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Abstract: The current study delves into a fuzzy matrix decision-making problem involving fuzzy
sets of states. It establishes that a maximum guaranteed payoff constitutes a type-2 fuzzy set defined
on the real line. Additionally, it provides the associated type-2 membership function. Moreover,
the paper illustrates that the maximum guaranteed payoff type-2 fuzzy set of the decision-making
problem can be broken down, based on the secondary membership grades, into a finite collection
of fuzzy numbers. Each of these fuzzy numbers represents the maximum guaranteed payoff of the
corresponding decision-making problem with a crisp set of states. This set corresponds to a specific
cut of the original fuzzy set of states. Some properties of the maximum guaranteed payoff type-2
fuzzy set are investigated, and illustrative examples are provided. Since the problem formulation is
symmetrical with respect to alternatives and states of nature, the results obtained can be used in the
case of a fuzzy set of alternatives.

Keywords: decision-making problem; maximum guaranteed payoff; type-2 fuzzy set

1. Introduction

A decision problem modeling in the formal theory requires [1]:

• alternatives (choices of a DM);
• states (events);
• the payoff associated with each alternative and each state.

This is often presented as a payoff matrix (decision matrix). The rows of this matrix
are associated with alternatives, and the columns are associated with states [1].

We note that, at its core, the matrix decision-making problem is symmetrical with
respect to alternatives and states of nature. These elements of the problem differ only
in that the alternatives characterize the actions of the DM, and the states of nature are
characterized by some objective reality, which should not be taken literally. There may well
be situations in which actions are dictated by nature (for example, circumstances related to
weather conditions or natural forces). Therefore, the division into alternatives and states of
nature is conditional and is used only as an element of system analysis that uses symmetry.

The principle of utility maximization was axiomatically substantiated in Von Neumann
and Morgenstern [2] and Savage [3]. This principle consists of choosing an alternative that
maximizes the so-called decision criterion (the utility function of alternatives). The type of
a decision criterion depends on the availability of some additional information about:

• the type of uncertainty;
• the set of states;
• the risk features of a DM.
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In conventional decision-making scenarios under uncertainty, it is typically assumed
that there exists a probability distribution across the space of states, leading to what is
known as decision-making under risk. In this context, DMs assess and choose among
alternatives while considering the probabilities associated with various states of nature.
To solve this problem, statistical criteria are used—for instance, Bayesian criteria, variance
minimization, etc. In situations where information regarding the probability distribution is
unavailable, this model gives rise to what is termed as a decision-making problem under
ignorance. In this case, one uses various decision-making criteria like the maxmin (the
Wald criterion), the maxmax (the optimistic criterion), the minimax regret (the Savage
criterion), and the Hurwicz criterion. Unfortunately, the assumptions of the classical
decision-making theory do not necessarily hold, for probabilities of real-world events
are sometimes imprecise or non-measurable. In addition, a set of alternatives, a set of
states, and payoffs may not be known precisely both in conditions of ignorance and in
conditions of risk. The desire to take these factors into account led to the application
of fuzzy set (FS) theory [4–12]. The corresponding works include approaches to solving
decision problems with:

• a fuzzy set of alternatives [4,5];
• fuzzy states [4–6];
• a fuzzy set of states [1,7];
• fuzzy probabilities of states [8–12];
• fuzzy payoffs [1,8];
• fuzzy information [4–6].

The following contributions transform classical decision theory into fuzzy decision
theory. Ignorance represents a specific instance of uncertainty within decision-making
problems; thus, certain approaches rooted in fuzzy set (FS) theory designed for handling
uncertainty can be utilized in cases of ignorance as well. In [6], Tanaka et al. explored a
decision-making problem wherein the uncertainty surrounding the interpretation of events
was captured using fuzzy sets (FSs), while the uncertainty regarding the likelihood of events
occurring was quantified using probabilities. The authors introduced definitions related
to worth, entropy, and quantity specifically tailored to fuzzy information within their
paper. These concepts play crucial roles in analyzing decision-making processes under the
combined influence of fuzzy logic and statistic uncertainty. Based on these definitions, an
investment problem was analyzed. In [4], Tanaka et al. investigated properties of the fuzzy
Bayes formula and the fuzzy observation system derived from FS theory. The analysis
made it possible to consider the main elements of a fuzzy decision-making problem,
which are states, alternatives, and other available information as fuzzy events. In [5],
Tanaka et al. merged fuzzy set (FS) theory with statistical decision theory to address decision
problems involving fuzzy events. They formulated fuzzy decision-making problems based
on the concept of fuzzy events and introduced definitions related to entropy, the value
of information, and the amount of information within this context. On the other hand,
in [7], Mashchenko explored a method for resolving decision-making problems under
uncertainty using a fuzzy set of states and crisp payoffs. By combining fuzzy set theory
with crisp payoffs, Mashchenko proposed a method to handle decision-making scenarios
where states are described imprecisely but payoffs are known crisply. In this method, a DM
maximizes utilities simultaneously for all states. A type-2 fuzzy relation was constructed,
which characterizes the utility of alternatives. The concept of a maximizing weak solution
was introduced and its properties were explored in the referenced paper. Subsequently,
this method was further developed in [13,14] for decision-making problems with objectives
represented as fuzzy sets of preference relations. Additionally, in [1], Jain investigated
a decision-making approach tailored for systems where either the state of the system
or the utilities of alternatives, or both, were described using fuzzy sets (FSs). Through
this research, Jain aimed to provide a methodology to address decision-making scenarios
characterized by imprecise or uncertain information. The problem reduces to choosing,
in a certain sense, the best FS from a collection of fuzzy estimates of alternatives. Each
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fuzzy estimate is an image of the FS of states under a mapping, which is specified by
the payoff matrix. The method uses the Zadeh concept of a maximizing set to determine
the FS of a solution to the problem. Next, an alternative is selected. This alternative is
a compromise between the value of the utility and the degree of the membership to the
solution FS. The idea of using a maximizing set to determine the solution FS does not
correspond to any of the known optimality criteria of expected utility theory, which is a
drawback of the method and limits its application. In [8], Whalen conducted a comparative
analysis of different types of methodologies for choosing alternatives under uncertainty.
These are:

• the classical statistical analysis;
• the maxmin approach;
• the analysis of fuzzy statistical solutions [9,10];
• the possibilistic decision-making algorithm [11] and its development;
• the L-fuzzy risk minimization algorithm [12], which uses Z-fuzzy sets [15].

These approaches vary based on their underlying assumptions regarding the quality
and quantity of information available concerning the likelihood or probability of different
states and the utility associated with the outcomes (alternative-state pairs). Each approach
may make different assumptions about the precision of the information available, the
form in which it is represented (e.g., probabilistic or fuzzy), and the degree of uncertainty
accounted for in the decision-making process. These differences in assumptions can signifi-
cantly influence the strategies and methodologies employed in addressing decision-making
problems under uncertainty.

Advances in the development of the theory of fuzzy numbers (FNs) have made it
possible to generalize the standard criteria of crisp decision-making to cases of payoffs
in the form of FNs and use them directly. The following decision-making criteria under
ignorance were generalized [16]:

• the maxmin (the Wald criterion);
• the maxmax (an optimistic criterion);
• the minimax regret (the Savage criterion);
• the Hurwicz criterion.

In [16], when studying a multicriteria problem with fuzzy parameters in the form of
triangular FNs, Larbani examined a multi-objective two-person zero-sum game scenario,
where the first player acted as the decision maker (DM), and the second player represented
nature. In addressing this problem, Larbani employed the maxmin criterion, a decision-
making approach under uncertainty. While our review does not encompass all the relevant
literature, several conclusions can still be drawn from the existing research:

• Utilizing fuzzy sets (FSs) to represent states offers a more intrinsic and nuanced
depiction of decision-making models under conditions of uncertainty compared to
crisp sets.

• A FS of alternatives, a FS of states, and fuzzy payoffs describe different elements of a
decision-making model under uncertainty and are of interest for research.

• Using FNs allows one to quite effectively solve decision-making problems under
uncertainty by means of the fuzzy arithmetic.

• In the context of decision-making, there has been a lack of investigation into models
utilizing payoffs represented as FNs alongside decision-making criteria under igno-
rance, specifically concerning fuzzy sets of states. This gap in research suggests an
opportunity for further exploration and development in this area.

This article focuses on the exploration of decision-making processes under conditions
of ignorance, specifically within the framework of fuzzy sets of states. The central place
among criteria for decision-making under ignorance is occupied by the maxmin criterion
(the Wald criterion). This stems from the fact that the maxmin criterion is widely used
in practice in cases where it is necessary to completely eliminate a risk. In addition, the
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maxmin criterion is the mathematical basis of other criteria in conditions of ignorance. For
instance, the minimax regret criterion is represented as the maxmin criterion for a negative
relative loss function, the optimistic criterion is represented as the maxmin criterion for
negative payoffs, and the Hurwicz criterion is represented as the linear convolution of the
maxmin and optimistic criteria. In this article, we are going to investigate an application of
the maxmin criterion for a decision-making model under ignorance with a FS of states. For
the sake of simplicity, we investigate the maximum guaranteed payoff without focusing on
an ’optimal’ alternative. Furthermore, the significance of such a study can be elucidated by
the understanding that decision-making problems under uncertainty hold interest beyond
the pursuit of identifying an ‘optimal’ alternative. At times, the maximum guaranteed
payoff holds independent interest, as decision-making theory’s scope extends to encompass
forecasting and analyzing uncertainties from the perspective of a decision-maker, as well
as external agents. The aim of such an analysis is often directed towards informing
decisions concerning alterations in the prerequisites, conditions, and outcomes of situations
characterized by uncertainty. These decisions may involve adjustments in factors such as
awareness levels, model formulations, and other relevant parameters. The formalization of
a set of states through the utilization of a fuzzy set framework enables the incorporation of
not only uncertainty stemming from the decision-maker’s assessment of state admissibility
but also the inherent fuzziness associated with delineating which states are feasible within
the decision-making model. An example of such FSs of states could be ‘possible states’,
‘probable states’, ‘expected states’, etc.

The principal aims of this article are delineated as follows:

• To provide a rationale supporting the claim that a fuzzy set (FS) of states within a
decision-making scenario under ignorance leads to a type-2 fuzzy set (T2FS) of maxi-
mum guaranteed payoff. This T2FS is characterized by a simplified and practical form
tailored for real-world applications, in contrast to the more generalized form of T2FS.

• To thoroughly investigate the properties of this specific T2FS.
• To develop a decomposition method aimed at constructing a T2FS representing the

maximum guaranteed payoff.
• To demonstrate, with the help of an example, that the approach that we develop here

enables us to solve a fuzzy decision-making problem under ignorance in the situation
where standard decision-making criteria fail.

The practical significance of our findings lies in their ability to effectively model the
inherent vagueness in human judgment and the ambiguity surrounding the acceptability
of states during the decision-making process under conditions of ignorance. By acknowl-
edging and accounting for these factors, our research offers valuable insights and method-
ologies for addressing uncertainty and making informed decisions in real-world contexts.

This article is organized as follows: After this introduction, in Section 2, we recall some
definitions and some basic results about MAX and MIN operations on FNs, a maximum
guaranteed payoff in a fuzzy matrix decision-making problem, and T2FSs to be used
later. In Section 3, we formulate the decision-making problem with a fuzzy set of states.
Section 4 proposes an idea for solving this problem. At the end of Section 4, we conclude
that the resulting maximum guaranteed payoff is a T2FS on the real line. Section 5.1 is
devoted to the definition of a maximum guaranteed payoff T2FS and results that simplify
its construction method. Section 5.2 is concerned with the calculation algorithm. Some
useful properties of a maximum guaranteed payoff T2FS to a decision-making problem
for a FS of states are studied in Section 5.3. In Section 5.4, we consider the example of
constructing the resulting T2FS and give a simple interpretation of it. In addition, we study
the ability of the developed approach to find a solution to a decision-making problem
under ignorance in the case where the standard decision-making criteria fail. Section 6 is
devoted to a discussion of the results. In the last section, some conclusions are pointed out.
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2. Materials and Methods
2.1. MAX and MIN Operations on Fuzzy Numbers

In [17], Dubois and Prade introduced the concept of a fuzzy number, defining it
as a normal and convex fuzzy set (FS) defined on the real line R. In broader terms, a
fuzzy number (FN) is conceptualized as a normal fuzzy set (FS) with bounded support,
characterized by a membership function (MF) that is upper semicontinuous and quasi-
concave, as described in reference [18]. This definition encapsulates fuzzy numbers as
having continuous membership values across their domains, with a degree of concavity in
their MF, contributing to their smooth and well-defined properties. One pivotal challenge in
the theory of fuzzy numbers revolves around ordering them, a task facilitated by employing
mathematical operations such as maximum (MAX) and minimum (MIN). This process is
crucial for comparing and arranging fuzzy numbers, which is vital for various decision-
making and analytical purposes within fuzzy systems and applications. The idea of using
the MAX and MIN operations was first proposed by Ambrosio and Martini [19] for fuzzy
symbols. A fuzzy symbol is an analog of a FS, according to Fung and Fu [20]. The MF of
a fuzzy symbol is a mapping from one complete and linearly ordered space to another.
This MF and the MF of a FN enjoy similar properties. In [21], Klir and Yuan defined the
MAX and MIN operations for classical FNs and investigated some basic properties of these
operations. They showed that the threesome (Φ, MIN, and MAX) is a distributive lattice,
where Φ is the set of FNs on R. In [22], Zhang and Hirota developed an algebraic theory
of lattices for FNs. In [23], Tahayoria et al. extended the employment of the MAX and
MIN operations to the case of convex FSs on R with MFs, which do not necessarily have
to be continuous. In [24], Chiu and Wang suggested an approach towards simplifying the
application of the MAX and MIN operations for two FNs with continuous MFs. In [25],
Shirin and Saha worked out an algorithm for computing the MAX and MIN of any two
‘triangular’ FNs and visualizing the resulting MF. In [26], Mashchenko investigated the
MIN operation in the case of a FS of operands.

According to [21], for FNs A and B with the MFs µA(r) and µB(r), r ∈ R, respectively,
the minimum MIN = min{A, B} is defined by the FN MIN = {(r, µMIN(r)) : r ∈ R} with
the MF

µMIN(r) = max{min{µA(rA), µB(rB)} : r = min{rA, rB}, rA, rB ∈ R}, r ∈ R. (1)

To calculate µMIN(r), the idea of demonstrating a FN by its cuts is employed in [17].
To be more specific, one represents MFs of the FNs A, B, and MIN in the form

µA(r) = max
u∈[0,1]

u1[A]u
(r), µB(r) = max

u∈[0,1]
u1[B]u(r), µMIN(r) = max

u∈[0,1]
u1[MIN]u

(r), (2)

where the closed intervals [A]u = [(A)L
u , (A)H

u ], [B]u = [(B)L
u , (B)H

u ], and [MIN]u =

[(MIN)L
u , (MIN)H

u ] are u-cuts, u ∈ [0, 1] of the FNs A, B, and MIN, respectively. Here,
we denote by (·)L

u and (·)H
u the lower and upper end points of the closed interval [·]u =

[(·)L
u , (·)H

u ] of the u-cut, u ∈ [0, 1]. These u-cuts are crisp sets with the MFs

1[A]u
(r) =

{
1, r ∈ [A]u;
0, r /∈ [A]u;

1[B]u(r) =
{

1, r ∈ [B]u;
0, r /∈ [B]u;

1[MIN]u
(r) =

{
1, r ∈ [MIN]u;
0, r /∈ [MIN]u;

r ∈ R, respectively. According to [17], Formula (1) implies that the u-cut [MIN]u of the FN
MIN = min{A, B} is provided by

[MIN]u = [(MIN)L
u , (MIN)H

u ] = [min{(A)L
u , (B)L

u}, min{(A)H
u , (B)H

u }]. (3)

Thus, Formula (2) entails the representations

µMIN(r) = max
{

u ∈ [0, 1] : (MIN)L
u ≤ r ≤ (MIN)H

u

}
, r ∈ R (4)
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and

MIN = {(r, u) : r ∈ [(MIN)L
u , (MIN)H

u ], u ∈ [0, 1]} = {([(MIN)L
u , (MIN)H

u ], u) : u ∈ [0, 1]} (5)

Similarly, we obtain formulae for calculating the maximum MAX = max{A, B} as
the FN MAX = {(r, µMAX(r)) : r ∈ R} with the MF

µMAX(r) = max{min{µA(rA), µB(rB)} : r = max{rA, rB}, rA, rB ∈ R}, r ∈ R. (6)

The u-cut [MAX]u of the FN MAX = max{A, B} is provided by

[MAX]u = [(MAX)L
u , (MAX)H

u ] = [max{(A)L
u , (B)L

u}, max{(A)H
u , (B)H

u }]. (7)

We represent the MF µMAX and the FN MAX as follows:

µMAX(r) = max{u ∈ [0, 1] : (MAX)L
u ≤ r ≤ (MAX)H

u }, r ∈ R (8)

and

MAX = {(r, u) : r ∈ [(MAX) L
u , (MAX)H

u ], u ∈ [0, 1]} = {([(MAX) L
u , (MAX)H

u ], u) : u ∈ [0, 1]}, (9)

respectively.
The lattice (Φ, MI N, MAX) can also be expressed as the pair (Φ, ≺̃), where ≺̃

is a fuzzy partial order, which is defined by A ≺̃ B ⇔ MI N{A, B} = A or otherwise

A ≺̃ B ⇔ MAX{A, B} = B . This method of FNs ranking leads to the conclusion that, in

some cases, the FNs A and B are incomparable. Therefore, the set Φ of FNs is not linearly
ordered, unlike the set of real numbers. This property of fuzzy partial order limits its
use for FNs ranking, since it does not guarantee the uniqueness of choice. To resolve this
problem, a lot of special methods for FNs ranking have been developed, which ensure a
unique choice. A review of ranking methods can be found in [27]. However, applying
these FNs ranking methods for calculating the minimum (maximum) leads to a subset
of the MIN (MAX). Thus, as opposed to crisp numbers, as far as FNs are concerned, it
is important to understand the main problem that a DM faces. If it is more important to
choose a unique minimum (maximum) FN, then it is necessary to use one of the methods
for FNs ranking that is suitable under the given conditions and then take the minimum
(maximum) that is equal to this FN. This FN is a subset of the MIN (MAX) only. If it is
more important to obtain the correct value of the minimum (maximum), then Formula (1)
(Formula (6)) should be used. In this case, the uniqueness of the choice is not guaranteed.
Since, in this article, our concern is the correct values of the minimum and maximum, we
shall use Formulae (1) and (6).

2.2. Maximum Guaranteed Payoff in a Fuzzy Matrix Decision-Making Problem

The problem of decision-making under ignorance is conveniently formalized using a
matrix (we denote this by F̃ = (Fij)i∈M,j∈J) of the payoffs presented in Table 1. In the matrix

F̃ = (Fij)i∈M,j∈J , to the rows i ∈ M = {1, . . . , m}, |M| = m, we associate the alternatives
feasible for the DM. The DM needs to choose one of these alternatives. To the columns
j ∈ J = {1, . . . , l}, |J| = l, we associate the states (events), one of which can occur.
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Table 1. The matrix representing the payoffs.

Alternatives
States

1 2 . . . l

1 F11 F12 . . . F1l
2 F21 F22 . . . F2l
...

...
...

. . .
...

m Fm1 Fm2 . . . Fml

In the matrix F̃ = (Fij)i∈M,j∈J , to the rows i ∈ M = {1, . . . , m}, |M| = m, we associate
the alternatives feasible for the DM. The DM needs to choose one of these alternatives.
To the columns j ∈ J = {1, . . . , l}, |J| = l, we associate the states (events), one of which
can occur. We denote by |·| the cardinality of a set. Each element Fij of the matrix, F̃
represents a payoff (a utility, a win) in the form of the FN with the MF µFij(r), r ∈ R, that
the DM obtains if the alternative i ∈ M has been chosen and the state j ∈ J has occurred.
For the DM, the objective is to select an alternative with a maximum payoff when the
state is unknown. We represent this problem in the form D(J) =

〈
M, J, F̃

〉
. Assume that

information about the probabilities of states is not available or that a decision is made so
seldom that we cannot use this information. According to the maxmin criterion (the Wald
criterion), a maximum guaranteed payoff is calculated by the formula

G(J) = max
i∈M

min
j∈J

Fij. (10)

For the convenience of subsequent presentation, the set J of states is indicated here-
inafter as the parameter in the maximum guaranteed payoff G(J). According to Section 2.1,
the maximum guaranteed payoff is the FN G(J) =

{
(r, µG(J)(r)) : r ∈ R

}
on R.

Formulae (1) and (6) imply that the MF of the FN G(J) = max
i∈M

min
j∈J

Fij is given by

µG(J)(r) = max
{

min
j∈J

µFij(rij) : r = max
i∈M

min
j∈J

rij, rij ∈ R, i ∈ M, j ∈ J}. (11)

To calculate the MF µG(J)(r), we represent the FN G(J) by its cuts. To this end, we
write the MFs of the FNs Fij, i ∈ M, j ∈ J, and G(J) as follows:

µFij(r) = max
u∈[0,1]

u1[Fij ]u
(r), i ∈ M, j ∈ J and µG(J)(r) = max

u∈[0,1]
u1[G(J)]u

(r), (12)

where the closed intervals [Fij]u = [(Fij)
L
u , (Fij)

H
u ] and [G(J)]u = [(G(J))L

u , (G(J))H
u ] are

u-cuts, u ∈ [0, 1], of the FNs Fij, i ∈ M, j ∈ J, and G(J), respectively. These u-cuts are crisp
sets with the MFs

1[Fij ]u
(r) =

{
1, r ∈ [Fij]u;
0, r /∈ [Fij]u;

1[G(J)]u
(r) =

{
1, r ∈ [G(J)]u;
0, r /∈ [G(J)]u;

r ∈ R, respectively. Formulae (3) and (7) imply that the u-cut [G(J)]u of the FN
G(J) = max

i∈M
min
j∈J

Fij is given by

[G(J)]u = [G(J)L
u , G(J)H

u ] = [max
i∈M

min
j∈J

(Fij)
L
u , max

i∈M
min
j∈J

(Fij)
H
u ]. (13)

By (12), this entails the following representations of the MF µG(J) and the FN G(J)

µG(J)(r) = max{u ∈ [0, 1] : (G(J))L
u ≤ r ≤ (G(J))H

u }, r ∈ R (14)

and
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G(J) = {(r, u) : r ∈ [(G(J))L
u , (G(J))H

u ], u ∈ [0, 1]} = {([(G(J))L
u , (G(J))H

u ], u) : u ∈ [0, 1]}, (15)

respectively.

2.3. Type-2 Fuzzy Sets

The concept of type-2 fuzzy sets (T2FSs) was introduced by Zadeh in reference [28] as a
broader framework encompassing type-1 fuzzy sets (T1FSs). As outlined by Mizumoto and
Tanaka in reference [29], a T2FS, symbolized as C̃, defined on a crisp set X is distinguished
by its fuzzy MF MC̃ : X → [0, 1][0,1] . For fixed x′ ∈ X, the value of MC̃(x′) is the T1FS
MC̃(x′) = {(u, µM̃C̃(x′)(u)) : u ∈ Ux′} on the set Ux′ ⊆ [0, 1] of the primary membership

degrees u of x′ to the T2FS C̃ with the corresponding MF µM̃C̃(x′)(u), u ∈ Ux′ , where the
value µM̃C̃(x′)(u) is the secondary grade of the pair (x, u). The following depiction of
the T2FS

C̃ = {(x, M̃C̃(x′)) : x ∈ X} = {(x, {(u, µM̃C̃(x)(u)) : u ∈ Ux}) : x ∈ X}

is referred to as the vertical slice approach.
Building upon the concepts introduced by Karnik and Mendel [30], Mendel and John

proposed an alternative definition in their work [31]. Additionally, Harding et al. [32] made
several amendments to these definitions: the T2FS C̃ on X is given by C̃ = {((x, u), ηC̃(x, u)):
x ∈ X, u ∈ [0, 1]}, where

ηC̃(x, u) =

{
µMC̃(x)(u), u ∈ Ux;
0, otherwise

is the type-2 membership function (T2MF).

Remark 1. The primary degree u is related to the degree of presence of some property (defining
a given fuzzy set) for x ∈ X. By secondary degree, we mean, by [33], the degree of truth of the
corresponding primary u degree of this property for x.

According to [31], we use notions of the embedded T2FSs and T1FSs for a T2FS
C̃ = {((x, u), ηC̃(x, u)) : x ∈ X, u ∈ [0, 1]}. Letting ux = µCe1(x) ∈ [0, 1] is a unique
primary degree of membership for each x ∈ X, where µCe1(x), x ∈ X is the MF of the T1FS
Ce1 = {(x, µCe1(x)) : x ∈ X}. The T1FS Ce1 and the T2FS C̃e2 = {((x, ux), ηC̃e2(x, ux)) :
x ∈ X} with ηC̃e2(x, ux)) = ηC̃(x, µCe1(x))), x ∈ X are called embedded in the T2FS C̃.

Remark 2. According to [31], the collection C̃ = {((x, u), ηC̃(x, u)) : x ∈ X, u ∈ [0, 1]} is the
classical union of its elements in the sense of T1FSs. In addition, each T2FS can be represented as a
collection of all possible embedded T2FSs.

We use two special cases of T2FSs in view of [13,26]. Letting Ω = {ηC̃(x, u) :
ηC̃(x, u) > 0, x ∈ X, u ∈ [0, 1]} is the finite set of all possible positive values of secondary
grades for the T2FS C̃ = {((x, u), ηC̃(x, u)) : x ∈ X, u ∈ [0, 1]}.

Definition 1 [13]. We say that an embedded T2FS C̃e2
α = {((x, ux), ηC̃e2

α
(x, ux)) : x ∈ X} in

the T2FS C̃ has a constant secondary grade α ∈ Ω if, for each x ∈ X, the unique primary degree
ux = µCe1

α
(x) ∈ [0, 1] exists for which ηC̃e2

α
(x, µCe1(α)(x)) ≡ α.

In this definition, µCe1
α
(x), x ∈ X is the MF of the embedded T1FS Ce1

α = {(x, µCe1
α
(x)) :

x ∈ X} in the T2FS C̃.

Remark 3 [26]. For the T2FS C̃ and each α ∈ Ω, there is the unique embedded T1FS
Ce1

α = {(x, µCe1
α
(x)) : x ∈ X} that corresponds to the embedded T2FS C̃e2

α with a con-
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stant secondary grade α. Hence, C̃e2
α = {(Ce1

α , α)} = {({(x, µCe1
α
(x)) : x ∈ X}, α)} =

{((x, µCe1
α
(x)), α) : x ∈ X}.

Moreover, we examine an additional specific instance of a T2FS.

Definition 2 [26]. We say that the T2FS C̃ is decomposable by secondary grades into a collection of
embedded T2FSs with constant secondary grades if there are the T2FSs C̃e2

α = {((x, µCe1
α
(x)), α) :

x ∈ X} = {(Ce1
α , α)} with constant secondary grades α ∈ Ω, respectively, which are embedded in

the T2FS C̃, satisfying C̃ = {C̃e2
α : α ∈ Ω}.

Remark 4. If the T2FS C̃ is decomposable by secondary grades α ∈ Ω into the collection
C̃ = {C̃e2

α : α ∈ Ω} of embedded T2FSs with constant secondary grades, then the T2FS C̃ is
represented in the form of a collection C̃ = {(Ce1

α , α) : α ∈ Ω} of embedded T1FSs Ce1
α , α ∈ Ω,

each of which is assigned the constant secondary grade α ∈ Ω, respectively.

3. Formulation of the Problem

Consider a fuzzy decision-making problem D(N) =
〈

M, N, F̃
〉

with a matrix of fuzzy
payoffs Fij, i ∈ M, j ∈ N specified in the form of FNs with the corresponding membership
functions µFij(r), r ∈ R. Here, M = {1, 2,. . ., m} is the set of alternatives, |M| = m; N = {1,
2,. . ., n} is the set of states, |N| = n. According to (10) and (11), with J = N, the maximum
guaranteed payoff is given by

G(N) = max
i∈M

min
j∈N

Fij (16)

with the MF

µG(N)(r) = max{min
j∈N

µFij(rij) : r = max
i∈M

min
j∈N

rij, rij ∈ R, i ∈ M, j ∈ N}. (17)

Let Ñ = {(j, µÑ(j)) : j ∈ N} be some FS with the MF µÑ(j), j ∈ N on the set N
of states. We shall call Ñ the FS of states. The following question arises: ‘What is the
maximum guaranteed payoff to a fuzzy decision-making problem in the case when the
set of states is fuzzy?’. The corresponding value will be denoted by max

i∈M
min

(j,µÑ(j))∈Ñ
Fij.

In addition, we represent a fuzzy decision-making problem for the FS Ñ of states in the
form D(Ñ) =

〈
M, Ñ, F̃

〉
. Another natural question is ‘When is there a need for such

problem formulation?’ To answer this question, we consider the following examples.
Assume we know expert estimates of the state probabilities but we may make a

decision only once. In this case, it is not reasonable to use statistical decision-making
criteria, for example, the expectation value criterion. Completely ignoring information
about probabilities is also not rational. Why do not we interpret expert estimates of
probabilities as degrees of membership of a FS of states? In this example, the maximum
guaranteed payoff is the result of calculating the value max

i∈M
min

(j,µÑ(j))∈Ñ
Fij. The idea of

interpreting the probabilities of states as degrees of membership in some FS of states is only
given as a hypothetical example. We shall not consider the validity of such an interpretation
in this article. Also, this should not be considered as the only case in which the problem
formulation under consideration may occur.

4. Main Idea

For each fixed r ∈ R, we consider the mapping Gr : 2N → [0, 1] given by

Gr(J) = max{min
j∈N

µFij(rij) : r = max
i∈M

min
j∈J

rij, rij ∈ R, i ∈ M, j ∈ J}, J ⊆ N. (18)



Symmetry 2024, 16, 510 10 of 20

In accordance with (11), the mapping Gr links each subset J ⊆ N of states with the
value of the MF µG(J)(r) of the FN

G(J) = {(r, µG(J)(r)) : r ∈ R} (19)

of the maximum guaranteed payoff G(J) = max
i∈M

min
j∈J

Fij to the decision-making problem

D(J) =
〈

M, J, F̃
〉
, which is

Gr(J) = µG(J)(r), r ∈ R. (20)

With Zadeh’s extension principle [34] at hand, we extend the domain 2N of the map-
ping Gr to the collection of FSs Ñ that are defined on the set N of states and generalize
Formulae (18) and (19) to this case. We denote by G̃ = max

i∈M
min

(j,µÑ(j))∈Ñ
Fij the maximum

guaranteed payoff to the decision-making problem D(Ñ) =
〈

M, Ñ, F̃
〉

for the FS Ñ of
states, and we denote by MG̃(r) the relevant MF. In this case, for each fixed r = r*, the value
of the MF MG̃(r) coincides with the image Gr∗(Ñ) of the FS Ñ of states under the mapping
Gr∗ , which is

M G̃(r
∗) = Gr∗(Ñ). (21)

Following Zadeh’s extension principle [34], it can be shown that the image of the FS Ñ
of states under the mapping Gr∗ is the FS:

Gr∗(Ñ) = {(u, µGr∗ (Ñ)(u)) : u ∈ [0, 1]} (22)

with the MF
µGr∗ (Ñ)(u) = max{α : α ∈ [0, 1], u = Gr∗(Nα)}, (23)

u ∈ supp(Gr∗(Ñ)), where the set

supp(Gr∗(Ñ)) = {u ∈ [0, 1] : u = Gr∗(Nα); α ∈ [0, 1]} (24)

is the support of the FS Gr∗(Ñ);
Nα = {j ∈ N : µÑ(j) ≥ α} is the α-cut, α ∈ [0, 1] of the FS Ñ = {(j, µÑ(j)) : j ∈ N}

of states; Gr∗(Nα) is the image of the α-cut Nα, α ∈ [0, 1] of the FS Ñ of states under the
mapping Gr∗ (see (18)); the equality

Gr∗(Nα) = µG(Nα)(r
∗) (25)

holds, where µG(Nα)(r
∗) is the MF value of the FN G(Nα) by (20) with J = Nα.

Remark 5. Let Ω = {µÑ(j) : j ∈ N} be the set of membership degrees values µÑ(j), j ∈ N of the
FS Ñ = {(j, µÑ(j)) : j ∈ N} of states. Note that the cardinality of the set Ω is |Ω| < n. It is clear
that, when obtaining the α-cut Nα = {j ∈ N : µÑ(j) ≥ α} ̸= ∅ of the FS Ñ, we can assume that
α ∈ Ω rather than α ∈ (0, 1].

Proposition 1 highlights a valuable characteristic of the FS G̃.

Proposition 1. For each fixed r = r∗ ∈ R, the values of the MF M G̃(r
∗) form the FS M G̃(r

∗) =
{(u, µM G̃(r

∗)(u)) : u ∈ [0, 1]} on [0, 1] with the MF

µM G̃(r
∗)(u) = max{α : α ∈ Ω, u = µG(Nα)(r

∗)} (26)

for u ∈ supp(MG̃(r
∗)), where the support of the FS MG̃(r

∗) is given by

supp(MG̃(r
∗)) = {u ∈ [0, 1] : u = µG(Nα)(r

∗), α ∈ Ω}. (27)
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Proof of Proposition 1. According to (21) and (25), Formula (23) implies that µM G̃(r
∗)(u) =

max{α : α ∈ [0, 1], u = µG(Nα)(r
∗)} for u ∈ supp(MG̃(r

∗)). Then, Remark 5 entails (26).
Next, we prove (27). Assume that

u∗ ∈ supp(MG̃(r
∗)). (28)

We aim to verify that

u∗ ∈ {u ∈ [0, 1] : u = µG(Nα)(r
∗), α ∈ Ω}. (29)

According to Remark 5, it suffices to show that there exists α∗ ∈ (0, 1], such that
u∗ = µG(Nα∗ )

(r∗). Assume, on the contrary, that the inequality u∗ ̸= µG(Nα)(r
∗) holds

for any α ∈ (0, 1], whence u∗ ̸= Gr∗(Nα) by (25). Therefore, u∗ /∈ supp(Gr∗(Ñ)) by
(24). An appeal to (21) yields u /∈ supp(MG̃(r

∗)), a contradiction to (28). Therefore, (29)
holds true.

On the other hand, let us assume that the inclusion of (29) is valid. Then, there exists
α∗ ∈ Ω, for which

u∗ = µG(Nα∗ )
(r∗). (30)

We intend to prove Formula (28). Assume, on the contrary, that the inequality
u∗ /∈ supp(MG̃(r

∗)) holds. Then, Formula (21) implies that u∗ /∈ supp(Gr∗(Ñ)). There-
fore, u∗ ̸= Gr∗(Nα) for all α ∈ (0, 1] by (24). Hence, we infer u∗ ̸= µG(Nα)(r

∗) by (25),
a contradiction to (30). Therefore, (27) holds true. □

Based on Proposition 1, we state that G̃ is a FS on R with the MF which values form
a FS on [0, 1]. Thus, G̃ is the T2FS on R by [28]. In the manner of vertical slices (see
Section 2.3), the T2FS G̃ is given by G̃ = {(r, MG̃(r)) : r ∈ R} = {(r, {(u, µMG̃(r)

(u)) : u ∈
Ur}) : r ∈ R}, where µMG̃(r)

(u), u ∈ [0, 1] is the MF of the FS MG̃(r) = {{(u, µMG̃(r)
(u)) :

u ∈ [0, 1]} of values of fuzzy degree of membership of the number r ∈ R to the T2FS G̃, and
Ur = supp(MG̃(r)) is the set of primary membership degrees. We can also characterize the
T2FS G̃ by the T2MF:

ηG̃(r, u) =

{
µMG̃(r)

(u), u ∈ Ur;
0, otherwise

(see Section 2.3). Then, the T2FS G̃ of the maximum guaranteed payoff is
G̃ = {((r, u), ηG̃(r, u)) : u ∈ [0, 1], r ∈ R}.

5. Maximum Guaranteed Payoff for a FS of States
5.1. Maximum Guaranteed Payoff T2FS

The conclusion drawn in Section 4 leads us to introduce the following concept.

Definition 3. By the maximum guaranteed payoff to the decision-making problem
D(Ñ) =

〈
M, Ñ, F̃

〉
for the FS Ñ = {(j, µÑ(j)) : j ∈ N} of states is meant the T2FS.

G̃ = {((r, u), ηG̃(r, u)) : u ∈ [0, 1], r ∈ R} (31)

with the T2MF

ηG̃(r, u) =
{

max{α ∈ Ω : u = µG(Nα)(r)},
0,

u ∈ Ur;
u /∈ Ur;

(32)

r ∈ R, u ∈ [0, 1].

Here,
Ur = {u ∈ [0, 1] : u = µG(Nα)(r), α ∈ Ω} (33)
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is the set of primary membership degrees that coincides with the support supp(MG̃(r))
(refer to Equality (27)) of the FS MG̃(r) of fuzzy membership degrees of the number r ∈ R;

µG(Nα)(r) = max{min
j∈Nα

µFij(rij) : r = max
i∈M

min
j∈Nα

rij, rij ∈ R, i ∈ M, j ∈ Nα} (34)

is the MF of the FN
G(Nα) = {(r, µG(Nα)(r)) : r ∈ R} (35)

which is the maximum guaranteed payoff G(Nα) = max
i∈M

min
j∈Nα

Fij to the decision-making

problem D(Nα) =
〈

M, Nα, F̃
〉

for the set Nα of states (see (10) and (11) with J = Nα);

Nα = {j ∈ N : µÑ(j) ≥ α} (36)

is the α-cut of the FS Ñ = {(j, µÑ(j)) : j ∈ N} of states, α ∈ Ω;

Ω = {µÑ(j) : j ∈ N} (37)

is the set of the positive membership degree values of the FS Ñ = {(j, µÑ(j)) : j ∈ N} of
states (see Remark 5).

Remark 6. In the case of a decision-making problem with a crisp payoff matrix and a fuzzy set of
states, the maximum guaranteed payoff is G̃ = {((r, u), ηG̃(r, u)) : u ∈ {0, 1}, r ∈ R}, which is a
special case of a T2FS. Since the primary membership degrees u ∈ {0, 1} of the T2FS G̃ take only
two values, 0 or 1, this yields an interesting interpretation of the T2FS G̃ by Remark 1. Similar to a
crisp set, there are only two options for each number r ∈ R: either r completely belongs to the T2FS
G̃ (the primary membership degree is u = 1) or it completely does not belong (u = 0). Unlike a crisp
set, the degrees ηG̃(r, 0) and ηG̃(r, 1) of truth of the identification of these two facts can differ from
1 and take values in the closed interval [0, 1].

We note that this type of a T2FS is already known (see, for instance, [35]).

Remark 7. In the case of a decision-making problem with payoffs in the form of crisp numbers,
we also use MFs to represent these numbers. For example, we represent a crisp number a ∈ R by
{(a, µa(r)) : r ∈ R} = {(a, 1)} ∪ {(r, 0) : r ̸= a, r ∈ R}, where

µa(r) =
{

1, r = a;
0, otherwise

is the MF (the characteristic function) of the crisp number a.

Proposition 2 validates the decomposability, as defined in Definition 2, of a maximum
guaranteed payoff T2FS for a decision-making problem involving a fuzzy set of states.
This decomposition involves breaking down the T2FS into a collection of embedded T2FSs
characterized by constant secondary grades.

Proposition 2. The maximum guaranteed payoff T2FS G̃ to the decision-making problem
D(Ñ) =

〈
M, Ñ, F̃

〉
for the FS Ñ = {(j, µÑ(j)) : j ∈ N} of states is decomposable by sec-

ondary grades α ∈ Ω into the collection

G̃ = {G̃e2
α : α ∈ Ω} (38)

of the embedded T2FSs
G̃e2

α = {(G(Nα), α)} (39)

and given by
G̃ = {(G(Nα), α) : α ∈ Ω} (40)
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where G(Nα) = {(r, µG(Nα)(r)) : r ∈ R} is the embedded T1FS Ge1
α = G(Nα) with the

MF µGe1
α
(r) = µG(Nα)(r) in Form (34). It is the FN that is the maximum guaranteed payoff

G(Nα) = max
i∈M

min
j∈Nα

Fij to the decision-making problem D(Nα) =
〈

M, Nα, F̃
〉

for the crisp set Nα,

α ∈ Ω of states.

Proof of Proposition 2. In accordance with (31), the maximum guaranteed payoff T2FS is
G̃ = {((r, u), ηG̃(r, u)) : u ∈ [0, 1], r ∈ R}. Then, invoking (32) yields

G̃ = {{((r, u), max{α : α ∈ Ω, u = µG(Nα)(r)}) : u ∈ Ur}∪ {((r, u), 0) : r /∈ Ur} : r ∈ R}.

Remark 2 allows us to ignore pairs (r,u) that have secondary grades that are equal
to 0; therefore, G̃ = {{((r, u), max{α : α ∈ Ω, u = µG(Nα)(r)}) : u ∈ Ur, r ∈ R}. Then,
invoking (33) yields G̃ = {(r, {(µG(Nα)(r), α) : α ∈ Ω}), r ∈ R}. Further, regrouping the
elements, we obtain

G̃ = {(r, (µG(Nα)(r), α)) : α ∈ Ω, r ∈ R} = {{((r, µG(Nα)(r)), α) : r ∈ R} : α ∈ Ω}

Then, (35) entails (40) and, thereupon, (38) by (39). □

Proposition 2 allows us to represent the T2FS G̃ in a form that is more suitable for
calculations and interpretation. Following Remark 1, the T2FS G̃ can be interpreted as the
collection of maximum guaranteed payoffs G(Nα) to the decision-making problem D(Nα)
for the crisp set Nα of states with the degree of truth of the FN G(Nα) being equal to α ∈ Ω.

5.2. Calculation Algorithm of the Maximum Guaranteed Payoff T2FS

In this section, we consider an algorithm for calculating the maximum guaranteed
payoff T2FS.

Step 0. We construct the finite set Ω = {µÑ(j) : j ∈ N} of membership degrees values
of the FS Ñ = {(j, µÑ(j)) : j ∈ N} of states and represent Ω in the form Ω = {α1, . . . , α|Ω|}.

Step k ∈ {1, . . . , |Ω|}. For α = αk, following (36), we construct the α-cut
Nα = {j ∈ N : µÑ(j) ≥ α} of the FS Ñ. We calculate a solution G(Nα) = max

i∈M
min
j∈Nα

Fij to

the problem D(Nα) =
〈

M, Nα, F̃
〉

for the set Nα of states. This is the maximum guaranteed
payoff FN G(Nα) = {(r, µG(Nα)(r)) : r ∈ R} (see (35)), which is the embedded T1FS—that
is, Ge1

α = G(Nα) by Proposition 2. To calculate the FN G(Nα), we use the representation of
this FN by its cuts. According to (15) with J = Nα, we use the formula

G(Nα) = {([(G(Nα))
L
u , (G(Nα))

H
u ], u) : u ∈ [0, 1]}. (41)

The MF of the FN G(Nα) is given by

µG(Nα)(r) = max{u ∈ [0, 1] : (G(Nα))
L
u ≤ r ≤ (G(Nα))

H
u }, r ∈ R (42)

as a consequence of (14) with J = Nα. For each u ∈ [0, 1], we calculate the boundaries

(G(Nα))
L
u = max

i∈M
min
j∈Nα

(Fij)
L
u (43)

and
(G(Nα))

H
u = max

i∈M
min
j∈Nα

(Fij)
H
u (44)

of the closed interval
[G(Nα)]u = [(G(Nα))

L
u , (G(Nα))

H
u ] (45)

according to (13) with J = Nα. In these formulae, (Fij)
L
u and (Fij)

H
u are the lower and the

upper bounds, respectively, of the closed interval [Fij]u = [(Fij)
L
u , (Fij)

H
u ]. This interval is
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the u-cut of the payoff FN Fij of the alternative i ∈ M for the state j ∈ Nα. For approximate
calculations, we choose the values u = us = s/S, s = 0, . . . , S, where (S + 1) is the number
of cut levels.

The final step. Once all FNs G(Nα), α ∈ Ω have been obtained, the resulting T2FS
G̃ is given by G̃ = {(G(Nα), α) : α ∈ Ω} according to (40). The T2MF ηG̃(r, u) can be
calculated with the help of Formulae (32) and (33). According to Remark 1, the T2FS G̃
can be interpreted as follows. The maximum guaranteed payoff T2FS G̃ is equal to the FN
G(Nα1) with the degree of truth being equal to α1; the FN G(Nα2) with the degree of truth
being equal to α2;. . .; and the FN G(Nα|Ω|) with the degree of truth being equal to α|Ω|.

5.3. Properties of the Maximum Guaranteed Payoff T2FS

Proposition 3 highlights several valuable properties of a maximum guaranteed payoff
T2FS to a decision-making problem for a FS of states.

Proposition 3. Let µG(Nα∗ )
(r) be the membership degree of a number r ∈ R to the FN G(Nα∗),

which is the maximum guaranteed payoff to the decision-making problem D(Nα∗) =
〈

M, Nα∗ , F̃
〉

for α*-cut, α∗ ∈ Ω Nα∗ of the FS Ñ of states. Then u = µG(Nα∗ )
(r) is the primary membership

degree of the number r to the maximum guaranteed payoff T2FS G̃ with the secondary grade not
smaller than α*—that is, ηG̃(r, µG(Nα∗ )

(r)) ≥ α∗.

Proof of Proposition 3. Assume that α∗ ∈ Ω and u = µG(Nα∗ )
(r). Then, u ∈ Ur according to

(33). Therefore, ηG̃(r, u) = max{α : α ∈ Ω, µG(Nα∗ )
(r) = u = µG(Nα)(r)} ≥ α∗ by (32). □

According to Proposition 3, the maximum guaranteed degree of truth of the primary
degree of membership of some number r ∈ R to the T2FS G̃ is determined by the smallest
degree of membership to the FS Ñ of those states for which this number r is the maximum
guaranteed payoff.

In Proposition 4, we employ the fuzzy number ordering proposed by Ramik and
Rimanek [36].

Definition 4. Let ã and b̃ be two fuzzy numbers and [ã]u = [(ã)L
u , (ã)H

u ]u, [b̃]u = [(b̃)L
u , (b̃)H

u ]u
be their u-cuts, u ∈ [0, 1]. By the fuzzy partial order is meant the relation ã ≻̃ b̃ ⇔ (ã)L

u ≥ (b̃)L
u ,

(ã)H
u ≥ (b̃)H

u for all u ∈ [0, 1]. Here (ã)L
u and (ã)H

u are the lower and upper bounds of [ã]u.

Proposition 4. Suppose that the maximum guaranteed payoff T2FS G̃ to the decision-making
problem for the FS Ñ of states is represented as in (40). Then, for any α′, α′′ ∈ Ω with α′ ≥ α′′ ,
the relations Nα′ ⊆ Nα′′ and G(Nα′′ ) ≻̃ G(Nα′) hold true, where ‘≻̃ ’ is the fuzzy partial order.

Proof of Proposition 4. Formula (36) implies that

Nα′ ⊆ Nα′′ . (46)

According to Definition 4, to prove the relation G(Nα′′ ) ≻̃ G(Nα′), it suffices to show

that the inequalities G(Nα′′ )
L
u ≥ G(Nα′)

L
u and G(Nα′′ )

H
u ≥ G(Nα′)

H
u hold for each u ∈ [0, 1].

Assume, on the contrary, that there exists u∗ ∈ [0, 1], such that the inequalities

G(Nα′)
L
u∗ < G(Nα′′ )

L
u∗ (47)

or (and)
G(Nα′)

H
u∗ < G(Nα′′ )

H
u∗ (48)



Symmetry 2024, 16, 510 15 of 20

hold. In the former case, we obtain

(G(Nα′))
L
u∗ = max

i∈M
min
j∈Nα′

(Fij)
L
u∗ < max

i∈M
min

j∈N
α′′
(Fij)

L
u∗ = (G(Nα′′ ))

L
u∗

This entails min
j∈Nα′

(Fij)
L
u∗ < min

j∈N
α′′
(Fi∗ j)

L
u∗ for all i ∈ M and particularly for

i∗ = argmax
i∈M

min
j∈N

α′′
(Fij)

L
u∗ . With this at hand, we conclude that min

j∈Nα′
(Fi∗ j)

L
u∗ < min

j∈N
α′′
(Fi∗ j)

L
u∗

and thereupon Nα′ ⊃ Nα′′ , a contradiction to (46). We also obtain a similar contradiction in
the case where Inequality (48) holds. □

According to Proposition 4, FNs with more favorable maximum guaranteed payoffs,
corresponding to smaller cut levels of the FS of states, exhibit larger secondary membership
degrees (degrees of truth) to the maximum guaranteed payoff T2FS G̃. This is quite natural,
for large degrees of truth correspond to large degrees of membership in a fuzzy set of states.

5.4. Numerical Examples

In this section, we examine examples that demonstrate the construction of a maximum
guaranteed payoff T2FS for a fuzzy set of states. Example 1 serves to illustrate the algorithm
for calculating a maximum guaranteed payoff T2FS. Example 2 demonstrates the ability of
the developed approach to find a solution to a decision-making problem under ignorance
in the case where the standard decision-making criteria fail.

Example 1. We consider the problem of decision-making with the matrix of fuzzy payoffs given in
Table 2 in the form of the ‘triangular’ FNs Fij, i ∈ M, j ∈ N with the MFs µFij(r), r ∈ R, i ∈ M,
j ∈ N, respectively, where M = {1, 2, 3} is the set of alternatives and N = {1, 2, 3, 4} is the set of
states. The input data are given in the form of ‘triangular’ FNs only for the purpose of simplification
and clarity of the description. Recall that the MF for the ‘triangular’ FN B = (a, b, c) is given by

µB(x) =


1 − (b − x)/(b − a), a ≤ x ≤ b;
1 − (x − b)/(c − b), b ≤ x ≤ c;
0, otherwise.

(49)

The cuts [B]u = [(B)L
u , (B)H

u ], u ∈ [0, 1] of the ‘triangular’ FN B with the MF in Form (49)
are calculated using the formula [B]u = [a + (b − a)u, c − (c − b)u]. In this example, we use
approximate calculations with the number of u-cuts, u = us = s/10, s = 0, . . . , 10 being equal
to 11. The graphs of the MFs µFij(r), r ∈ R, j ∈ {1, 2, 3, 4} are represented in Figure 1a for
the alternative i = 1, in Figure 1b for i = 2, and Figure 1c for i = 3. In Figure 1a–c, for each
alternative i ∈ {1, 2, 3}, the MFs µFij(r), r ∈ R are drawn blue for the state j = 1, yellow for the
state j = 2, green for state j = 3, and red for the state j = 4.

Assume that a DM perceives the set N = {1, 2, 3, 4} of states in the form of the FS
Ñ = {(1, 0.7), (2, 0.9), (3, 1), (4, 1)} with the MF values µÑ(1) = 0.7, µÑ(2) = 0.9 u µÑ(3) =
µÑ(4) = 1. The DM intends to predict a maximum guaranteed payoff using the algorithm from
Section 5.2.

Step 0. According to (37), the set of membership degrees of the FS Ñ is Ω = {0.7, 0.9, 1}.
Step k = 1. For α = 0.7, according to (36), we construct the 0.7-cut N0.7 = {1, 2, 3, 4} of the FS

Ñ. We intend to find a solution G(N0.7) = max
i∈M

min
j∈N0.7

Fij to the problem D(N0.7) =
〈

M, N0.7, F̃
〉

for the set N0.7 of states. To calculate the FN G(N0.7) in Form (41), we represent this FN by its
cuts [G(N0.7)]u = [(G(N0.7))

L
u , (G(N0.7))

H
u ], u = us = s/10, s = 0, . . . , 10 with the help of

Formulae (43) and (44). In these formulae, we use u-cuts [Fij]u = [(Fij)
L
u , (Fij)

H
u ] of the payoffs Fij

of the alternatives i ∈ M for the states j ∈ N0.7. The MF µG(N0.7)
of the FN G(N0.7) is drawn red

in Figure 1d. We call the FN G(N0.7) ‘approximately 350’ and denote it by 3̃50.
Step k = 2. For α = 0.9, according to (36), we construct the 0.9-cut N0.9 = {2, 3, 4} of the FS

Ñ. We intend to find a solution G(N0.9) = max
i∈M

min
j∈N0.9

Fij to the problem D(N0.9) =
〈

M, N0.9, F̃
〉

for
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the set N0.9 of states. To calculate the FN G(N0.9) in Form (41), we represent this FN by its
cuts [G(N0.9)]u = [(G(N0.9))

L
u , (G(N0.9))

H
u ], u = us = s/10, s = 0, . . . , 10 with the help of

Formulae (43) and (44). The MF µG(N0.9)
of the FN G(N0.9) is drawn green in Figure 1d. We call

the FN G(N0.9) ‘approximately 400’ and denote it by 4̃00.
Step k = 3. For α = 1, according to (36), we construct the 1-cut N1 = {3, 4} of the FS Ñ.

We intend to find a solution G(N1) = max
i∈M

min
j∈N1

Fij to the problem D(N1) =
〈

M, N1, F̃
〉

for the set

N1 of states. To calculate the FN G(N1) in Form (41), we represent this FN by its cuts [G(N1)]u =

[(G(N1))
L
u , (G(N1))

H
u ], u = us = s/10, s = 0, . . . , 10 using Formulae (43) and (44). The MF

µG(N1)
of the FN G(N1) is drawn blue in Figure 1d. We call the FN G(N1) ‘approximately 470’

and denote it by 4̃70.
The final step. Once all FNs G(N0.7) = 3̃50, G(N0.9) = 4̃00, and G(N1) = 4̃70 have

been obtained, the resulting T2FS G̃ = {(G(N0.7), 0.7), (G(N0.9), 0.9), (G(N1), 1)} is given
by G̃ = {(3̃50, 0.7), (4̃00, 0.9), (4̃70, 1)}. The T2MF ηG̃(r, u) can be calculated with the help
of Formulae (32) and (33). The levels ηG̃(r, u) ∈ {0.7, 0.9, 1} are given by blue (for α = 1),
green (for α = 0.9), and red (for α = 0.7) lines in Figure 1d. The obtained T2FS G̃ =
{(3̃50, 0.7), (4̃00, 0.9), (4̃70, 1)} can be interpreted as follows. The maximum guaranteed pay-
off is equal to the FN 3̃50 with the degree of truth being equal to 1, the FN 4̃00 with the degree of
truth being equal to 0.9, and the FN 4̃70 with the degree of truth being equal to 1.

Table 2. Payoffs of Example 1.

Alternatives
States

1 2 3 4

1 (300, 400, 500) (310, 350, 380) (520, 550, 600) (500, 600, 650)
2 (270, 300, 450) (250, 350, 600) (600, 700, 800) (620, 650, 700)
3 (400, 600, 800) (150, 250, 350) (180, 200, 220) (450, 500, 550)
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Example 2. In this example, we take crisp payoffs to transparently compare the results of solving a
decision-making problem using different methods and under different assumptions about a set of
states. The payoff matrix Fij, i ∈ M = {1, 2, 3, 4}, j ∈ N = {1, 2, 3, 4, 5} is given in Table 3.

We consider the following cases.
In the first case, assume that we make a decision when the probabilities p1 = 0.2, p2 = 0.3,

p3 = 0.2, p4 = 0.15, and p5 = 0.15 are available for the states j ∈ {1, 2, 3, 4, 5}, respectively, and
a decision is made sufficiently often so that we can hope for a proper application of statistical criteria.
If we use the Bayesian decision criterion, we obtain equal expected utilities GB

i = ∑
j∈N

Fij pj = 1 for

all alternatives i ∈ N. Therefore, a unique decision is not possible.
In the second case, assume that we make a decision under complete ignorance, when state prob-

abilities are not available and/or a decision is made only once. We consider the following situations:

1. Suppose that the set Ñ of states is crisp—that is µÑ(1) = µÑ(2) = µÑ(3) = µÑ(4) = 1.
Then, in the case of using:

a. the maxmin criterion (the Wald criterion), we obtain equal maximum guaranteed
payoffs GW

i = min
j∈N

Fij = 0 for all alternativesi ∈ N;

b. the optimistic criterion, we obtain equal optimistic payoffs GO
i = max

j∈N
Fij = 2 for all

alternatives i ∈ N;
c. the compromise criterion (the Hurwicz criterion), we obtain equal compromise payoffs

GH
i = λmax

j∈N
Fij + (1 − λ)min

j∈N
Fij = 2 for all alternatives i ∈ N for any value of the

parameter λ ∈ [0, 1] characterizing the DM’s propensity to take risks;
d. the minmax regret criterion (the Savage criterion), we obtain equal relative utility

losses GS
i = max

j∈N
(max

k∈M
Fkj − Fij) = 2 for all alternatives i ∈ N.

Thus, in all these cases, applying basic standard decision criteria does not help us to make a
unique decision.

2. Assume that the set Ñ of states is fuzzy. It is quite possible that we can consider the FS Ñ as
‘probable states’ and choose degrees of membership to this FS being equal to the corresponding
probabilities—that is, µÑ(1) = p1 = 0.2, µÑ(2) = p2 = 0.3, µÑ(3) = p3 = 0.2,
µÑ(4) = p4 = 0.15, and µÑ(5) = p5 = 0.15. Using the algorithm from Section 5.2,
we infer:
Ω = {0.15, 0.2, 0.3} is the set of degrees of membership to the FS Ñ;
N0.3 = {2}, N0.2 = {1, 2, 3}, N0.15 = {1, . . . , 5} are the α-cuts, α ∈ Ω of the FS Ñ of states;
G(N0.3) = {(2, 1)} ∪ {(r, 0) : r ̸= 2} (denote it by ‘2’);
G(N0.2) = {(1, 1)} ∪ {(r, 0) : r ̸= 1} (denote it by ‘1’);
G(N0.15) = G(N0.1) = {(0, 1)} ∪ {(r, 0) : r ̸= 1} (denote it by ‘0’)

Are the maximum guaranteed payoffs for the α-cuts, α ∈ Ω of the FS Ñ of states, respectively;
hereinafter, we use Remark 7 to represent crisp numbers using MFs, for example, a crisp number
G(N0.3) is given by

G(N0.3) = ‘2′ =
{
(2, µG(N0.3)

(r)) : r ∈ R} = {(2, 1)} ∪ {(r, 0) : r ̸= 2}

with the MF

µG(N0.3)
(r) = {1, r = 2;

0, otherwise.

Once all maximum guaranteed payoffs G(N0.3) = ‘2’, G(N0.2) = ‘1’, and G(N0.15) = ‘0’
have been obtained, the resulting T2FS G̃ = {(G(N0.3), 0.3), (G(N2), 0.2), (G(N0.15), 0.15)} is
given by G̃ = {(‘2’,0.3),(‘1’,0.2),(‘0’,0.15)} . The obtained T2FS G̃ can be interpreted as follows.
The maximum guaranteed payoff is equal to ‘2’ with the degree of truth being equal to 0.3, ‘1’ with
the degree of truth being equal to 0.2, and ‘0’ with the degree of truth being equal to 0.15.
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Table 3. Payoffs of Example 2.

Alternatives
States

1 2 3 4 5

1 0 1 1.25 2 1
2 1.5 1 2 0 0
3 1 2 0 0 4/3
4 2 0 1 2/3 2

6. Discussion and Results

Since the purpose of this article was to demonstrate that, in a fuzzy decision-making
problem under ignorance, a FS of states generates a T2FS of the maximum guaranteed pay-
offs, we directed our attention towards outcomes that facilitated this objective. In Section 4,
we provided the rationale supporting the assertion that the maximum guaranteed payoffs
for a fuzzy set of states form a T2FS. This enabled us to outline the corresponding definition
in Section 5.1. Using a decomposition approach, we represented a maximum guaranteed
payoffs T2FS for a FS of states by a collection of embedded T2FSs with constant secondary
grades. In Section 5.2, we worked out the algorithm for constructing a maximum guaran-
teed payoffs T2FS. This study clarified that, while a type-2 fuzzy set (T2FS) is typically a
complex mathematical construct, T2FSs with constant secondary grades exhibit simplicity
suitable for practical applications. This was illustrated through the examples provided in
Section 5.4. In addition, in Example 2 of Section 5.4, we showed how to use our approach
for solving a fuzzy decision-making problem under ignorance in the case where the stan-
dard decision-making criteria fail. Our investigation of some properties of the maximum
guaranteed payoffs T2FS in Section 5.3 showed that:

• The maximum guaranteed degree of truth of the primary degree of membership of
some number r ∈ R to the resulting T2FS was determined by the smallest degree of
membership to the FS Ñ of those states for which this number r was the maximum
guaranteed payoff.

• More preferable FNs of maximum guaranteed payoffs (which corresponded to smaller
cut levels of the FS of states) had larger secondary membership degrees (degrees of
truth) to the maximum guaranteed payoff T2FS. This was quite natural, for large
degrees of truth corresponded to large degrees of membership in a fuzzy set of states.

Upon comparing the maxmin criterion with our approach, we draw the following
conclusion: Our approach exhibits a notable limitation, namely an escalation in computa-
tional complexity when juxtaposed with the maxmin criterion. This is caused by the need
of calculating a maximum guaranteed payoff for each α-cut Nα = {j ∈ N : µÑ(j) ≥ α} of
the FS Ñ of states. This drawback constrains the applicability of our approach to scenarios
involving a substantial number of alternatives and states, which may pose challenges for
solving optimization Problems (43) and (44). However, this limitation can be mitigated
by refraining from undertaking the full computation of the maximum guaranteed payoff
T2FS and instead focusing solely on obtaining the T2FS G̃e2(Nα) = {(G(Nα), α)} with the
constant secondary grade α corresponding to an acceptable fixed value α ∈ Ω of the degree
of truth.

7. Conclusions

The present research shows that, in addition to classical decision criteria, a DM can
use our approach, which is based on representing a set of states by a FS. This FS can
describe some property of the set of states, for example, an expected ability of the states. An
application of the FS theory for solving a decision-making problem in such a formulation
appears quite rational. Since we use a maximum guaranteed payoff, our methodology
accedes to the benefits, drawbacks, and possibility of employment of a guaranteed outcome
in practice.
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Accordingly, our approach guarantees a risk-free decision and an opportunity to
make a decision only once. In addition, using the approach, one constructs a maximum
guaranteed payoff depending on the set of states (fuzzy, in general) that are considered
during the decision-making process. These techniques enable us to optimize decision-
making processes by considering and leveraging the inherent symmetries and patterns
present in the decision-making problem. Since the problem formulation is symmetrical
with respect to alternatives and states of nature, the results obtained can be used in the
case of a fuzzy set of alternatives. Looking ahead, one potential avenue for future research
could involve further exploring the integration of symmetry-aware optimization techniques
with other decision criteria and to develop a similar approach for decision problems with
FSs of alternatives and states. By expanding and refining our approach in this manner,
we can continue to advance decision-making theory across various disciplines, including
social sciences and artificial intelligence. Ultimately, we anticipate that our approach,
alongside contributions from other researchers, will broaden the scope and applicability of
decision-making theory in diverse fields of study.
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