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1. Introduction

The singularity theory is an important research field in differential topology. It has
important applications in judging and determining the number of solutions of differential
equations, giving the classification and counterexamples of the differential structure of
differential manifolds, and describing the geometric properties of specific positions on
differential manifolds.

It is well known that, the Laplace-Beltrami operator is an extremely important operator
that acts on C∞ functions on a Riemannian manifold. Over past several decades, research
on the spectrum of the Laplace-Beltrami operator has always become a core issue in the
study of geometry. For example, the geometry of closed minimal submanifolds in the
unit sphere is closely related to the eigenvalue problem. In order to classify the isolated
hypersurface singularities in complex geometry, Yau conjectured in [1] that the Laplace
eigenfunctions ϕλ:

∆ϕλ + λϕλ = 0,

satisfy
c
√

λ ≤ Hn−1({ϕλ = 0}) ≤ C
√

λ,

where M is an arbitrary n-dimensional C∞-smooth closed Riemannian manifold (compact
and without boundary), and the symbol Hk denotes the k dimensional Hausdorff mea-
sure. Here c, C depend only on the Riemannian metric on M and are independent of the
eigenvalue λ.

Aiming at Yau’s conjecture, in [2], it was pointed out that the moduli algebra

A( f ) = C[[x1, . . . , xn]]/( f ,
∂ f
∂x1

, . . . ,
∂ f
∂xn

).

of an analytic function f completely determines theisolated hypersurface singularities’
complex structure. Therefore, this classification problem can be translated into classifying
the moduli algebras, up to isomorphism. For further study of Yau’s conjecture, one may
refer [3–6].
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Let k be an algebraically closed field, and G is a simply connected algebraic group
over it. Suppose that M is a finite dimensional rational G-module. Take a basis {ei}n

i=1
of M, and let {xi}n

i=1 ⊆ M∗ be its dual basis. Denote by A = S•M∗ ∼= k[x1, . . . , xn] the
polynomial function ring on M (with the usual G-action), and let ∂i := ∂/∂xi be the usual
differential operators on A. If we let Ad be the set of homogeneous polynomials of degree d,
then for each v ∈ Ad, it is known that the Jacobian J(v) of f is a subspace of Ad−1 spanned
by {∂i( f )}n

i=1. Under the notions as above, Yau conjectured that if G = SL2(C) and J(v)
is G-invariant, then the highest weights of J(v) is a subset of the highest weights of A1
(∼= M∗). In [6], Xi constructed the following homomorphism of G-modules

ϕ : M ⊗ A → A, ϕ(ei ⊗ v) = ∂λ,i(v),

where G is an arbitrary simply connected algebraic group. Combining this with Theo-
rem 13 [4], each invariant Jacobian J(v) is a quotient of ku ⊗ M (∼= M) if the characteristic
of k equals 0. As a consequence, Yau’s conjecture (see [7]) is particularly true for simply
connected complex algebraic groups.

Suppose that m(x) is the minimal polynomial of ΦM∗ ,M∗ ∈ End(M∗ ⊗ M∗). Fixing an
eigenvalue λ of ΦM∗ ,M∗ , let mλ(x) := m(x)/(x − λ) and A(M, λ) = T(M∗)/I(mλ(x), M∗).
In [8], using braided derivations, Chen generalized the setting in [6] as a representation of
a quasi-triangular Hopf algebra H, and showed that

ϕ : M ⊗ A(M, λ) → A(M, λ), ϕ(ei ⊗ v) = ∂λ,i(v),

is a homomorphism of left H modules (for details, see ([8], Theorem 3.5)).
It is known that the category of Yetter–Drinfel’d modules is an important category in

the theory of Hopf algebra. Under some favourable conditions (e.g., H is a Hopf algebra
with a bijective antipode), the category of Yetter–Drinfel’d modules is indeed braided
monoidal through Drinfel’d double construction (see [9]). In [10], it is pointed out that
symmetric Yetter–Drinfel’d categories are trivial, i.e., if H is a Hopf algebra, such that the
canonical braiding of the category of Yetter–Drinfel’d modules is a symmetry, then H = k
in the field. Via braiding structures, the notion of the Yetter–Drinfel’d module plays an
important role in the relations between knot theory and quantum groups.

It is known that the category of H modules is a spacial case in Yetter–Drinfel’d modules.
So, it is natural but meaningful to ask whether the map ϕ, defined above, is a morphism
of Yetter–Drinfel’d modules or not when M is a Yetter–Drinfel’d module. This is where
the motivation for our paper comes. In this case, the results in [8] also hold in the coquasi-
triangular Hopf algebra.

The paper is organized as follows. In Section 2, we mainly present some useful
definitions about Yetter–Drinfel’d modules. In Section 3, we generalize the homomorphisms
of the module over the groups and Lie algebras established in [6] as being morphisms in
the category of (non-symmetric) Yetter–Drinfel’d modules. In Section 4, we provide a brief
conclusion in this paper.

2. Preliminaries and Useful Materials

Let k be a ground field. All algebra, linear spaces, etc., will be over k; unadorned ⊗
means ⊗k. Unless otherwise stated, H will denote a Hopf algebra with comultiplication
∆, counit ε, and bijective antipode S. Then, the opposite Hop is again a Hopf algebra with
antipode S−1. We will use the version of Sweedler’s sigma notation: ∆(h) = h1 ⊗ h2 for all
h ∈ H. For unexplained concepts and notations about Hopf algebras, we refer to [11,12].
If M is a vector space, a left H-module (right H comodule) structure on M will be usually
denoted by ψM : H ⊗ M → M, h ⊗ m 7→ h · m (ρM : M → M ⊗ H, m 7→ m(0) ⊗ m(1),
respectively).
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Definition 1. A Yetter–Drinfel’d module (cf. [13]), sometimes also called a quantum Yang–Baxter
module (cf. [14]), is a vector space M, such that M is a left H-module and a right H-comodule
satisfying the following equivalent compatibility conditions:

h1 · m(0) ⊗ h2m(1) = (h2 · m)(0) ⊗ (h2 · m)(1)h1, (1)

ρM(h · m) = h2 · m(0) ⊗ h3m(1)S
−1(h1), (2)

for all h ∈ H and m ∈ M.

We denote the category of Yetter–Drinfel’d modules by HYDH , with the morphisms
being H linear and H colinear maps. It is known that (HYDH , ⊗̃, k) forms a braided tensor
category as follows:

(i) For any M, N ∈ HYDH , we have M⊗̃N ∈ HYDH , where M⊗̃N = M ⊗ N are the
spaces, and the Yetter–Drinfel’d module structure is provided by

h · (m⊗̃n) = h1 · m⊗̃h2 · n,

ρM⊗̃N(m⊗̃n) = m(0)⊗̃n(0) ⊗ n(1)m(1).

(ii) The braiding is defined by

ΦM,N : M⊗̃N → N⊗̃M, Φ(m⊗̃n) = n(0)⊗̃n(1) · m,

with inverse Φ−1
M,N(n⊗̃m) = S(n(1)) · m⊗̃n(0).

Remark 1. With the notation as above, if the braiding ΦM,N : M⊗̃N → N⊗̃M satisfies Φ2
M,N =

id, then the category of Yetter–Drinfel’d modules is symmetric. As symmetric Yetter–Drinfel’d
categories are trivial, we do not consider the case that ΦM,N = Φ−1

M,N .

Let M ∈ HYDH be of a finite dimension. We denote the dual vector space M∗ by M⋄

as being endowed with the following Yetter–Drinfel’d module structure:

(h · f )(m) = f (S(h) · m),

f(0)(m)⊗ f(1) = f (m(0))⊗ S−1(m(1)),

for all h ∈ H, f ∈ M⋄, m ∈ M.

Definition 2. An algebra A is called a left H module algebra if A is a left Hcmodule such that
its structure maps are morphisms of H modules. Explicitly, for all h ∈ H and a, b ∈ A,

h · 1A = ε(h)1A, (3)

h · (ab) = (h1 · a)(h2 · b). (4)

Similarly, an algebra A is called a right H-comodule algebra if A is a right H comodule with a
comodule structure ρA as an algebra map. Explicitly, for all a, b ∈ A,

ρA(1A) = 1A ⊗ 1H , (5)

ρA(ab) = a(0)b(0) ⊗ a(1)b(1). (6)

Definition 3. An algebra A, which is a Yetter–Drinfel’d module is said to be a Yetter–Drinfel’d
module algebra (cf. [14,15]) if A is both a left H-module algebra and a right Hop-comodule algebra.



Symmetry 2024, 16, 515 4 of 10

3. Methods

In this paper, we mainly use the theory of the braided monoidal category to generalize
the module homomorphisms for groups and Lie algebras for morphisms in the category of
(non-symmetric) Yetter–Drinfel’d modules.

4. Discussion

We then generalize the morphisms in an arbitrary category of the (non-symmetric)
braided monoidal category.

5. The Invariant Jacobians

Let M and N be right H comodules. We take f ∈ Hom(M, N) and consider ρ( f ) ∈
Hom(M, N ⊗ H) provided by

ρ( f )(m) = f (m(0))(0) ⊗ S−1(m(1)) f (m(0))(1).

As k is a field, Hom(M, N)⊗ H ⊆ Hom(M, N ⊗ H). Define

HOM(M, N) = { f ∈ Hom(M, N)| ρ( f ) ∈ Hom(M, N)⊗ H}.

If a morphism f belongs in HOM(M, N), then f is said to be rational. If the Hopf algebra
H is finite dimensional, then we know that all morphisms are rational. Meanwhile, it is
known from [16] that HOM(M, N) is a right H comodule, and that it is actually the largest
H comodule contained in the pace Hom(M, N). Also, recall that ρ( f ) = f(0) ⊗ f(1) if and
only if

f(0)(m)⊗ f(1) = f (m(0))(0) ⊗ S−1(m(1)) f (m(0))(1), (7)

for all m ∈ M.

Proposition 1. Let M ∈ HYDH . Then, END(M) is a Yetter–Drinfel’d module algebra.

Proof. The coaction defined by (7) makes END(M) into an H comodule. We now define a
left H action on END(M) by

(h · f )(m) = h1 · f (S(h2) · m), (8)

for all h ∈ H, f ∈ END(M) and m ∈ M. Then, the rest proof is similar to that of Proposition
4.1 [14].

Lemma 1. Let M ∈ HYDH be of finite dimension and f (x) ∈ k[x] is the ring of polynomials in
indeterminate x. Set I( f (x), M) as the two-sided ideal of T(M) generated by the image f (ΦM,M)
in M ⊗ M. Then, T(M)/I( f (x), M) is a Yetter–Drinfel’d module algebra, which inherits the
Yetter–Drinfel’d module structure from T(M).

Proof. It is known from [14] that the tensor algebra T(M) is a Yetter–Drinfel’d module
algebra. Hence, it only needs to be shown that I( f (x), M) is stable under the left H module
action and the right Hop comodule coaction.

Indeed, as Φ is a Yetter–Drinfel’d module morphism, so is f (ΦM,M). Thus, Im f (ΦM,M)
is a Yetter–Drinfel’d submodule of M ⊗ M, so that I( f (x), M) is a Yetter–Drinfel’d submod-
ule of T(M) and hence T(M)/I( f (x), M) is a Yetter–Drinfel’d module algebra.

Let M ∈ HYDH be of finite dimension with a basis {ei}n
i=1 and let {xi}n

i=1 ⊆ M∗

be the dual basis of M, such that xi(ei) = δi,j. Let m(x) be the minimal polynomial of
ΦM⋄ ,M⋄ ∈ End(M⋄⊗̃M⋄). For each eigenvalue λ of ΦM⋄ ,M⋄ , set mλ(x) := m(x)/(x − λ)
and A(M, λ) = T(M⋄)/I(mλ(x), M⋄). From Lemma 1 it is known that A(M, λ) is a Yetter–
Drinfel’d module algebra. We define partial differential operators of ∂λ,i (1 ≤ i ≤ n) on
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A(M, λ), and it can be seen that the algebra A(M, λ), together with ∂λ,i, plays the role of
the usual polynomial ring A with G-action and the usual ∂i’s, comparable to what we can
see from [8].

Set E := END(T(M⋄)). Then, it follows from Proposition 1 that E is a Yetter–Drinfel’d
module algebra. Let ψ : E⊗̃T(M⋄) → T(M⋄), f ⊗̃u 7→ f (u). We first define the partial
differential operators ∂λ,i (1 ≤ i ≤ n) on T(M⋄) for each eigenvalue λ of ΦM⋄ ,M⋄ . Their
action on T1(M⋄) = M⋄ is provided by ∂λ,i(xj) = δi,j, while the action on Td(M⋄) for d > 1
is defined as follows: for all xi1⊗̃xi2 · · · ⊗̃xid ∈ Td(M⋄), we set

∂λ,i(xi1⊗̃xi2 · · · ⊗̃xid) =
d

∑
k=1

(−λ)k−1ψk,k+1 ◦ (ΦE,(M⋄)⊗̃(k−1)⊗̃id
(M⋄)⊗̃(d−k+1))(∂λ,i⊗̃xi1⊗̃xi2 · · · ⊗̃xid),

where ψk,k+1 := id
(M⋄)⊗̃(k−1)⊗̃Φ⊗̃id

(M⋄)⊗̃(d−k) .

Lemma 2. The ∂λ,i (1 ≤ i ≤ n) obeys the following Leibniz rule:

∂λ,i(u⊗̃v) = ∂λ,i(u)⊗̃v + (−λ)su(0)⊗̃(u(1) · ∂λ,i)(v), (9)

for u ∈ Ts(M⋄) and v ∈ Tt(M⋄).

Proof. As Φ is a braiding, for any triple (U, V, W) of Yetter–Drinfel’d modules, by Defini-
tion 10.4.1 [11], we have that

ΦU,V⊗̃W = (idV⊗̃ΦU,W) ◦ (ΦU,V⊗̃idW). (10)

Then, by the definitions of ∂λ,i and (10), we obtain

∂λ,i(u⊗̃v) =
s+t
∑

k=1
(−λ)k−1ψk,k+1 ◦ (ΦE,(M⋄)⊗̃(k−1)⊗̃id

(M⋄)⊗̃(s+t−k+1))(∂λ,i⊗̃u⊗̃v)

= (
s
∑

k=1
+

s+t
∑

k=s+1
)(−λ)k−1ψk,k+1 ◦ (ΦE,(M⋄)⊗̃(k−1)⊗̃id

(M⋄)⊗̃(s+t−k+1))(∂λ,i⊗̃u⊗̃v)

= ∂λ,i(u)⊗̃v +
s+t
∑

k=s+1
(−λ)k−1ψk,k+1 ◦ (id(M⋄)⊗̃s⊗̃Φ

E,(M⋄)⊗̃(k−s−1)⊗̃id
(M⋄)⊗̃(s+t−k+1))

◦(Φ
E,(M⋄)⊗̃s⊗̃id

(M⋄)⊗̃t)(∂λ,i⊗̃u⊗̃v)

= ∂λ,i(u)⊗̃v +
s+t
∑

k=s+1
(−λ)k−1ψk,k+1 ◦ (id(M⋄)⊗̃s⊗̃Φ

E,(M⋄)⊗̃(k−s−1)⊗̃id
(M⋄)⊗̃(s+t−k+1))(u(0)⊗̃u(1) · ∂λ,i⊗̃v)

= ∂λ,i(u)⊗̃v + (−λ)s t
∑

m=1
(−λ)m−1(id

(M⋄)⊗̃s⊗̃ψm,m+1)(u(0)⊗̃u(1) · ∂λ,i⊗̃v)

= ∂λ,i(u)⊗̃v + (−λ)su(0)⊗̃(u(1) · ∂λ,i)(v),

as required.

For each A ∈ End(M⋄⊗̃M⋄), denote A (xi⊗̃xj) = ∑
1≤s,t≤n

[A ]
i,j
s,txs⊗̃xt.

Lemma 3. We have ∂λ,i(xj⊗̃xk) = δi,jxk − λ
n
∑

s=1
[ΦM∗ ,M∗ ]

j,k
i,s xs, for all i, j, k.
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Proof. As a matter of fact,

∂λ,i(xj⊗̃xk) = δi,jxk − λ(idM⋄⊗̃ψ) ◦ (ΦE,M⋄⊗̃idM⋄)(∂λ,i⊗̃xj⊗̃xk)
= δi,jxk − λxj(0)⊗̃(xj(1) · ∂λ,i)(xk)

= δi,jxk − λxj(0)⊗̃∂λ,i(S(xj(1))xk)

= δi,jxk − λ(idM⋄⊗̃∂λ,i) ◦ τ ◦ Φ−1
M⋄ ,M⋄(xj⊗̃xk)

= δi,jxk − λ(idM⋄⊗̃∂λ,i)( ∑
1≤s,t≤n

[Φ−1
M⋄ ,M⋄ ]

j,k
s,t xt⊗̃xs)

= δi,jxk − λ ∑
1≤s,t≤n

[Φ−1
M⋄ ,M⋄ ]

j,k
s,t xt⊗̃∂λ,i(xs)

= δi,jxk − λ ∑
1≤t≤n

[Φ−1
M⋄ ,M⋄ ]

j,k
i,t xt.

Hence, the lemma is proven.

Lemma 4. For all i, the ideal I(mλ(x), M⋄) is stable under ∂λ,i.

Proof. First, we obtain that ∂λ,i(Im(mλ(ΦM⋄ ,M⋄))) = 0. Indeed, for all i, j, k, by Lemma 3
we obtain that

∂λ,i(xj⊗̃xk) = δi,jxk − λ
n
∑

s=1
[Φ−1

M⋄ ,M⋄ ]
j,k
i,s xs

= (∂λ,i⊗̃idM⋄)(xj⊗̃xk)− λ ∑
1≤s,t≤n

[Φ−1
M⋄ ,M⋄ ]

j,k
t,s∂λ,i(xt)⊗̃xk

= (∂λ,i⊗̃idM⋄) ◦ (idM⋄⊗̃M⋄ − λΦ−1
M⋄ ,M⋄)(xj⊗̃xk).

Hence, ∂λ,i = (∂λ,i⊗̃idM⋄) ◦ (idM⋄⊗̃M⋄ − λΦ−1
M⋄ ,M⋄) in Hom(M⋄⊗̃M⋄, M⋄).

For each x ∈ Im(mλ(ΦM⋄ ,M⋄)), there exists a y ∈ M⋄⊗̃M⋄ such that x = mλ(ΦM⋄ ,M⋄)(y).
Then,

∂λ,i(x) = ∂λ,i ◦ mλ(ΦM⋄ ,M⋄)(y)
= (∂λ,i⊗̃idM⋄) ◦ (idM⋄⊗̃M⋄ − λΦ−1

M⋄ ,M⋄) ◦ mλ(ΦM⋄ ,M⋄)(y)
= (∂λ,i⊗̃idM⋄) ◦ Φ−1

M⋄ ,M⋄ ◦ (ΦM⋄ ,M⋄ − λidM⋄⊗̃M⋄) ◦ mλ(ΦM⋄ ,M⋄)(y)
= (∂λ,i⊗̃idM⋄) ◦ Φ−1

M⋄ ,M⋄ ◦ m(ΦM⋄ ,M⋄)(y)
= 0,

as m(ΦM⋄ ,M⋄) = 0.
Let u ∈ Im(mλ(ΦM⋄ ,M⋄)). When n ∈ N and v ∈ Tn(M⋄) are proven, we obtain that

∂λ,i(u⊗̃v), ∂λ,i(v⊗̃u) ∈ I(mλ(x), M⋄).
Indeed, notice ∂λ,i(u) = 0 from the above discussion, then by (9), we have

∂λ,i(u⊗̃v) = ∂λ,i(u)⊗̃v + λ2u(0)⊗̃(u(1) · ∂λ,i)(v) = λ2u(0)⊗̃(u(1) · ∂λ,i)(v) ∈ I(mλ(x), M⋄),

as the two-side ideal I(mλ(x), M⋄) of T(M⋄) is stable under H action by Lemma 1. On the
other hand,

∂λ,i(v⊗̃u) = ∂λ,i(v)⊗̃u + (−λ)nv(0)⊗̃(v(1) · ∂λ,i)(u)
= ∂λ,i(v)⊗̃u + (−λ)nv(0)⊗̃∂λ,i(S(v(1)) · u)
= ∂λ,i(v)⊗̃u ∈ I(mλ(x), M⋄).

We complete the proof of this lemma.

The following proposition, which enables us to identify ∂λ,i with ei, is key in the
discussion below.
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Proposition 2. The subspace M′(λ) := ⊕n
i=1k∂λ,i is a Yetter–Drinfel’d submodule of END(A(M, λ))

which is isomorphic to M⋄ under the map

α : M′(λ) → M⋄, α(∂λ,i) = ei.

Proof. Obviously, α is isomorphic. Assume that h · ei = ∑
j

aj,i(h)ej. For all v ∈ A(M, λ),

if we can show that (h · ∂λ,i)(v) = ∑
j

aj,i(h)∂λ,j(v), then α becomes a morphism of left H

modules as a matter of course. It is clear that the above claim holds for v ∈ M⋄ (i.e., degv
= 1). For arbitrary degree (≥2), the claim follows from the induction on deg(v) and the
axiom: for any v1, v2 ∈ A(M, λ) with deg(vi) = di (i = 1, 2),

(h · ∂λ,i)(v1⊗̃v2) = (h · ∂λ,i)(v1)⊗̃v2 + (−λ)d1 v1
(0)⊗̃(v1

(1)h · ∂λ,i)(v2).

To prove the axiom, we compute

(h · ∂λ,i)(v1⊗̃v2) = h1 · ∂λ,i
(
S(h3) · v1⊗̃S(h2) · v2)

(9)
=
(
h1 · ∂λ,i(S(h4) · v1)

)
⊗̃
(
h2S(h3) · v2)

+(−λ)d1 h1 · (S(h4) · v1)(0)⊗̃h2 ·
(
(S(h4) · v1)(1) · ∂λ,i

)
(S(h3) · v2)

(2)
=
(
h1 · ∂λ,i(S(h2) · v1)

)
⊗̃v2 + (−λ)d1 h1S(h5) · v1

(0)⊗̃h2 ·
(

S(h4)v1
(1)h6 · ∂λ,i

)
(S(h3) · v2)

(8)
= (h · ∂λ,i)(v1)⊗̃v2 + (−λ)d1 h1S(h6) · v1

(0)⊗̃h2S(h5)v1
(1)h7 · ∂λ,i

(
S(h3S(h4)v1

(2)h8) · v2
)

= (h · ∂λ,i)(v1)⊗̃v2 + (−λ)d1 h1S(h4) · v1
(0)⊗̃h2S(h3)v1

(1)h5 · ∂λ,i

(
S(v1

(2)h6) · v2
)

= (h · ∂λ,i)(v1)⊗̃v2 + (−λ)d1 h1S(h2) · v1
(0)⊗̃v1

(1)h3 · ∂λ,i

(
S(v1

(2)h4) · v2
)

= (h · ∂λ,i)(v1)⊗̃v2 + (−λ)d1 v1
(0)⊗̃v1

(1)h1 · ∂λ,i

(
S(v1

(2)h2) · v2
)

= (h · ∂λ,i)(v1)⊗̃v2 + (−λ)d1 v1
(0)⊗̃(v1

(1)h · ∂λ,i)(v2).

The H colinearity of α can be proven dually. Indeed, writing ei(0) ⊗ ei(1) = ∑
j

k j,iej ⊗ hj,

we need to show that ∂λ,i(0)(v)⊗ ∂λ,i(1) = ∑
j

k j,i∂λ,j(v)⊗ hj for all v ∈ A(M, λ). Clearly,

this claim holds for v ∈ M⋄. It remains to be proven that

∂λ,i(0)(v
1⊗̃v2)⊗ ∂λ,i(1) = ∂λ,i(0)(v

1)⊗̃v2 ⊗ ∂λ,i(1) + (−λ)d1 v1
(0)⊗̃(v1

(1) · ∂λ,i(0))(v
2)⊗ ∂λ,i(1).

from which and the induction on deg(v), the claim follows.
In fact,

∂λ,i(0)(v1⊗̃v2)⊗ ∂λ,i(1) = ∂λ,i(v1
(0)⊗̃v2

(0))(0) ⊗ S−1(v2
(1)v

1
(1))∂λ,i(v1

(0)⊗̃v2
(0))(1)

=
(

∂λ,i(v1
(0))⊗̃v2

(0)

)
(0)

⊗ S−1(v2
(1)v

1
(1))
(

∂λ,i(v1
(0))⊗̃v2

(0)

)
(1)

+ (−λ)d1
(

v1
(0)⊗̃(v1

(1) · ∂λ,i)(v2
(0))
)
(0)

⊗S−1(v2
(1)v

1
(1))
(

v1
(0)⊗̃(v1

(1) · ∂λ,i)(v2
(0))
)
(1)

= ∂λ,i(v1
(0))(0)⊗̃v2

(0) ⊗ S−1(v2
(2)v

1
(1))v

2
(1)∂λ,i(v1

(0))(1) + (−λ)d1 ∑ v1
(0)⊗̃(v1

(2) · ∂λ,i)(v2
(0))(0)

⊗S−1(v2
(1)v

1
(3))(v

1
(2) · ∂λ,i)(v2

(0))(1)v
1
(1)

= ∂λ,i(0)(v1)⊗̃v2 ⊗ ∂λ,i(1) + (−λ)d1 v1
(0)⊗̃v1

(3) · ∂λ,i

(
S(v1

(5)) · v2
(0)

)
(0)

⊗S−1(v2
(1)v

1
(6))v

1
(4)∂λ,i

(
S(v1

(5)) · v2
(0)

)
(1)

S−1(v1
(2))v

1
(1)

= ∂λ,i(0)(v1)⊗̃v2 ⊗ ∂λ,i(1) + (−λ)d1 v1
(0)⊗̃v1

(1) · ∂λ,i

(
S(v1

(3)) · v2
(0)

)
(0)

⊗S−1(v2
(1)v

1
(4))v

1
(2)∂λ,i

(
S(v1

(3)) · v2
(0)

)
(1)

,

however,
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v1
(0)⊗̃v1

(1) · ∂λ,i

(
S(v1

(3)) · v2
(0)

)
(0)

⊗ S−1(v2
(1)v

1
(4))v

1
(2)∂λ,i

(
S(v1

(3)) · v2
(0)

)
(1)

= v1
(0)⊗̃v1

(1) · ∂λ,i

(
S(v1

(3)) · v2
(0)

)
(0)

⊗ S−1
(

S(v1
(2))v

2
(1)v

1
(4)

)
∂λ,i

(
S(v1

(3)) · v2
(0)

)
(1)

= v1
(0)⊗̃v1

(1) · ∂λ,i

(
(S(v1

(2)) · v2)(0)

)
(0)

⊗ S−1
(
(S(v1

(2)) · v2)(1)

)
∂λ,i

(
(S(v1

(2)) · v2)(0)

)
(1)

= v1
(0)⊗̃v1

(1) · ∂λ,i(0)

(
(S(v1

(2)) · v2)
)
⊗ ∂λ,i(1)

= v1
(0)⊗̃(v1

(1) · ∂λ,i(0))(v2)⊗ ∂λ,i(1).

So, the claim follows and the proof is completed.

The following theorem generalizes Theorem 3.1(a) [6] and Theroem 3.5 [8].

Theorem 1. Let H be a Hopf algebra over an algebraically closed field k, and M is a finite
dimensional Yetter–Drinfel’d module. For each eigenvalue λ of ΦM⋄ ,M⋄ in k, the linear map

ϕ : M⊗̃A(M, λ) → A(M, λ), ϕ(ei⊗̃v) = ∂λ,i(v),

for each i and v ∈ A(M, λ) is a morphism of Yetter–Drinfel’d modules.

Proof. For each i and v ∈ A(M, λ), h ∈ H, by Proposition 2 we have

ϕ
(
h · (ei⊗̃v)

)
= ϕ(h1 · ei⊗̃h2 · v) = (h1 · ∂λ,i)(h2 · v)
= h1 · ∂λ,i(S(h2)h3 · v) = h · ∂λ,i(v) = h · ϕ(ei⊗̃v),

ϕ ◦ ρ(ei⊗̃v) = ∑ ϕ(ei(0)⊗̃v(0))⊗ v(1)ei(1) = ∂λ,i(0)(v(0))⊗ v(1)∂λ,i(1)
= ∂λ,i(v(0))(0) ⊗ v(2)S−1(v(1))∂λ,i(v(0))(1)
= ∂λ,i(v)(0) ⊗ ∂λ,i(v)(1) = ρ ◦ ϕ(ei⊗̃v),

which completes the proof.

Definition 4. Let A = ⊕q∈NAq = A0 ⊕ A1 ⊕ · · · be a graded ring. Then, a = a0 + a1 + · · · is
unique for all a ∈ A. Here, aq is called the q-th homogeneous component of a.

An ideal I ⊆ A is said to be homogeneous if for all x ∈ I, its homogeneous component belongs
to I.

As I(mλ(x), M∗) is a homogeneous ideal (the elements in Im(mλ(ΦM⋄ ,M⋄)) are ho-
mogeneous of degree 2), A(M, λ) is a graded algebra. For each q ∈ N, denote the q-th
homogeneous component by A(M, λ)q. As in the classical case, we define the λ-Jacobian
Jλ(v) of v ∈ A(M, λ)q to the subspace of A(M, λ)q−1 spanned by {∂λ,i(v)n

i=1}. Then, as a
consequence of Theorem 1, we have

Corollary 1. Let v ∈ A(M, λ)q. If Jλ(v) is H invariant and H coinvariant, then Jλ(v) is a
quotient Yetter–Drinfel’d module of M⊗̃A(M, λ)q. If a u ∈ A(M, λ) also exists, such that
deg(u) = deg(v) and u are H-invariant and H-coinvariant, respectively, then Jλ(v) is a quotient
module of M. In this case, if M is irreducible, then Jλ(v) is 0 or isomorphic to M.

Lemma 5. The element
n
∑

i=1
xi⊗̃∂λ,i ∈ M⋄⊗̃END(A(M, λ)) is H-invariant and H-coinvariant.

Proof. There is no harm in replacing ∂λ,i by ei by Proposition 2. So, it is equivalent to show

that
n
∑

i=1
xi⊗̃ei is H-invariant and H-coinvariant.
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By evaluating xp, on the one hand,(
h · (

n

∑
i=1

xi⊗̃ei)

)
(xp) =

n
∑

i=1
h1 · xi⊗̃(h2 · ei)(xp) =

n
∑

i=1
h1 · xi⊗̃ei(S(h2) · xp)

= h1S(h2) · xp⊗̃1k = ε(h)xp⊗̃1k

= ε(h)
n
∑

i=1
xi⊗̃ei(xp),

on the other hand,

ρ

(
n

∑
i=1

xi⊗̃ei

)
(xp) =

(
n

∑
i=1

xi(0)⊗̃ei(0) ⊗ ei(1)xi(1)

)
(xp)

=
n
∑

i=1
xi(0)⊗̃ei(0)(xp)⊗ ei(1)xi(1)

=
n
∑

i=1
xi(0)⊗̃ei(xp(0))⊗ S−1(xp(1))xi(1)

= xp(0)⊗̃1k ⊗ S−1(xp(2))xp(1)

= xp⊗̃1k ⊗ 1H =

(
n

∑
i=1

xi⊗̃ei ⊗ 1H

)
(xp).

Hence, the lemma is proven.

The following theorem is a generalization of Theorem 3.3(a) [6] and Theroem 3.9 [8].

Theorem 2. The map

ψ : A(M, λ)q → A(M, λ)1⊗̃A(M, λ)q−1, ψ(v) =
n

∑
i=1

xi ⊗ ∂λ,i(v),

is a morphism of Yetter–Drinfel’d modules.

Proof. It is easy to see that the following

δ : END(A(M, λ))⊗̃A(M, λ) → A(M, λ), δ( f ⊗̃v) = f (v),

is a morphism of Yetter–Drinfel’d modules.
Then, for any v ∈ A(M, λ) and h ∈ H, from Lemma 5, we obtain that

h ·
(

n

∑
i=1

xi⊗̃∂λ,i(v)

)
=

n
∑

i=1
h1 · xi⊗̃h2 · ∂λ,i(v) =

n
∑

i=1
h1 · xi⊗̃h2 · ∂λ,i(h3 · v)

= (id⊗̃δ)

(
n

∑
i=1

h1 · xi⊗̃h2 · ∂λ,i⊗̃h3 · v

)

= (id⊗̃δ)

(
n

∑
i=1

h1 · (xi⊗̃∂λ,i)⊗̃h2 · v

)

= (id⊗̃δ)

(
n

∑
i=1

xi⊗̃∂λ,i⊗̃h · v

)
=

n
∑

i=1
xi ⊗ ∂λ,i(h · v),

thus, ψ is a left H module morphism.
Furthermore,
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ρ

(
n

∑
i=1

xi ⊗ ∂λ,i(v)

)
=

n
∑

i=1
xi(0) ⊗ ∂λ,i(v)(0) ⊗ ∂λ,i(v)(1)xi(1)

=
n
∑

i=1
xi(0) ⊗ ∂λ,i(v(0))(0) ⊗ v(2)S−1(v(1))∂λ,i(v(0))(1)xi(1)

=
n
∑

i=1
xi(0) ⊗ ∂λ,i(0)(v(0))⊗ v(1)∂λ,i(1)xi(1)

=
n
∑

i=1
xi ⊗ ∂λ,i(v(0))⊗ v(1),

thus, ψ is a right H comodule morphism. Hence, ψ is a morphism of Yetter–Drinfel’d
modules.

6. Conclusions

It has been known that two kinds of homomorphisms of modules over groups and Lie
algebras exist, established by Xi (see [6]), which play a key role in the proof of a conjecture
of Yau (see [7]). In [8], the author showed that the two module homomorphisms could be
generalized to the setting of quasi-triangular Hopf algebras. Following the above work, we
furthermore generalized to the setting of quantum Yang–Baxter module algebra over Hopf
algebra. This will also be useful in the problem of the decomposition of tensor products of
modules and Yetter–Drinfel’d modules.
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