure that must be applied. The pressure calculated with these formulas is intended to
prevent inward movement and yield in the tunnel face. However, in some cases, when
the pressure is insufficient, the tunnel face moves inward, or vice versa, in cases where
excessive pressure is applied, there may be swelling on the surface. In both cases, structures
on the surface may be subject to damage. In order to prevent structural damage, a good
excavation period has been planned and a formula has been worked on to prevent damage
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to structures and to keep the tunnel face stable. The data collected from the field studies
mentioned in the previous sections and given above were used in order to develop the new
formula. The important parameter in this formula is the positional state of the structure.
The horizontal, vertical, and longitudinal distance of the structure to the tunnel face and the
change in this distance during the excavation are integrated into the formula. To explain
the issue simply with an example, the positions of the structures (P1, P2, P3, and P4) are
integrated into the formula as given in Figure 11 At this stage, along with the parameters
such as the horizontal, vertical, and longitudinal distance between the center of the tunnel
and the structure, the thickness of the overburden, and the unit volume weight, the angle
(α) that the structure makes with the tunnel face spatially gains importance.
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Figure 11. Representation of the positional angle of the structure with the tunnel face for the
developed formula.

In this part, deformation (D), face pressure (σFP), vertical stress (σVS), the modulus of
deformation (Emass), internal friction angle (Φ), and the horizontal distance between the
place where the deformation is measured and the axis of the tunnel (HD) were examined.
Face pressure developing according to D, σFP, σVS, Emass, Φ, and HD parameters was inves-
tigated to find the most suitable hypersurface using the “Least Squares Method” (LSM),
and the most suitable nonlinear hypersurface was determined. This nonlinear hypersurface
is defined as follows. The following is the hypersurface about the face pressure:

σFP = cos (Φ)∗e(a σvs
Emass +b D

HD +c) (8)

where a, b, and c are coefficients.
In order to find the most suitable coefficients of a and b in the hypersurface function

defined by this formula, it must be linearized and calculated with the LSM. When this
hypersurface is linearized, the following result is obtained.

ln(σFP) = ln(cos Φ) + a
σvs

Emass
+ b

D
HD

+ c (9)

Here,

a
σvs

Emass
+ b

D
HD

+ c = ln(σFP)− ln(cos Φ) (10)

And,

a
σvsi

Emassi

+ b
Di

HDi
+ c = ln

(
σFPi

)
− ln(cos Φi) + εi (11)

briefly.
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where Ei is the error of the term.
In finite numbers of experimental data, there should be sufficient data to minimize

the error. The linear equation system given by Equation (11) is minimized by LSM and the
function given in Equation (12).

f(a, b, c) =
n

∑
i=1

[
a

σvsi

Emassi

+ b
Di

HDi
+ c − ln

(
σFPi

)
+ ln(cos Φi)

]2
(12)

There,

∂ f
∂a = 2

n
∑

i=1

[
a

σvsi
Emassi

+ b Di
HDi

+ c − ln
(
σFPi

)
+ ln(cos Φi)

]
σvsi

Emassi
= 0

∂ f
∂b = 2

n
∑

i=1

[
a

σvsi
Emassi

+ b Di
HDi

+ c − ln
(
σFPi

)
+ ln(cos Φi)

]
Di

HDi
= 0

∂ f
∂c = 2

n
∑

i=1

[
a

σvsi
Emassi

+ b Di
HDi

+ c − ln
(
σFPi

)
+ ln(cos Φi)

]
∗1 = 0

(13)

From here,

a
n
∑

i=1

(
σvsi

Emassi

)2
+ b

n
∑

i=1

(
Di

HDi
∗ σvsi

Emassi

)
+ c
(

σvsi
Emassi

)
=

n
∑

i=1

[
ln (σFPi)− ln(cos Φi)

σvsi
Emassi

]
a

n
∑

i=1

(
σvsi

Emassi
∗ Di

HDi

)
+ b

n
∑

i=1

(
Di

HDi

)2
+ c

n
∑

i=1

(
Di

HDi

)
=

n
∑

i=1
[ln(σFPi)− ln(cos Φi)]∗ Di

HDi

a
n
∑

i=1

(
σvsi

Emassi

)
+ b

n
∑

i=1

(
Di

HDi

)
+ c

n
∑

i=1
1 =

n
∑

i=1
[ln (σFPi)− ln(cos Φi)]

(14)

Is obtained. If mathematically organized,
∑
(

σvsi
Emassi

)2
∑
(

Di
HDi

∗ σvsi
Emassi

)
∑
(

σvsi
Emassi

)
∑
(

σvsi
Emassi

∗ Di
HDi

)
∑
(

Di
HDi

)2
∑
(

Di
HDi

)
∑

σvsi
Emassi

∑
(

Di
HDi

)
∑ 1


a

b
c

 =

∑ ln (σFPi)− ln(cos Φi) ∗
σvsi

Emassi

∑ ln (σFPi)− ln(cos Φi) ∗ Di
HDi

∑ ln (σFPi)− ln(cos Φi)

 (15)

is the equation obtained. From here,

A =


∑
(

σvsi
Emassi

)2
∑
(

Di
HDi

∗ σvsi
Emassi

)
∑
(

σvsi
Emassi

)
∑
(

σvsi
Emassi

∗ Di
HDi

)
∑
(

Di
HDi

)2
∑
(

Di
HDi

)
∑

σvsi
Emassi

∑
(

Di
HDi

)
∑ 1

 (16)

and,

B =

∑ ln (σFPi)− ln(cos Φi) ∗
σvsi

Emassi

∑ ln (σFPi)− ln(cos Φi) ∗ Di
HDi

∑ ln (σFPi)− ln(cos Φi)

 (17)

x =

a
b
c

 (18)

Since det(B) ̸= 0, the system of linear equations has only one solution. Therefore,

x = A−1B =

a
b
c

 (19)
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is the equation obtained. If the data from the study area are applied,

A = 102

0.000421995442265 0.000007730749270 0.03918470896200
0.000007730749270 0.000000210357016 0.000631972065900
0.039184708960200 0.000631972065900 4.06000000000000

 (20)

B = 103

0.019991246624049
0.000328923466693
2.033244966839170

 (21)

Is obtained. From Equation (19),

x = A−1·B =

a
b
c

 = 102

 0.930303066642273
−2.450307027024828
0.041482602799684

 (22)

In this situation, hypersurface can be written as,

σFP = cos (Φ)∗e(93.03 σvs
Emass −245.03 D

HD +4.149) (23)

Verification of New Formula

When the face pressure data applied to the excavation surface and the face pressure
data calculated from the formula produced within the scope of this research were compared,
the regression value R2 ≈ 0.9451 was obtained (Figure 12). The performance of the formula
is considered to be significantly good with the high correlation obtained.
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Figure 12. Comparison of applied face pressure data with estimated face pressure data.

5. Numerical Modeling Analysis with the Developed Formula

The formula developed within the scope of the research was integrated into the
numerical modeling software used with new code which was created by the authors. In
this code, all parameters in the formula were defined. The code takes parameters such
as model content, groundwater level, strength, etc., from the input file. It calculates the
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required amount of face pressure using the data in the input file and applies this pressure
to the tunnel face. The tunneling methodology is defined as in the software’s tutorial [36].
Numerical modeling analyses are tools that seek an answer to the question of “what is
going on” in rock mechanics and enable us to understand the events [37]. In order to see the
results of the analyses made with the developed formula and how the formula works, one
of the numerical modeling analyses made on the tunnel sections is given. Mohr–Coulomb
criteria were used for the rock formation in these analyses. Table 4 shows the rock and its
parameters and Table 5 shows structure parameters used in numerical modeling.

Table 4. Rock parameters used in numerical modeling.

Rock Type Unit Volume Weight
(kN/m3)

Deformation Modulus
(kN/m2)

Poisson’s
Ratio

Internal Friction
Angle (◦)

Cohesion
(kPa)

Aluvion 20 125,000 0.34 27 20
Bornova Melenge 24 214,000 0.3 34 47

Table 5. Construction parameters used in numerical modeling.

Material Unit Volume Weight
(kN/m3)

Deformation Modulus
(kN/m2)

Poisson’s
Ratio

Thickness
(m)

Concrete 27 31,000,000 0.15 0.25
Plate (for basement of constructions) 50 30,000,000 0.15 0.3
Plate (for rest of the constructions) 33.3 30,000,000 0.15 0.25

In order to predict the amount of deformation that may occur in the location of the
structure, nine structures are integrated into the numerical model. This scenario reflects the
area where the tunnel is a small building complex located at Km: 3+215. The first version of
the model created for the numerical modeling made with this formula is given in Figure 13.
In the newly developed formula, the deformation value is entered as 30 mm. The reason
for this is to stay in the safer area. Figure 14 shows the longitudinal profile of the tunnel
designed in the model. The modeling results are given in Figures 15–17.
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In the measurements made during and after the excavation in the tunnel route area,
which is the subject of the numerical model, the maximum amount of settlement on the
surface in the area where the structures are located is 5.8 mm, and the maximum amount of
movement in the lateral direction is 23 mm. As a result of the numerical modeling analysis
in which the new formula was integrated, the maximum vertical settlement amount was
estimated as 5.2 mm and the horizontal deformation amount was estimated as 28 mm. For
the 28 mm settlement, the face pressure is calculated as follows:

σFP = cos(0.473) ∗ e(93.03 923.704kN/m2

65087.86108kN/m2 −245.03 0.028m
54.94m +4.149)

σFP = 1.863036 Bar (24)

These results show that with the newly developed formula, the amount of face pressure
that will not only ensure tunnel face stability but also not damage the structures on the
surface can be calculated.
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6. Conclusions

It can easily be seen that multiple engineering strategies were used while preparing
this study. Tunnels have the most prominent place among transportation solutions in big
cities where construction is intense. At the same time, it is desirable that the structures are
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not damaged by these tunnels. EPB-type machines are the best friend of tunnelers in this
solution. These machines apply symmetrical loads to the excavation face while performing
excavation operations. However, correct face pressure must be applied to avoid damage to
structures during the use of these machines. Correct selection of the face pressure prevents
the collapse of the tunnel face. Thanks to the new formula developed within the scope of
this study, the flows in the tunnel face can be prevented and at the same time, the risk of
damage to the structures on the tunnel route is eliminated. This formula considers the three-
dimensional position of the structure in addition to the formulas developed previously. In
addition to parameters such as the characteristics of the overburden rock on the tunnel,
groundwater conditions, and the positional information of the structure used, the face
pressure required to be applied along the route can be easily calculated. In Figure 12, the
actual mirror pressure data are compared with the mirror pressure data calculated as a
result of the formula derived within the scope of the study. As can be seen in the figure,
there is a correlation of approximately 94%. In this context, it has been concluded that the
results obtained as a result of the formula integrated into the numerical model are highly
accurate. The high correlation between the new formula proposed in this study and field
measurements will further reduce the risk of damage to the structures on the tunnel route
by using the formula.
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