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Abstract: Let D = (V(D), A(D)) be a digraph of order n and letr € S C V(D) with2 < |§] < n.
A directed (S, r)-Steiner path (or an (S, r)-path for short) is a directed path P beginning at  such
that S C V(P). Arc-disjoint between two (S, r)-paths is characterized by the absence of common
arcs. Let A;S’/V(D) be the maximum number of arc-disjoint (S, r)-paths in D. The directed path k-arc-
connectivity of D is defined as A} (D) = min{/\g/y(D) | S € V(D),|S| = k,r € S}. In this paper,
we shall investigate the directed path 3-arc-connectivity of Cartesian product Ag(GDH ) and prove
that if G and H are two digraphs such that 6°(G) > 4, °(H) > 4, and x(G) > 2, x(H) > 2, then
/\g (GOH) > min{2x(G),2x(H)}; moreover, this bound is sharp. We also obtain exact values for
/\g (GOH) for some digraph classes G and H, and most of these digraphs are symmetric.

Keywords: connectivity; directed path k-connectivity; Cartesian product

1. Introduction

For a detailed explanation of graph theoretical notation and terminology not provided
here, readers are directed to reference [1]. It should be noted that all digraphs discussed
in this paper do not contain parallel arcs or loops. The set of all natural numbers from 1
to n is denoted by [n]. If a directed graph D can be obtained from its underlying graph
G by replacing each edge in G with corresponding arcs in both directions, then D is said

to be symmetric, denoted as D = G . The notation T , is used for a symmetric digraph

whose underlying graph forms a tree of order n. The notation %)n is used for a symmetric
digraph whose underlying graph forms a cycle of order n. The cycle digraph of order n is

denoted by C . We denote the complete digraph of order n as K .

The well-known Steiner tree packing problem is characterized as follows. Given a
graph G and a set of terminal vertices S C V(G), the goal is to identify as many edge-
disjoint S-Steiner trees (i.e., trees T in G with S C V/(T)) as feasible. This particular
problem, along with its associated topics, garners significant interest from researchers
due to its extensive applications in VLSI circuit design [2—4] and Internet Domain [5]. In
practical applications, the construction of vertex-disjoint or arc-disjoint paths in graphs
holds significance, as they play a crucial role in improving transmission reliability and
boosting network transmission rates [6]. This paper will specifically delve into a variant
of the directed Steiner tree packing problem, termed the directed Steiner path packing
problem, closely interconnected with the Steiner path problem and the Steiner path cover
problem [7,8].

We now consider two types of directed Steiner path packing problems and related
parameters. Let D = (V(D), A(D)) be a digraph of order n and letr € S C V(D) with
2 < |S] < n. A directed (S, r)-Steiner path, or simply an (S, r)-path, refers to a directed path
P originating from r such that S is a subset of the vertices in P. Arc-disjoint between two
(S, r)-paths implies that they share no common arcs, while two arc-disjoint (S, )-paths are
internally disjoint when their common vertex set is precisely S. Let /\g,r(D) (and Ké},r (D))
represent the maximum number of arc-disjoint (and internally disjoint) (S, r)-paths in D,
respectively. The Arc-disjoint (or Internally disjoint) Directed Steiner Path Packing problem
is formulated as follows. Given a digraph D and letting r € S C V(D), the objective is
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to maximize the count of arc-disjoint (or internally disjoint) (S, r)-paths. The notion of
directed path connectivity, which is a derivative of path connectivity in undirected graphs,
is intricately linked to the directed Steiner path packing problem and serves as a logical
progression from path connectivity in directed graphs (refer to [5] for the initial presentation
of path connectivity). The directed path k-connectivity [9] of D is defined as

Kf(D) = min{Ké’,r(D) | SCV(D),|S|=kreS}
Similarly, the directed path k-arc-connectivity [9] of D is defined as

AL (D) = min{A} (D) |S C V(D),|S| =kre S}

The concepts of directed path k-connectivity and directed path k-arc-connectivity are
synonymous with directed path connectivity. In the context of k = 2, x} (D) equates to x(D)
and A} (D) equates to A(D), where k(D) and A(D) denote vertex-strong connectivity and
arc-strong connectivity of digraphs, respectively. Hence, these parameters can be viewed as
extensions of the classical connectivity measures in a digraph. It is pertinent to emphasize
the close relationship between strong subgraph connectivity and directed path connectivity;
refer to [10-12] for further insights on this interconnected topic.

It is a widely recognized fact that Cartesian products of digraphs are of great interest
in graph theory and its applications. For a comprehensive overview of various findings on
Cartesian products of digraphs, one may refer to a recent survey chapter by Hammack [13].
In this paper, we continue research on directed path connectivity and focus on the directed
path 3-arc-connectivity of Cartesian products of digraphs.

In Section 2, we introduce terminology and notation on Cartesian products of digraphs.
In Section 3, we prove that if G and H are two digraphs such that (50(G) >4, 50(H ) >4,
and x(G) > 2, k(H) > 2, then

AL (GOH) > min{2x(G),2x(H)};

moreover, this bound is sharp. Finally, we obtain exact values of Ag(GDH ) for some
digraph classes G and H in Section 4.

2. Cartesian Product of Digraphs

Consider two digraphs G and H with vertex sets V(G) = {u; | i € [n]} and
V(H) = {v; | j € [m]}. The Cartesian product of G and H, denoted by GUIH, is a
digraph with vertex set

V(GOH) = V(G) x V(H) = {(x,x') | x € V(G),x" € V(H)}.

The arc set of GLJH, denoted by A(GOH), is given by {(x,x')(y,y") | xy € A(G),
x' =y, orx =y, x'y € A(H)}. It is worth noting that Cartesian product is an associative
and commutative operation. Furthermore, GLIH is strongly connected if and only if both
G and H are strongly connected, as shown in a recent survey chapter by Hammack [13].

In the rest of the paper, we will use u; ; to denote (u;, v;). Additionally, G(v;) will refer
to the subgraph of GLH induced by the vertex set {u;; | i € [n]} with j € [m], while H(u;)
will denote the subgraph of GLH induced by the vertex set {u;; | j € [m]} withi € [n]. Itis
evident that G(v;) is isomorphic to G and H(u;) is isomorphic to H. To illustrate this, refer
to Figure 1 (this figure comes from [14]), where it can be observed that G(v;) is isomorphic
to G for 1 < j <4, and H(u;) is isomorphic to H for 1 <i < 3.

For distinct indices j1 and j» with 1 < j; # j» < m, the vertices u; ;, and u; j, belong to
the same digraph H(u;), where u; is an element of V(G). u; ;, is referred to as the vertex
corresponding to u; ;, in G(vj,). Similarly, for distinct indices iy and ip with 1 < iy # i <n,
uj, ; is the vertex corresponding to u;, ; in H(u;, ). Analogously, the subgraph corresponding
to a given subgraph can also be defined. For instance, in the digraph (c) depicted in Figure 1,
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if we label the path 1 as P; (and the path 2 as P,) in H(u1) (H(u2)), then P, is identified as
the path that corresponds to P; in H(ujy).

v G(v G(v
" 1 H(ul)( 1) o e S 4)
u g , .
2 H(Mz)" Y :w 2 :w s 'w
u3 v3 H(u?))" :" :" '"
G H
(a) (b) (c)

Figure 1. G, H and their Cartesian product [14] (1 denotes arc uj 17, t1ou13 and arc uj3uq4;
2 denotes arc up 1up 5, tpptip 3 and arc up 3up 4).

Sun and Zhang proved some results of directed path connectivity, that is, the following
lemma.

Lemma 1 ([9]). Let D be a digraph of order n, and let k be an integer satisfying 2 < k < n. The
following statements are valid:

(1): A,fﬂ(D) < A(D)whenk <n—1.

(2): k(D) < A¥ (D) < 8°(D) = min{é* (D), (D)}.

Lemma 2 ([15]). K(?n) =n-—1

3. A General Lower Bound
Now we will provide a lower bound for A} (GOH).

Theorem 1. Let G and H be two digraphs such that §°(G) > 4, 6°(H) > 4, and x(G) > 2,
k(H) > 2. We have
AL (GOH) > min{2x(G),2x(H)}.

Furthermore, this bound is sharp.

Proof. It suffices to show that there are at least 2x(G) or 2x(H) arc-disjoint (S, )-paths for
any S C V(GOH) with |S| = 3,7 € S. Let S = {x,y,z} and let r = x. Without loss of
generality, we may assume x(G) < x(H) and consider the following six cases.

Case 1. Let x, y and z be in the same H(u;) or G(v;) for some i € [n], j € [m]. Without loss
of generality, we may assume that x = 11, y = 11,z = uz;. In this case, our overall goal
is that we will use arc-disjoint paths between x and y in G(v1), y and z in G(v; ), x and its
out-neighbors in H(u1), y and its in-neighbors in H(u;), z and its in-neighbors in H(u3),
and combine them together to form the required arc-disjoint paths. The general idea of the
proof process is briefly described in Figure 2. The vertices and paths contained in Figure 2
are explained below.

Let S; = {x,y}, r1 = x. Itis known that there are at least x(G) internally disjoint
(S1,71)-paths in G(v1), denoted as Pj; (i € [x(G)]). Considering S} = {y,z}, | = y, there
are at least x(G) internally disjoint (S7, 7} )-paths in G(v;), denoted as Py; (j € [x(G)]). For
each j € [k(G)], let us;1 be the out-neighbor of y in Py;j; clearly these out-neighbors are
distinct. Similarly, an in-neighbor uy, (j € [k(G)]) of z in Pyj can be chosen such that
these in-neighbors are distinct. In H(uq), if there is a vertex that is not an out-neighbor
of x, then choose such a vertex as u; ,, where a # 1. If there is no such vertex, that is, all
vertices are out-neighbours of x, then choose any vertex as uj ,, where a # 1. In H(uy),
let S = {x,u1,}, ¥, = x, and it is established that there exist at least x(G) internally
disjoint (S5, })-paths, say ﬁzj (j € [k(G)]). In G(va), let S5 = {uyauzat, 15 = U1,
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and it is established that there exist at least x(G) internally disjoint (S}, r5)-paths, say 132j
(j € [k(G)]). In H(up), let S = {y, upa}, ry = U4, and it is established that there exist at

least x(G) internally disjoint (S}, r} )-paths, say Ezj (j € [x(G)]).

oU2 4

Upa

Py;

Uz 4

Figure 2. Depiction of the arc-disjoint paths found in Case 1 of the proof of Theorem 1.

In H(uy), if there is a vertex that is not an out-neighbor of x in 132]', then choose such
a vertex as 17 4, with d ¢ {1,a}. If there is no such vertex, then choose any vertex as uj 4,
withd ¢ {1,a}. In H(up), with Sy = {y, up 4} and r, = y, it is known that there are at least
x(G) internally disjoint (S, 72)-paths, denoted as Py; (i € [k(G)]). For each i € [x(G)],
let uy 7, be the out-neighbor of y in Py;; clearly these out-neighbors are distinct. For each
i € [k(G)], since 8°(G) > 4, an out-neighbor of Uy r, in G(vy,), denoted by uy, f, (b € [n]),
can be chosen, with b ¢ {1,3}. If there exists a vertex Us;1 & {u1,1,u31}, letb = s;. If there
is no such vertex, then let b # k;. In H(uy), ﬁlli is the (S3,r3)-path corresponding to Py;,
where S3 = {uy1,up 4}, and r3 = 1y ;1. In ﬁlll-, the path from vertex uy, f, to 1y 4 is denoted
as F/lli. Let Sy = {upq,u34}, 14 = upg4, and it is established that there exist at least x(G)
internally disjoint (Sy, r4)-paths, say Py; (i € [x(G)]). If up g, = tpq (t € [K(G)]), then let
uyg & Py in Pyy. In H(u3),let S5 = {u3 4,2}, r5 = u3 4, and it is established that there exist
at least x(G) internally disjoint (Ss, r5)-paths, say Pq; (i € [x(G)]). N

In H(uy), if there is an out-neighbor of x that is not an out-neighbor of x in P,;, then
choose such a vertex as uj ., with ¢ ¢ {a,d}. If there is no such vertex, then choose any
out-neighbor of x as uy ., with ¢ ¢ {a,d}. And Usj,c is an out-neighbor of Usj1 in H (usj). In
G(ve), Flzj is the (Sg, r5)-path corresponding to Py, where Si = {ua, u3c} and 15 = .
In Fé]-, the path from vertex us;c to uy,  is denoted as F’zlj. If ug, 1 = g, 1 (t € [k(G)]), then
Py = {ytts, 1, us,12}. Mgy = 2 (1 € [k(G)]), then Py = {yz}. Ifur € Py (h € [x(G))),
then u; . ¢ Pyy,. In H(uk],), with S’6j = {ukj,C/ ukj,l}r and rgj = U, it is known that there
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exist at least x(G) internally disjoint (5’6]_, rg], )-paths. Then in these paths, one of the paths
DPy; (j € [x(G)]) is chosen, with U, & D,;.

Subcase 1.1. In the set {usj,l, “kj,l}/ there is no vertex such that Us;,1 = X OF Up, | = X, and
the vertex z is not in path Py;. We now construct the arc-disjoint (S, r)-paths by letting

Py; = Py UPY; U BLU Py U{yua,p, p puiy 1, },1 € [k(G)],

Pyj = Pyj U PyjU Poj UPy; U By U {yusg 1, us s w1z}, € [(G)]\ {t,1},

Py = Py U Py UPRU Pa,

Py = Py U Py UPyU Py

Then we obtain 2x(G) arc-disjoint (S, r)-paths.
Subcase 1.2. In the set {us].,l, uk]',l}/ there is no vertex such that Us;1 = X OT U, 1 = X, and
there exist z € Py, (h € [x(G)]), but there is no arc ;12 in path Py,. Let Py, = Pyj,. The
other paths are the same as Subcase 1.1.
Subcase 1.3. There is an arc uy, 1z in path Py, ({r,h} C [«(G)]). In the set {11, 10,1} (7 #
r), there is no vertex x. We can find a path Ezr such that uy 7, ¢ /I;Zr- If up, € Flllh, then let
Up, & Py, 1f Uy g € 131;,, thenlet uy 4 ¢ Dy, In 13111 and Elh, letuy 4 & 131;, and u3, ¢E1h- Let

Py, = Py,

Py, = Dy, UPyU Py UPy, U BiyU Py, Ulyin g, in iy 5, }-

The other paths are the same as Subcase 1.1.
Subcase 1.4. The set {usj,l, ukjll} contains the vertex us ; = x and U1 # x. There is no
arc ug, 1z in Pyg. In Py, there is an arc xug, 1 (7 € [x(G)], g1 € [n]). In Py, there exists an
out-neighbor u ¢4, of x, where g, € [k(G)] \ {a,c,d}, and this path is denoted by Pa;.

Subcase 1.4.1. There is no arc xug, 1 in Py;.

In Plzlq, the path from vertex ug, ¢ to uy, . is denoted as F;’,; In G(vg,), with
S; = {us g, ti1,g,} and 17 = u3,,, it is known that there exist at least x(G) internally
disjoint (S, r;)-paths. Then in these paths, one of the paths ﬁq is chosen, with uy, o, & ﬁq.
Ifupge, € ﬁq, then let up ¢, € P2;. In ﬁzq, the path from vertex uy ¢, to u; ; is denoted as Pvﬁq.
Let

==/ ~ =~ = f -

Pyg = Py UPy U P U Péq U PyyU Pag U{xug, 1, g, 1Ug, c, ukqllz,zugrgz}.

Ifug 1 = Uk, 1, then Pp; = 15,7 U Pvéq U ﬁzqu Py U{xuglll,ukq,lz,zu&gz}. The other
paths are the same as Subcases 1.1-1.3.

Subcase 1.4.2. If there exists an arc xug, 1 in ﬁlg (g € [x(G)]), then in H(ug,), with
Se = {ug, 1, Ug,,q} and 16 = Ug o, it is known that there exist at least x(G) internally

disjoint (S, 76 )-paths. Then in these paths, one of the paths ﬁg is chosen, with ug, 4 ¢ ﬁg. In

ﬁlg, the path from vertex i, 1 to y is denoted as ﬁ{ ¢ Let Py, be the same as in Subcase 1.4.1.
Let

~ = =I5 -

Pig =Py U Pl’g U P1g U PrgU Prg U{xuyg,, U1,gylgy 800 YU, £y s Mz,fgub,fg}-

The other paths are the same as Subcases 1.1-1.3.

Subcase 1.5. In the set {usjrl, “k]-,l}/ there exists vertex Uk,1 = X. And there is no arc Uk, 12
in ﬁlp'

In ﬁzj, the~re is an out-neighbor u ¢ of x such that ¢ € [x(G)] \ {a,¢,d}, and this path
is denoted by P,,. In G(vy), let Sg = {u3 g, u14}, 15 = U3¢, and we know there exist at least
x(G) internally disjoint (Sg, 5)-paths. Then in these paths, we choose one of the paths P,
and let up ¢ ¢ 13,,. In ﬁzp, we denote the path from vertex uy ¢ to uy, as ﬁép. Let

Pzp = ﬁp U ﬁép @] Psz Pap U{XZ, Zu3,g}.
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The other paths are the same as Subcases 1.1-1.3.

Case 2. Let x and y be in the same G(v;). Let x and z be in the same H(u;) for some i € [n],
j € [m]. Without loss of generality, we may assume that x = 11,y = 1,z = ujp. In
this case, our overall goal is that we will use arc-disjoint paths between x and y in G(v1), ¥
and its out-neighbors in H(u3), z and its in-neighbors in G(v;), and combine them together
to form the required arc-disjoint paths. The general idea of the proof process is briefly
described in Figure 3. The vertices and paths contained in Figure 3 are explained below.

Py

Figure 3. Depiction of the arc-disjoint paths found in Case 2 of the proof of Theorem 1.

Considering S = {x,y}, 1 = «x, it is known that there exist at least x(G) inter-
nally disjoint (Sy,71)-paths in G(v;), denoted as Pj; (i € [k(G)]). Let So = {y,uz0},
r, =y, and there exist at least x(G) internally disjoint (S, 2)-paths in H(uy), denoted as
Py (i € [k(G)]). For each i € [k(G)], let uy,f, be the out-neighbor of y in Py;; clearly these
out-neighbors are distinct. For each i € [x(G)], an out-neighbor uy, ¢, of u, r, in G(vy,) can
be chosen, with b # 1. In H(u;), with S3 = {u1,up,} and r3 = up ;. ﬁlli is the (S3,73)-
path corresponding to Py;. In Pj;, the path from vertex uy, f, to 1y 5 is denoted DPy:. With
Sy = {upy,z} and ry = uyp, it is known that there exist at least x(G) internally disjoint
(S4,74)-paths in G(vy), denoted as Py; (i € [k(G)]). If Uy = upp, thenupy ¢ Pig. The
arc-disjoint (S, r)-paths can be constructed as

Py; = Py UP}; U P, U {yua,f ua g g}, 1 € [K(G)].

Likewise, we can identify x(G) arc-disjoint (S, r)-paths from x to z and subsequently
to y. Consequently, we can derive 2x(G) arc-disjoint (S, r)-paths.

Case 3. Let x, y and z be in different H(u;) and G(v;) for some i € [n], j € [m]. Without loss
of generality, we can assume that x = 111, y = U2,z = u33. Inthis case, our overall goal
is that, we will use arc-disjoint paths between x and its out-neighbors in H(u1 ), y and its
out-neighbors in H(uy), z and its in-neighbors in G(v3), x and its out-neighbors in G(v1), ¥
and its out-neighbors in G(v;), z and its in-neighbors in H(u3), and combine them together
to form the required arc-disjoint paths. The general idea of the proof process is briefly
described in Figure 4. The vertices and paths contained in Figure 4 are explained below.
Considering S1 = {x, 151}, 11 = x, it is known that there exist at least x(G) internally
disjoint (Sy,71)-paths in G(v;), denoted as Pj; (i € [k(G)]). Let S = {ua1,y}, o = up 1,
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and there exist at least «(G) internally disjoint (S, 7, )-paths in H(u3), denoted as Py; (i €
[k(G)]). Considering S| = {x,u1,}, rj = x, it is known that there exist at least x(G)
internally disjoint (S}, 7])-paths in H(u;), denoted as 152]- (j € [k(G)]). Let S5 = {u12,y},
é = U1, and there exist at least x(G) internally disjoint (S}, 5)-paths in G(v;), denoted as
Py; (j € [x(G)]). In H(up), with S5 = {y,up3}, 3 = y, it is known that there exist at least
x(G) internally disjoint (S5, 73)-paths, denoted as Py;. For each j € [x(G)], let u, f, be the
out-neighbor of y in Pj, clearly these out-neighbors are distinct.

Uy

By
Figure 4. Depiction of the arc-disjoint paths found in Case 3 of the proof of Theorem 1.

In G(vp), with S3 = {y, u3}, r3 = y, it is known that there exist at least x(G) internally
disjoint (S3,73)-paths in G(v;), denoted as Py;. For each i € [k(G)], let u, > be the out-
neighbor of y in Py;, clearly these out-neighbors are distinct. For each i € [x(G)], an
out-neighbor of us,» in H(us,;) can be chosen, denoted by us,. (c € [m]), with ¢ ¢ {1,3}.
Similarly, an out-neighbor of us g, in G(v f/.) can be chosen, denoted by uy,f, (b € [n]), with
b¢{1,3}.

In G(vc), with Sy = {upc, Uz}, 14 = up,. Fii is the (S4, r4)-path corresponding to Py;.
In P};, the path from vertex us, to us, is denoted as Py;. In H(us), with S5 = {uz,z},
r5 = uz., and it is known that there exist at least x(G) internally disjoint (Ss, r5)-paths,
say Dy;. In H(vp), with S = {upo, up3}, ) = upp, F/z]- is the (S}, ry)-path corresponding
to Py;. In path ﬁlz]-, the path from vertex uy, s, to 5 is denoted as P;’]-. In G(v3), with
St = {up3,2}, rt = uy3, and it is known that there exist at least «(G) internally disjoint
(S%,r5)-paths in G(v3), say 152j. If ug, » = uzp, then uzy ¢ Py (k € [x(G)]). Ifuz; € Py,
then uz1 ¢ Py (t € [k(G)]). Similarly, if up s = ua3, then ups ¢ Py, (r € [k(G)]). If
U3 € Py, then uy 3 ¢ Py, (h € [k(G)]). The arc-disjoint (S, r)-paths can be constructed as

Py; = Py U Py UPY; U Py U {yg, o, 15,005,

sz = 132] U 1/52] U ﬁg] U p2] U {yuzrﬁ,uzrfjub,fj}.

Then we obtain 2x(G) arc-disjoint (S, r)-paths.

Case 4. Let x and y be in the same H(u;). Let z, x, and y be in different G(v;) and let z, x
be in different H(u;), for some i € [n], j € [m]. Without loss of generality, we can assume
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that x = up1, ¥y = u22,z = uz3. In this case, our overall goal is that we will use arc-disjoint
paths between x and y in H(u5), y and its out-neighbors in G(v,), z and its in-neighbors
in H(u3), x and its out-neighbors in G(v;), y and its out-neighbors in H(uy), z and its
in-neighbors in G(v3), and combine them together to form the required arc-disjoint paths.
The general idea of the proof process is briefly described in Figure 5. The vertices and
paths contained in Figure 5 are explained below.

X Py;

Uy1e

Figure 5. Depiction of the arc-disjoint paths found in Case 4 of the proof of Theorem 1.

Considering S; = {x,y}, r1 = x, it is known that there exist at least x(G) internally
disjoint (S1,71)-paths in H(uy), denoted as Py; (i € [k(G)]). In G(v1), with S} = {x,u31},
and r} = x, it is known that there exist at least x(G) internally disjoint (S}, r})-paths,
denoted as 132j. In H(uy), with S; = {uq1,u12}, and ), = uy 1, it is known that there exist
at least x(G) internally disjoint (S, r)-paths, denoted as ﬁzj. In G(vy), with S5 = {u1,y},
and r§ = uyp, it is known that there exist at least «(G) internally disjoint (S}, r4)-paths,
denoted as Ezj. Let 11,2, s e, Ua ub,f].,Pli, [32]», ﬁllli and F/z/j be the same as in Case 3.

If Us,2 = U32, then Uuso ¢ plk (k S [K(G)D If u2,fr = U3, then Uz 3 ¢ 1527 (7’ € [K(G)])
If uy3 € Py, then uyz ¢ Py, (h € [k(G)]). fuy; € Dy, then up1 & Py (t € [k(G)]). If
U3 € Py, then uy 3 & Py (1 € [k(G)]).

Subcase 4.1. If there exists no vertex u, £ = X Let
~ =
Pll - Pll U Pll U Pll U {]/us,v,Z/ uS,‘,Z/ uSi,C}/
~ = = < -
sz = sz U sz @] sz U P2]'U Pj; U{yuzrf],,uz,f].ub/fj}.

Subcase 4.2. If there exists a vertex u r, = x (¢ € [k(G)]), then in G(v1), there exists an

out-neighbor uy; of x. If uy 1 € 132]-, this path is denoted by 1328.
In H(u3), there exists an out-neighbor u3 ¢, of z such that g1 € [m] \ {c,2,1}. In G(v2),

there exists an in-neighbor ug, » of y such that g> € [n] \ {1,b,3}. If ug,» € Ezj, this path is

denoted by Ezg- Then in H(ug,), with S} = {ug, ¢\, g, 2}, and ry = ug, ¢, it is known that
there are at least x(G) internally disjoint (S}, )-paths. One such (S}, r;)-path is chosen,
denoted as Py, with ug,5 ¢ Py. In G(vg,), with S5 = {u3g,, 1, ¢, }, and vl = ug,, it is
known that there are at least x(G) internally disjoint (Sf, 5 )-paths. One such (S, r5)-path
is chosen, denoted as P¢, with u bar ¢ Pg. Then, Pyg is constructed as

Py, = Plzlg U Dy UPg U Py U {xup1,2u3,,, 11, 2y }-

The other paths are the same as Subcase 4.1. Then we obtain 2x(G) arc-disjoint
(S, r)-paths.
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Case 5. Let x and y be in the same H(u;). Let y and z be in the same G(v;), for some i € [n],
j € [m]. Without loss of generality, we can assume that x = 111, ¥ = U1,z = . Inthis
case, our overall goal is that we will use arc-disjoint paths between x and y in H(u1), y and
z in G(v7), x and its out-neighbors in G(v1), x and its out-neighbors in G(v1), z and y in
G(v7), and combine them together to form the required arc-disjoint paths. The general idea
of the proof process is briefly described in Figure 6. The vertices and paths contained in
Figure 6 are explained below.

ﬁ\ Py
sz
ﬂqu,b
~ —
Pz]' PZ]
ﬂuk]',b
Uzle

Pyj
Figure 6. Depiction of the arc-disjoint paths found in Case 5 of the proof of Theorem 1.

It is known that there exist at least x(G) internally disjoint (S1,71)-paths in H(u1),
denoted as Py; (i € [k(G)]), where S; = {x,y} and r; = x. In G(v,), there exist at least
x(G) internally disjoint (S, 7;)-paths, denoted as Py; (i € [k(G)]), where S, = {y,z}
and r, = y. Similarly, in G(v;), there exist at least x(G) internally disjoint (S}, 7})-
paths, denoted as ﬁ2j (j € [k(G)]), where S] = {x,up;1} and r{ = x. In H(uy), there
exist at least x(G) internally disjoint (S}, r5)-paths, denoted as ﬁzj (j € [x(G)]), where
Sy = {uz,1,z} and ra = up;1. In G(vy), there exist at least x(G) internally disjoint (S3, 75)-
paths, denoted as P; (j € [x(G)]), where S3 = {z,y} and r3 = z. For each j € [x(G)], let
us, 2 be the in-neighbor of y in sz, and clearly these in-neighbors are distinct. Similarly, let
U2 (j € [k(G)]) be the out-neighbor of z in Py;. For each j € [x(G)], an out-neighbor U b
of U2 s chosen in H(uk],), where b # 1.

In G(vp), with S} = {upp, u1,} and 1) = uy,. ﬁlzj is the (S}, r})-path corresponding
to Pyj. In Plzj, the path from vertex iy, ; to us, ; is denoted as ﬁgj. Then, in H(us;), with
ng = {us;p 52} and rgj = U, it is known that there exist at least x(G) internally
disjoint (Sg/,, rgj)—paths. One such (Sg/,, rgj)—path, denoted as By; (j € [k(G)]), is chosen, with
Us;1 ¢ 152]-. The arc-disjoint (S, r)-paths can be constructed as

Py = Py UPy;, Y

sz = sz U sz U sz U Pz]' U {zuk],g, Us;2Y, ukjrzuk],,b}.

If Ug, 2 = Uk, (j c [K(G)]), then Py = Py UPy U {zukhz, ust,zy}. And if U2 =Y (l €
[k(G)]), then Py = Py; U Py; U {zy}. This results in obtaining 2« (G) arc-disjoint (S, r)-paths.
Case 6. Let y and z be in the same G(v;). Let x, y be in different G(v;) and x, y, z be in
different H(u;), for some i € [n], j € [m]. Without loss of generality, we can assume that
X =1uz1,y=u1pz=1uzp Letus, (j € [x(G)]), U2, Pris Pj, P be the same as in Case 5.
In G(v1), with S} = {x,up1} and r| = x, it is known that there exist at least x(G) internally
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disjoint (S}, 7} )-paths in G(v;), denoted as 132j. In this case, our overall goal is that we will
use arc-disjoint paths between x and its out-neighbors in H(u3), y and its in-neighbors in
H(u1),y and z in G(vy), x and its out-neighbors in G(v1), z and its in-neighbors in H(uy),
z and y in G(v;), and combine them together to form the required arc-disjoint paths. The
general idea of the proof process is briefly described in Figure 7. The vertices and paths
contained in Figure 7 are explained below.

Ui P1i

Ug.
9 s],h

/!

ﬁuk]‘,b

Uusc

Figure 7. Depiction of the arc-disjoint paths found in Case 6 of the proof of Theorem 1.

Subcase 6.1. In the set {usl.,z, Mk]-,z}, there does not exist 13, € {Msj,zf Mk]-,z}- Thus, us,p, tg; b,
~ =// . .
Pyj, P5; remain the same as in Case 5.

In H(uz), with S; = {x,u3} (c € [m]\ {1,2,b}) and r; = x, it is known that there
exist at least x(G) internally disjoint (Sy, r1)-paths in H(u3), denoted as Py;. In G(v.), with
Sy = {us ., u1} and rp = ug, it is known that there exist at least x(G) internally disjoint
(Sa,72)-paths in G(v¢), denoted as Pj;. In H(uq), with S3 = {u3.,y} and r3 = uy, it is
known that there exist at least x(G) internally disjoint (S3,r3)-paths in H(u1 ), denoted as
Py Ifuzs € Pvlr, then uzy ¢ ﬁlr- Let

Py = Py U Py U Pyu P,

Pyj = Py; U Py; U Py; U Poj U {zuay, o, g pth b, s 29 }-

If us, o = g, » (t € [k(G)]), then Py = Poy U Pyy U {zuy, 5, s, oy }. And if Ugo =Y (e
[k(G)]), then Py = Py U Py; U {zy}. Now we obtain 2x(G) arc-disjoint (S, r)-paths.
Subcase 6.2. In the set {u;, uk].,2}, only one vertex uy, , = uzp (r € [k(G)]) exists. Thus,
Us, by Uk bs 152]-, F;,] remain the same as in Case 5.

If wy oup p & Py; in Py;, then Py, P,j remain the same as in Subcase 6.1. If an arc
U, oUg, p is in path Py;, since & (G) > 4, then an out-neighbor uy, , of uy, , can be found
in H(us) such that uy ouy,, ¢ Pj;and a € [m]\ {c,1}. In G(v,), D), is the (S4,15)-path
corresponding to Py,, where Sh = {uy, 0 s, a}, 15 = Uiy, . In H(us, ), with Sj = {us, 0,150}
and 1} = us, 4, it is known that there exist at least x(G) internally disjoint (S}, r;)-paths.
Then in these paths, one of the paths Pﬁr is chosen, with ug 1 ¢ Pér. Py (j # r)and Py;
remain the same as in Subcase 6.1. P, is constructed as

~ —1n o~ o
Py, = Py, U Py, U Py U Py, U{zuy, o, g, otlg, o, Us, 2V}
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Subcase 6.3. In the set {”sj,Zf ”kj,z}/ there is only one vertex us,» = u32 (g € [k(G)]).
For each j € [xk(G)], an in-neighbor of us,1 in H (us;) can be chosen, denoted by

us,q (d € [m]), where d # c,1. In G(vg), let ?lzj be the (SE,r)-path corresponding to
Pyj, where S5 = {up 4,u1,4}, 15 = tip4. The path from vertex g, 4 to ;4 in path F/Z]- is
denoted as ﬁlzlj. In H (uk/.), let ng = {uk]_,z, “k]-,d}/ réj = U, and at least x(G) internally
disjoint (Sg},, rgj)-paths are known to exist. Then, one of the paths Py; (j € [k(G)]) is chosen,
where w1 ¢ Dyj. If ug, = k2 (t € [k(G)]), Py = ﬁ2t~U Py U {zukt,z,Nushzy}. And if
u2 =y (I € [k(G)]), Py = Py UPy U{zy}. If Us, dlis,2 & Ppj in the path Py;. Let

Py = Py U Py U PyU Py,

sz = sz U sz @] P2]‘ U sz U {Zuk].,z, Us;dUs;,2, usjlzy}.

If an arc Us dUsg,2 is in path ﬁli, an in-neighbor U, f of Us, 2 can be found in H(u3) such
thatus, s, ¢ Pyjand f € [m]\ {c,1}. In G(vy), let P;’é be the (S7, r7,)-path corresponding

=N
to Py, where Sh = {ukg,f, “sg,f}/ rh = Uk, - In H(ukg), let 5§ = {”kg,zf ukg,f}, rg = Uky,2/
and at least x(G) internally disjoint (S7, r})-paths are known to exist. Then, one of the paths
Pﬁg is chosen, and let Uk 1 ¢ Pég. Let
~ —m = o
P2g = PZg U PZg U Pzg U Pﬁg U {Z”kg,Z/ usg,fusg/z, Msglzy}.
Hence, we obtain 2x(G) arc-disjoint (S, r)-paths.

Now we prove that this bound is sharp. By Proposition 1, /\g (?nl]?m) =n+m-—2.
By Lemma 2, K(?n) =n — 1. So we have /\g(?nD?H) = ZK(?n) =2n —2, withn > 5.
Therefore, the lower bound holds and is sharp. [

4. Exact Values for Digraph Classes

In this section, we aim to determine precise values for the directed path 3-arc-connectivity
of the Cartesian product of two digraphs within specific digraph classes.

Proposition 1. We have Ag(?nD?m) =n+m-—2.

Proof. Consider S = {x,y,z} and r = x. We will focus solely on scenarios where x, y,
and z do not all belong to the same <?m(ui) or the same <?n(v]-) foranyi € [n],j € [m].
The rationale for the remaining cases follows a similar line of argument. Without loss of
generality, let us assume x = uy1, ¥y = up2, z = uz3. It is feasible to derive n +m — 2
arc-disjoint (S, r)-paths in ?nD?m, say Py ,Py, ..., P (a = min{i+ 1,3 < i < n}),
Pyi(4<i<n),..., P, (b=min{n+j—-2,3<j<n}) Py (4<j<m)(asshownin
Figure 8) such that

Py : xupqyuz 0z, Pr : xuq pyun 3z, Py xuq3zu3)Y,

Py : xuzyzup 3y, Pyt Xug 11y 3zu1 3u12U42Y, Py @ XUy 4U3 4203 112 1 U2 4Y,

Py @ xujiuizzitiq,3Wi—1Ui2Y, Py j—o @ XUy jUg jzil3 jqup j1Up Y.

Now, we add two cases to prove that the proposition holds, so as to show that the
proposition has no constraint conditions.

First, let n = m = 4. We can assume that x = 11,y = u22,z = uz3. Let

Py : xupiyuspz, Pp i xuy pyun 3z, Ps i Xz 1uU32yuspUs 32,

Py i xug1ugoyus pu1 3z, Ps @ xuy 3up 3yun 4tz 4z, Pe : XUy qUp 4Yin 11312

Furthermore, let n = 2, m = 4. We can assume that x = 111, y = u12, z = 1y 3. Let

P i xyz, Py : xzy, P3 : xuq 4zup3us oy, Py @ xup1up 3211 4Y.

Then we have n +m — 2 = min {6*(D),6~ (D)} > /\g(?nﬂ?m) > n+m — 2. This
concludes the proof. [
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Komluy) x \ e
K (1) | —
Konluz) [l 2 ' -* :
K o (1) : =

K i) T
K u(01) K u(v2) Kn(3) Kn(0s) Koulom)

P, o—=P; o Py o P, o0—P, o—+P, 11 00— Py
Figure 8. <?,ﬂ:ﬁ?w

Apd
Proposition 2. We have Ag( C nD?m) =m+1,withn > 3.

Proof. Let S = {x,y,z}, r = x, and we only examine the case where x, y, and z are not all

within the same <E>n(ui) or the same ?m(vj) forany i € [n], j € [m]. The rationale for the
remaining cases follows a similar line of argument. Without loss of generality, let us assume
X =111,y = Upp, 2 = Uz3. We can obtain m + 1 arc-disjoint (S, r)-paths in ?nﬂ?m, say
Py ,P,, ..., P (4 <i<m),Py_1, Py (as shown in Figure 9) such that

Py 2 xupyuspz, Po t xuypyus 3z, Py i xuy yus nUis Uz YUy 41,32,

Py i xugjuz ..Uz j..2Up3Y, Ps : XUgUay .. Uy j. .. Us32ZU30U42Y,

Pi+1 XU AUy - ul-,]- <o Uj3ZUG 13U 2 UG DY

Now, we add two cases to prove that the proposition holds, so as to show that the
proposition has no constraint conditions.

First,let n = 3, m = 4. We can assume that x = 11,y = 11,z = u3;. Let

P1 L XYz, Pz L Xzy, P3 S XUg12U32UD Y, P4 * XUy 3Up3YUp U3 U3 32Z.

Furthermore, let n = 3, m = 2. We can assume that x = u11, ¥ = 112,z = uy 3. Let

P11 xyz, Py : xzup3upoy, Ps i xup11p3zY.

Then we have m +1 = min{6*(D),6 (D)} > Ag(?nD?m) > m + 1. This con-
cludes the proof. O

Colu)  x
?n (u2) p o=
) AR
Tt X -
U | \ Iy |, N
Coun)  Sehe——%----- A
& Knw) ko)) Kn(os) Kn(v) Ku(on)
P1 C P2 o—> P3 O P4 (e, P5 (€ Pi

Figure 9. <C_,,>D?m.

Proposition 3. We have /\g(ﬁnD?m) =m.
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Proof. Let S = {x, y,z}, r = x, and we only examine the case where x, y, and z are not
all within the same ﬁn(ui) or the same <?m(vj) forany i € [n], j € [m]. The rationale for
the remaining cases follows a similar line of argument. Without loss of generality, let us
assume X = U1, Y = U, z = U3 3. We can obtain m arc-disjoint (S, r)-paths in BnD m-

First assume that m is even number, let

P1 C XUp1Yuspz, Pz L XUy2YUn 3z, P3 L XUz U3 2YyuUn 32,

Pyt xugqugpyus pu1 3z, Pt Xuiq 141 2Yui2U;i32,

P; 2 xujquoyu;_qoui—132,4 <i < m,andiis an even number.

Conversely assume that m is odd number, let

Py 2 xupyuspz, Po t xuypyus 3z, Py @ xug jug syuy o 32,

Piq t Xxuj_q11i-12YUioU; 3z,

P; o xujquioyui_qoui—13z, 3 < i < m, and i is an odd number. Then we have
m = min{6"(D),s (D)} > /\g(énlj?m) > m. This completes the proof. [J

=
Proposition 4. We have A§('T nD?m) =m.

Proof. Let S = {x,y,z}, r = x, and we only examine the case where x, y, and z are not all
within the same T ,(u;) or the same <?m(v]-) forany i € [n], j € [m]. The rationale for
the remaining cases follows a similar line of argument. Without loss of generality, let us
assume X = U1,y = Upp, 2 = u33. We can obtain m arc-disjoint (S, r)-paths in ?HD s
say P, Py, ..., P; (4 <i <m), Py_1, Py such that

Py : xup1yuspz, Pp i xuy pyun 3z, Ps i Xy 3up3Yun 1 U312,

Py @ xuq aup auz 42132y, Pr 2 XUy Uy iUz jzug i qUpi1Y-

Then we have m = min{é"(D),é (D)} > /\g(?nﬂ?m) > m. This completes the
proof. O

Proposition 5. We have /\g(?nDém) =2.

Proof. Let S = {x,y,z}, r = x, and we only examine the case where x, y, and z are not
all within the same 8n(ui) or the same ?m(vj) for any i € [n], j € [m]. The rationale for
the remaining cases follows a similar line of argument. Without loss of generality, let us
assume X = u11, Y = Upp, z = U3 3. We can obtain two arc-disjoint (S, r)-paths in ?nD -
say P; and P, such that

P12 xup1yuz 0z, Pyt xuq pyus 3z.

Then we have 2 = min{é*(D),é (D)} > Ag(ﬁnﬂﬁm) > 2. This completes the
proof. O

<=
Proposition 6. We have Ag(?nD Cm) =3 withm > 3.

Proof. Let S = {x,y,z}, r = x, and we only examine the case where x, y, and z are not all
within the same 3,1(111-) or the same C ,,(v;) for any i € [n], j € [m]. The rationale for the
remaining cases follows a similar line of argument. Without loss of generality, let us assume
X =11, Y = U2, z = uz3. We can obtain three arc-disjoint (S, r)-paths in nD?m, say
Py, P, P5 such that

P12 xup1yuz 0z, Pyt xuqpyus 3z,

D3t Xty 1 U 2ty —12 - - U3 2Y U1 2U1 3Um3Um—13 - - - Z- R

Then we have 3 = min{é" (D), (D)} > )\g(?nD C m) > 3. This completes the
proof. O
ke

<=
Proposition 7. We have Ag( 2OC ) =4, withn >3,m > 3.
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Proof. Let S = {x,y,z}, r = x, and we only examine the case where x, y, and z are not all
within the same C ,(u;) or the same ? (vj) forany i € [n], j € [m]. The rationale for the
remaining cases follows a similar line of argument. Without loss of generality, let us assume
X =1y, Y = Upp, z = uz3. We can obtain four arc-disjoint (S, r)-paths in C ,O C m, SAY
Py, Py, P;, Py such that

Py 2 xup1yuz 0z, Pt xuq pyus 3z,

P32 XUy 1 U 2Um 3Um—1,3 - - - ZU32Y, Py : XU n b2 nh3 07U 3Y.

Then we have 4 = min{6* (D), (D)} > A5('C ,0C,) > 4. This completes the
proof. [

Proposition 8. We have Ag(?nD?m) =2.

Proof. Let S = {x,y, z} r = x, and we only examine the case where x, y, and z are not all
within the same 8 ) or the same ? (vj) forany i € [n], j € [m]. The rationale for the
remaining cases follows a similar line of argument. Without loss of generality, let us assume
X = U1, Y = U, z = uz3. We can obtain three arc-disjoint (S, r)-paths in C ,0J T m, Say
Py and P, such that

Py 2 xup1yuz 0z, Pyt xuq pyun3z.

Then we have 2 = min{é"(D),6 (D)} > /\g(ﬁnD?m) > 2. This completes the
proof. O

=
Proposition 9. We have A5 ('C' ,O'T 1) = 3, with n > 3.

Proof. Let S = {x,y,z}, r = x, and we only examine the case where x, y, and z are not all
within the same C ,(u;) or the same T m(v;) for any i € [n], j € [m]. The rationale for the
remaining cases follows a similar line of argument. Without loss of generality, let us assume
X =111, Y = Upp, z = uz3. We can obtain three arc-disjoint (S, r)-paths in %) [l T m, Say
Py, Py, P3 such that

Pl L XUz 1Yuspz, P2 L XU12YUn 32, P3 S XURAUm2Um3UR—1,3 - - - ZU32Y.-

Then we have 3 = min{é"(D),6 (D)} > /\g(%}nﬂ?)m) > 3. This completes the
proof. O

& e
Proposition 10. We have AL (‘T ,O'T 1) = 2.

Proof. Let S = {x,y,z},r = x, and we only examine the case where x, y, and z are not all
within the same T ,(u;) or the same ? ) forany i € [n], j € [m]. The rationale for the
remaining cases follows a similar line of argument Without loss of generality, let us assume
X =111,y = Upp, z = uz3. We can obtain three arc-disjoint (S, r)-paths in ? U T m, Say
Py and P, such that

P] : XU2,1]/M3,22, Pz : xul,zyuz,gz.

Then we have 2 = min{é"(D),6 (D)} > /\g(?nl]?m) > 2. This completes the
proof. [

According to Propositions 1-9, we find that the directed path 3-arc-connectivity of
some Cartesian products of digraphs is equal to the minimum semi-degrees. Based on
this discovery, we can consider under what conditions the directed path 3-arc-connectivity
of Cartesian products of digraphs can be equal to the minimum semi-degrees, which is a
problem we can consider next.

5. Conclusions

In this paper, we prove that if G and H are two digraphs such that 6(G) > 4, 5(H) > 4,
and x(G) > 2, k(H) > 2, then A (GOH) > min{2x(G),2x(H)}, and moreover, this bound
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is sharp. Finally, we obtain exact values of )\g (GOH) for some digraph classes G and H. In
practical terms, constructing vertex-disjoint or arc-disjoint paths in graphs is crucial. These
paths play a significant role in improving transmission reliability and boosting network
transmission speeds.
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