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Abstract: This paper presents an improved swarming algorithm that enhances low-illumination
images. The algorithm combines a hybrid Harris Eagle algorithm with double gamma (IHHO-BIGA)
and incomplete beta (IHHO-NBeta) functions. This paper integrates the concept of symmetry into the
improvement steps of the image adaptive enhancement algorithm. The enhanced algorithm integrates
chaotic mapping for population initialization, a nonlinear formula for prey energy calculation,
spiral motion from the black widow algorithm for global search enhancement, a nonlinear inertia
weight factor inspired by particle swarm optimization, and a modified Levy flight strategy to
prevent premature convergence to local optima. This paper compares the algorithm’s performance
with other swarm intelligence algorithms using commonly used test functions. The algorithm’s
performance is compared against several emerging swarm intelligence algorithms using commonly
used test functions, with results demonstrating its superior performance. The improved Harris Eagle
algorithm is then applied for image adaptive enhancement, and its effectiveness is evaluated on
five low-illumination images from the LOL dataset. The proposed method is compared to three
common image enhancement techniques and the IHHO-BIGA and IHHO-NBeta methods. The
experimental results reveal that the proposed approach achieves optimal visual perception and
enhanced image evaluation metrics, outperforming the existing techniques. Notably, the standard
deviation data of the first image show that the IHHO-NBeta method enhances the image by 8.26%,
120.91%, 126.85%, and 164.02% compared with IHHO-BIGA, the single-scale Retinex enhancement
method, the homomorphic filtering method, and the limited contrast adaptive histogram equalization
method, respectively. The processing time of the improved method is also better than the previous
heuristic algorithm.

Keywords: low-illumination image; Harris Eagle algorithm; histogram equalization; gamma
correction function; incomplete beta function

1. Introduction

Various factors often affect low-light images, such as imperfections in imaging systems,
recording devices, and transmission media. Incomplete processing methods can lead
to decreased image quality because the output signal level of the imaging system falls
below a specified value of the scene brightness. Such images exhibit low brightness,
weakened detail information, poor contrast, color distortion, a narrow grayscale range, and
high interference, significantly impacting human visual perception and the efficiency of
machine vision-related systems. Specific application scenarios, such as underwater images,
are influenced by water’s absorption and scattering of light [1], resulting in color shifts
and reduced contrast. Foggy weather images are affected by fog’s refraction and light
obstruction [2], leading to low brightness and poor clarity. Medical images are impacted
by noise interference, poor lighting, and other factors [3], resulting in missing detailed
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information and high noise levels. These challenges hinder human productivity and
daily life. Image enhancement technology is a crucial component of the image processing
process. Its primary objective is to process image information effectively, enhance the
appearance of low-quality images, and ultimately improve visual effects while minimizing
noise amplification and maintaining good real-time performance. Image enhancement
not only effectively improves human subjective visual perception but also enhances the
efficiency, reliability, and robustness of visual systems.

Low-illumination image enhancement research has rapidly gained traction as a re-
search hotspot because of its wide range of applications, resulting in numerous emerging
research outcomes. Each image enhancement technique has its own set of advantages
and disadvantages. Prevalent image enhancement methods include spatial domain, fre-
quency domain, image fusion, Retinex, and deep learning. Spatial methods encompass
techniques such as the histogram equalization algorithm [4], the gamma correction al-
gorithm [5], the beta correction algorithm [6], and median filter [7]. Frequency domain
methods comprise low-pass filters [8], homomorphic filters [9], and high-pass filters [10].
Image fusion methods include exposure interpolation [11] and multi-image fusion [12]. The
classic methods for image enhancement based on Retinex’s theory include the single-scale
algorithm (SSR) [13], the multi-scale algorithm (MSR) [14], and the algorithm with color
restoration (MSRR) [15]. Deep learning-based methods primarily involve techniques based
on convolutional neural networks (CNNs) [16], adversarial genetic networks (GANs) [17],
and methods that combine deep learning with Retinex theory [18]. Swarm intelligence
algorithms are known for their excellent convergence performance and optimization abil-
ities, making them widely applicable in various fields including image enhancement.
Numerous new algorithms are being developed as swarm intelligence algorithms continue
to evolve. Furthermore, traditional swarm intelligence algorithms, such as [19–21], are
being optimized and improved. Emerging algorithms have also found applications in
image enhancement because of their outstanding performance, such as the marine predator
algorithm (MPA) [22] and the salp swarm optimization algorithm (SSOA) [23].

This paper proposes an adaptive low-illumination image enhancement method based
on an improved Harris Hawk algorithm. The image is adaptively enhanced by combining
two correction functions with an improved algorithm by using the concept of symmetry.
This improved method combines gamma correction and incomplete beta functions to
enhance images in low-illumination conditions. This combination effectively addresses
the challenges of low brightness, poor contrast, weak detail information, and noise in
low-illumination images. The processing time of the proposed method is improved to
some extent compared with the other strategies. The contributions of this article can be
summarized as follows:

• Improved Harris Hawk Algorithm. Firstly, this paper proposes employing circle
chaotic mapping for population initialization to solve the issues of slow convergence
and susceptibility to local optimality in the Harris Hawk algorithm. This improvement
enhances the search capabilities of the Harris Hawk and enriches population information.
This paper also replaces the original energy conversion formula with a nonlinear dynamic
formula to expedite transitions between global and local searches, significantly improving
convergence speed. Additionally, this work incorporates the spiral motion from the black
widow algorithm to improve global search behavior and strengthen the Harris Eagle
algorithm’s ability to escape local optima. A nonlinear inertia weight factor from the
particle swarm optimization algorithm is introduced to accelerate the local search speed.
Finally, this work corrects some issues in the original algorithm’s Levy flight.

• Adaptive Enhancement of Low-Illuminance Images. This study employs a swarm
intelligence algorithm and a correction function to enhance low-illuminance images. The
entropy of an image is a statistical form of features that reflects the average amount of
information in the image and represents the clustering characteristics of the grayscale
distribution of the image, so we use image entropy as a fitness function to optimize the
parameters of the gamma correction function and incomplete beta function, enabling us
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to identify the optimal parameter values and achieve the best low-illuminance image
enhancement results.

• Comparison with other methods through experiments. This study enhances five
low-illumination images from the LOL [24] dataset. The comparison experiment includes
limited contrast adaptive histogram equalization (CLAHE), single-scale Retinex enhance-
ment (SSR), homomorphic filtering, and the method proposed in this paper. After en-
hancement, the average gradient (AG), standard deviation (SD), spatial frequency (SF),
information entropy (IE), and correlation coefficient (CC) serve as evaluation indices. The
entropy of the five images enhanced by IHHO-Nbeta increases by 76.84%, 59.01%, 71.47%,
51.03%, and 44.02%, respectively, compared with the original low-illumination images. For
example, considering the enhancement effect on the first image, the standard deviation
of IHHO-NBeta increases by 8.26% compared with IHHO-BIGA and 120.91% compared
with SSR.

This paper is organized into five sections. The first section serves as an introduction,
primarily discussing the background of low-illumination image enhancement. The second
section on related works presents an overview of the current research progress in this area.
The third section focuses on the methodology, which involves the improvement in the
Harris Eagle algorithm, using the enhanced Harris Eagle in conjunction with the double
gamma correction function and incomplete beta function for adaptive image enhancement.
The fourth section details the experiments conducted in this study. Seven standard test
functions are employed to compare the improved algorithms, encompassing a variety of
emerging swarm intelligence algorithms. Additionally, the proposed method is compared
with several other image enhancement techniques, demonstrating the superior performance
of the method proposed in this study. Finally, a quantitative comparison is made on the
processing time of image enhancement. The fifth and final section summarizes the entirety
of this study and outlines prospects for future research.

2. Related Works

Numerous image enhancement methods have been optimized in recent years. Each
has unique advantages and disadvantages. Histogram equalization optimization is a well-
established image enhancement technique that increases contrast and detail content by
extending the range of gray values. A novel three-part histogram equalization method
is proposed in the literature [25]. The improvements can effectively enhance images by
dividing them into three sub-regions and performing histogram equalization processing.
However, the abnormal stretching of gray levels can result in artifacts, sawtooth effects, and
over-enhancement when histogram equalization is applied for image enhancement. Various
solutions have been proposed by researchers to address these issues. Majid et al. [26]
introduced a triple-clipping dynamic histogram equalization optimization algorithm, but
the performance of this method has room for improvement. Bhupendra et al. [27] effectively
overcame the mean shift problem and enhanced contrast by dividing the quantiles of
the histogram.

The Contrast Limited Adaptive Histogram Equalization (CLAHE) is a development
based on the histogram equalization method. The primary distinction between CLAHE
and its predecessors is contrast limiting. CLAHE effectively avoids the issue of excessive
noise amplification caused by histogram equalization. In a study by [28], CLAHE enhanced
retinal fundus images, yielding outstanding results. Lu et al. [29] employed CLAHE, the
Gauss mask algorithm, and differential processing to enhance weld images. This approach
effectively removed noise and retained edge information while improving contrast.

Gamma and incomplete beta correction offer simplicity and convenience but can
result in over-enhancement, under-enhancement, and color distortion when enhancing
low-illumination images. Jeon et al. [30] demonstrated that a cross-correlation color his-
togram translation algorithm combined with gamma correction could effectively resolve
red artifacts in dust images and reduce color distortion. Lee et al. [31] proposed a blind
inverse gamma correction algorithm suitable for multiple types of image enhancement.
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Liu et al. [32] developed a simple and efficient method based on membership function
and gamma correction, which can overcome over- and under-enhancement issues during
image enhancement.

In addition to the optimizations for histogram equalization and gamma correction,
some studies have combined the two methods. For example, [33] used particle swarm opti-
mization to optimize the histogram equalization of gamma correction, effectively avoiding
excessive enhancement and unnatural artifacts. Inspired by this research, an increasing
number of swarm intelligence algorithms are being applied to image enhancement, such as
FPA [34] and the Selfish Herd Optimizer (SHO) [35]. Yan et al. [36] enhanced images of au-
tonomous underwater vehicles using the whale algorithm. Liu et al. [37] effectively avoided
image color distortion and excessive noise by using the parameters of the multi-objective
Grasshopper algorithm (GOA), the Duffing oscillator model, and the homomorphic filter.
Sun et al. [38] fused images optimized by the artificial bee colony algorithm with weights
and compared the results with histogram equalization and double gamma correction, prov-
ing that the proposed algorithm can emphasize details and reduce noise. The related works
are summarized in Table 1.

Table 1. The benefits and shortcomings of related works.

Related Works Methods Benefits and Shortcomings

[25] three-part histogram equalization effectively enhanced images; artifacts, sawtooth effects, and
over-enhancement

[26] triple-clipping dynamic histogram equalization the performance has room for improvement

[27] divided the quantiles of the histogram overcame the mean shift problem and enhanced contrast;
excessive noise amplification

[28] enhanced retinal fundus images avoided excessive noise amplification; results may not be
ideal for details

[29] CLAHE, Gauss mask algorithm, and
differential processing

removed noise and retained edge information while
improving contrast; the noise point of the weld image has
not been effectively improved

[30] a cross-correlation color histogram translation
algorithm

resolved red artifacts in dust images and reduced color
distortion

[31] a blind inverse gamma correction algorithm
can be seamlessly extended to a masked image and
multi-channel image, and is free of the arbitrary tuning
parameter

[32] a simple and efficient method based on the
membership function and gamma correction overcame over- and under-enhancement issues

[33]
used particle swarm optimization to optimize
the histogram equalization of gamma
correction

avoided excessive enhancement and unnatural artifacts

[34] used FPA to optimize the histogram
equalization of gamma correction

produceed more robust, scalable, and precise results than
the original FPA

[35] used SHO to optimize the histogram
equalization of gamma correction two different solutions

[36] used the whale algorithm enhanced images of autonomous underwater vehicles

[37]
used the parameters of the multi-objective
Grasshopper algorithm (GOA), the Duffing
oscillator model, and thhe homomorphic filter

effectively avoided image color distortion and excessive
noise

[38] the artificial bee colony algorithm with weights emphasized details and reduced noise

Based on this investigation and summary of the existing methods, it is not difficult to
find that there are certain shortcomings in the current methods applied to image enhance-
ment. As more and more swarm intelligence methods are applied in image enhancement,
finding ways to improve the performance of algorithms is becoming increasingly important.
The method proposed in this article is experimentally compared and shows improvements
in both processing time and performance compared with other classic traditional methods.
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3. Methods
3.1. Traditional Image Enhancement Methods

There are many traditional image enhancement methods, most of which require less
time processing, but the enhancement effect is average. The difference between CLAHE
and ordinary adaptive histogram equalization lies in contrast limiting, which is often
used to overcome the excessive amplification of noise by AHE. Compared with AHE,
CLAHE has two improvements as follows: a proposed histogram distribution method
and an interpolation method. In the histogram distribution method, there is a threshold
to crop a certain grayscale value in the histogram that exceeds the threshold, and then
evenly distributes the parts that exceed the threshold to each grayscale level. The proposed
interpolation method divides the image into blocks, which can effectively avoid the defects
of discontinuous blocks. The flowchart is shown in Figure 1.
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Figure 1. Flowchart for CLAHE.

Retinex is a commonly used image enhancement method whose theoretical basis is
that the color of an object is determined by the reflection ability of the object to different
wavelengths of light, and the color of the object is not affected by light non-uniformity,
with consistency. Retinex can achieve a balance between dynamic compression, edge
enhancement, and color constancy, thus enabling adaptive enhancement of various types
of images. SSR is one of the earliest image enhancement methods based on Retinex, and its
flowchart is shown in Figure 2.
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Figure 2. Flowchart for SSR.

Homomorphic filtering is a method of enhancing an image using the frequency domain.
It reduces the impact of light changes on the image by reducing the low-frequency portion
and enhancing the high-frequency portion through filtering algorithms. This method can
handle the problems of a large dynamic range, uneven image illumination, and unclear
details in dark areas in images. Based on the nonlinear characteristics of the human eye’s
response to brightness, this method not only enhances image details in dark areas but also
does not lose image details in bright areas, thus achieving the effect of image enhancement.
The flowchart is shown in Figure 3.
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3.2. Improved Harris Hawk Algorithm

At present, some researchers are attempting to improve the accuracy and convergence
of the algorithm results by increasing the time complexity of the operation, but sacrificing
time complexity will bring great challenges to computational resources and solving time.
The improved operations in this paper are derived without changing the time complexity
of the original heuristic algorithm. The Harris Hawk algorithm (HHO) is a new type of
swarm intelligence algorithm proposed in 2019 [39]. It mainly searches for the optimal
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solution by simulating the predatory behavior of the Harris Hawk. HHO is an excellent
heuristic algorithm. It does not have many parameters to adjust and has good performance.
Compared with other heuristic algorithms, HHO has good search performance and the
ability to jump out of local optima. HHO mainly includes the following three key steps:
global search, conversion stage, and local search. The global search involves dividing two
searches’ formulas into equal probabilities using a random number as follows:

X(t + 1) =
{

Xrand(t)− r1|Xrand(t)− 2r2X(t)|q ≥ 0.5
(Xrabbit(t)− Xm(t))− r3(lb + r4(ub − lb))q < 0.5

Xm(t) =
1
N ∑ N

i=1 Xi(t) (1)

In Formula (1), X(t) represents the current position, Xrand(t) represents a random
position, Xrabbit(t) and Xm(t) represent the prey’s position and average position, respec-
tively, r represents a random number, q represents the strategy selection probability, and N
represents the population number. The transformation stage is represented by a simple
linear formula, i.e., Formula (7), which includes four strategies of a Harris Hawk in the
local search, as shown in the Table 2:

Table 2. Four local search strategies of the Harris Hawk condition formula.

Strategy Condition Formula

Soft surround r ≥ 0.5, 1 > |E| ≥ 0.5
X(t + 1) = ∆X(t)− E|JXrabbit(t)− X(t)|
∆X(t) = Xrabbit(t)− X(t)

J = 2(1 − r5) (2)
Hard surround r ≥ 0.5, 0.5 > |E| X(t + 1) = Xrabbit(t)− E|∆X(t)| (3)

Quick glide Soft
surround

r < 0.5, 1 > |E| ≥ 0.5
X(t + 1) =

{
YF(Y) < F(X(t))
ZF(Z) < F(X(t))

Z = Y + S × LF(D)
Y = Xrabbit(t)− E|JXrabbit(t)− X(t)| (4)

Quick glide hard
surround

r < 0.5, 0.5 > |E|
X(t + 1) =

{
YF(Y) < F(X(t))
ZF(Z) < F(X(t))

Z = Y + S × LF(D)
Y = Xrabbit(t)− E|JXrabbit(t)− Xm(t)| (5)

Detailed explanations of Formulas (1)–(5) in the above table can be found in the
literature [39]. In the above equation, r represents a random number, E represents the
energy formula, ∆X(t) represents the position difference in the Harris Hawk, J represents
ta random number between 0 and 2, Z simulates the glide process, and Y simulates the
movement process of the approach. Aiming at the characteristics of HHO such as low
population richness, easily falling into local optimization, and slow convergence speed, this
study made improvements to several parts of the Harris Hawk algorithm. The improvement
methods are all carried out without changing the time complexity of the algorithm itself,
including improvements to initialization and search strategies.

Many meta-heuristic algorithms use a random strategy when initializing populations,
significantly reducing the richness of simulated biological populations. Many studies
use chaotic mapping to map variables into the value range of the chaotic variable space
and linearly transform the problem’s solution into the optimal variable space to solve
this problem, such as [40]. In this study, chaotic mapping is introduced into the initial
population stage of the Harris Hawk algorithm, and a circle map is used to initialize the
population. The improved initial position distribution of the population is more uniform
compared with the random initialization. This part of the disturbance to population chaos
reflects the idea of symmetry. This method not only broadens the search space of the Harris
Hawk and increases the diversity of group location but also avoids the local optimization
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of the algorithm to a certain extent and improves the algorithm’s efficiency. The circle
mapping formula, i.e., Formula (6), is as follows:

xi+1 = mod
(

xi + 0.2 −
(

0.5
2π

)
sin(2πxi), 1

)
(6)

where xi in Formula (6) represents an individual position and mod represents modular
operation.

The convergence speed of the Harris Hawk algorithm is largely influenced by the
energy conversion formula. In the original text of the Harris Hawk algorithm, the author
adopted a linear formula to simulate the process of decreasing prey energy with an increase
in iteration times. However, the dynamic process of prey energy changes is not reflected by
using the linear formula in the original text. That is, in the early stages of encirclement, the
prey’s energy is high and vigorous; during the process of encirclement, the prey constantly
moves to avoid the Harris Eagle, and energy is rapidly consumed; and at the end of the
iteration, the prey is already exhausted, and its energy will remain at a low level and
continue to decline. To optimize this process, this study uses a nonlinear dynamic formula
instead of the original formula:

E = 2 ∗ (1 − (
t
T
)) (7)

E = β1 ∗ exp(− 30 ∗ ( t
T
)α1) (8)

In Formulas (7) and (8), t represents the current number of iterations, T represents
the maximum number of iterations, β1 represents the amplitude coefficient, and α1 is
an exponential parameter. The improved energy formula can be more appropriate to the
energy process of the prey, as shown in Figure 4, and the energy remains at a high level at the
beginning of the iteration. Figure 5 above shows that the exponential parameters are taken
as 3, 5, and 10, respectively. In the middle of the iteration, the prey’s energy will rapidly
decline; at the end of the iteration, the prey’s energy remains at a low level and continues
to decline. The algorithm can dynamically search at different search stages through this
improved energy formula. The energy formula is an important factor connecting different
search strategies in the design of the algorithm, and this nonlinear dynamic search can
improve the efficiency of the algorithm.
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The Harris Hawk algorithm has the disadvantage of easily falling into local optimiza-
tion during the iterative process. Many scholars have conducted many studies to solve
the above problems, such as [41]. The linear motion and spiral motion in the black widow
algorithm adopt the guidance mechanism of the optimal individual, which is a key step
in the black widow algorithm to reduce the population falling into a local optimal. The
original author continued the idea of the black widow algorithm and proposed a jumping
spider algorithm in the design of subsequent algorithms. The missing spiral search strategy
makes it perform mediocrely in the global search process, although it performs outstand-
ingly in continuous unimodal functions. This study introduced the spiral motion behavior
of spiders in the black widow algorithm [42] into the global search to strengthen the ability
of the Harris Eagle algorithm to jump out of local optima, and the improvement also be
used to characterize the circling behavior of Harris Hawks during the global search.

→
xi(t + 1) =

{ →
x ∗(t)− m

→
xr1(t), i f rand() ≤ 0.3

→
x ∗(t)− cos(2πβ2)

→
xi(t), in other case

(9)

The improved Harris Eagle global search process is:

x(t+1) =
{

xrand(t)− |xrand(t)− cos(2πβ2)x(t)|, q ≥ 0.5
[xrabbit(t)− xm(t)]− r[lb + r(ub − lb)], q < 0.5

(10)

In Formula (9) above, m is a random number in [0.4, 0.9], β2 is a random number in
[−1, 1], and

→
x ∗(t) indicates the optimal location for the black widow spider. xrand(t) in

(10) represents the random position of the Harris Eagle, xrabbit(t) represents the prey’s
position, and xm(t) represents the average position. lb, ub, and r represent the lower limit
positions, upper limit positions, and random numbers, respectively. q is used to represent
the transition of the Harris Hawk search strategy with equal probability.

Many studies have optimized the local search stage of the Harris Hawk to accelerate
the convergence speed of the Harris Hawk algorithm. Zhang et al. [43] introduced the sine
and cosine algorithm into the Harris Hawk algorithm, using the oscillating optimization
process of the sine and cosine to accelerate the convergence speed of the Harris Hawk. This
paper adds a nonlinear inertia weight factor to the local search process of the Harris Hawk
algorithm, which originates from the acceleration of the particle swarm algorithm by the
inertia weight factor in the inertia weight particle swarm algorithm. The nonlinear inertia
weight factor can make the convergence speed of the algorithm change with the number of
iterations. At the beginning of the iteration, the inertia factor is small, and as the number of
iterations increases, the value of the nonlinear inertia factor gradually increases first and
then decreases. The nonlinear inertia factor formula is as follows:
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w_now =

(
sin(π ∗ t

T
) ∗ (w_start − w_end)

)
+ w_end (11)

In Equation (11), w_start and w_end represent the initial inertia weight and the end
inertia weight, respectively. The value changes with the number of iterations, as shown in
Figure 6.
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The nonlinear inertia weighting factor can be combined with the improvement in the
Harris Hawk algorithm using the nonlinear dynamic energy formula mentioned above.
When the prey’s energy decreases rapidly in the middle of the iteration, the inertia weight
factor also remains at a high level, which can accelerate the conversion of the algorithm
from a global search to a local search and enable the Harris Hawk algorithm to conduct a
local search at a faster speed.

The Levy flight strategy is often used in swarm intelligence algorithms based on birds
or swimming fungi [44,45] to simulate the gliding behavior of organisms. Levy flight has
the characteristics of alternating long and short lengths, strong randomness, and the ability
to jump out of local optima, which is relatively consistent with heuristic algorithms. In the
Harris Hawk algorithm, the author also uses Levy flight to simulate the gliding process of
a Harris Hawk during predation. However, the Levy flight formula in the original text has
certain defects. The Levy formula in the original text is as follows:

LF(x) = α3 ×
u × σ

|υ|
1

β3

σ =

 Γ(1 + β3)×sin(πβ3
2

)
Γ
(

1+β3
2

)
× β3 × 2(

β3−1
2 )


1

β3

(12)

Formula (12) above conforms to the Markov construction process. In the formula, α3 is
a characteristic coefficient, and it takes a value of 0.01 in the original text. The value range
of parameter β3 is generally between 0 and 2, and in the original text, it takes a value of 1.5.
In the original algorithm, u and υ are represented by random numbers between [0,1]. This
paper uses the positive distribution in the Mantegna method to process u and υ in Formula
(12) to correct this. The pseudocode of the improved Harris Eagle algorithm is as follows in
Algorithm 1:

The computational complexity of the IHHO mainly depends on the following three
processes: initialization of added disturbances, fitness evaluation, and population position
update. Assuming the population size is N, the computational complexity of the initializa-
tion part is O (D × N). The computational complexity of evaluating the optimal location
and updating the population position vector is O (N × T + N × T × D). In summary, the
computational complexity of the IHHO is O (N × (T + D + T × D)).
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Algorithm 1. Improved Harris Hawk algorithm

Require: Initialize related parameters
Ensure: Initialize population using circle chaotic map 6
Ensure: Optimize prey energy E through Formula (8)
1: while t < T0 do
2: if abs(E) ≥ 1 then
3: Perform global search according to Formula (10)
4: else abs(E) < 1 then
5: if r ≥ 0.5 and abs(E) > 0.5 then
6: Use Formula (9) to improve soft surrounding
7: end if
8: if r ≥ 0.5 and abs(E) < 0.5 then
9: Use Formula (9) to improve hard surrounding
10: end if
11: if r < 0.5 and abs(E) > 0.5 then
12: Fast gliding soft surrounding for Levy correction (12) and nonlinear inertia
weight optimization
13: end if
14: if r < 0.5 and abs(E) < 0.5 then
15: Fast gliding hard surround for Levy correction (12) and nonlinear inertia
weight optimization
16: end if
17: end if
18: end while

3.3. Adaptive Enhancement of Low-Illuminance Images Based on the Improved Harris Hawk
Algorithm and Gamma Correction

Gamma correction has a good effect on brightness correction. Its principle is to edit the
gamma curve of an image, using a non-linear tone editing method to detect dark and light
parts and increase the ratio of the two, thereby achieving the effect of image enhancement.
The expression for gamma correction is:

f (I) = cIγ (13)

In Equation (13), I represent the grayscale value of the input image, and both c and γ
represent correction coefficients. Different values will have different enhancement effects
on the image. However, for images with different grayscale values and display effects,
the effect of gamma correction is single, and some important information may be missing.
Therefore, this paper introduces the BIGA method [46] to process images through two
gamma functions, which can improve the intensity of dark light while suppressing the
enhancement of bright areas and can avoid excessive enhancement of color images. The
global dual gamma correction expression is as follows:

Ga(x) = x
1
γ (14)

Gb(x) = 1 −
(

1 − x)
1
γ (15)

G(x) = αGa(x) + (1 − α)Gb(x) (16)

Ga(x) and Gb(x) in Equations (14)–(16) are convex and concave functions, respec-
tively, that are used to enhance dark regions and suppress bright regions. To enhance
low-illumination images using the improved Harris Eagle algorithm, it is first necessary
to normalize the image, use the global dual gamma correction formula to enhance the
normalized gray level information, and then restore the enhanced information to the range
of [0, 255] through the inverse normalization process. Using the improved Harris Eagle
algorithm to optimize the enhanced image information α value enables enhanced images
to obtain higher fitness values with the following pseudocode in Algorithm 2:
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Algorithm 2. Low-illumination image enhancement based on the improved Harris Hawk
algorithm and gamma correction

Require: Set algorithm-related parameters (N = 30)
Ensure: Read in low-illumination image
1: while t < T (T = 50) do
2: Normalized image
3: Global double-gamma correction by Formula (16)
4: Denormalization
5: Calculate the fitness value of the image
6: Use HHO for optimization
7: if fitness(t) < fitness(t + 1) then
8: fitness(t + 1) = fitness(t)
9: end if
10: end

3.4. Adaptive Enhancement of Low-Illuminance Images Using the Incomplete Beta Function Based
on the Improved Harris Eagle Algorithm

Different grayscale transformation functions [47] can produce different enhancement
effects on images, such as grayscale transformation functions that expand darker regions,
grayscale transformation functions that expand brighter regions grayscale transformation
functions that stretch and compress the middle regions, and grayscale transformation
functions that stretch and compress the two edge regions. Grayscale transformation
functions are shown in Table 3. Tubbs proposed a normalized incomplete beta function
that can automatically fit the four grayscale transformation functions mentioned above.
The normalized incomplete beta function formula is as follows:

F(u) = B−1(α, β)×
∫ u

0
tα−1

(
1 − t)β−1dt (17)

B(α, β) =
∫ 1

0
tα−1

(
1 − t)β−1dt (18)

In Equations (17) and (18), α and β are two parameters, u is the normalized gray
value, and t is an integral variable. In this way, various types of nonlinear grayscale
change functions can be obtained by adjusting the value of the parameters. The formula
for grayscale conversion using a normalized incomplete beta function is as follows:

T(Imn) = f (Imn, α, β) =
∫ Imn

0

tα−1(1 − t)β−1

B(α, β)
dt (19)

In Equation (19), Imn represents the grayscale value of the normalized m * n size image.
The improved Harris Hawk algorithm is used to search for the α and β of the incomplete
beta function. By adjusting these two parameter values, the enhanced image is continuously
iterated toward higher fitness values. The pseudocode is as follows in Algorithm 3:

Table 3. Grayscale transformation functions.

Grayscale Transformation Functions Enhancement Effects on Images

expand darker regions
expand brighter regions
stretch and compress middle regions
stretch and compress two edge regions
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Algorithm 3. Using the improved Harris Hawk algorithm and incomplete beta function to
enhance a low-illumination image

Require: Set algorithm-related parameters (N = 30)
Ensure: Read in low-illumination image
1: while t < T (T = 50) do
2: Normalize the image and change it into a one-dimensional vector
3: Incomplete beta enhancement of image using Formula (19)
4: Denormalization
5: Calculate the fitness value of the image
6: UseHHO for optimization
7: if fitness(t) < fitness(t + 1) then
8: fitness(t + 1) = fitness(t)
9: end if
10: end

4. Experiment
4.1. Functional Testing

This paper compared the improved Harris Eagle algorithm with the original algo-
rithm to test the performance of the improved algorithm and then compared it with the
current emerging swarm intelligence algorithms. The tuna algorithm (TSO) [48], sparrow
algorithm (SSA) [49], jumping spider optimization algorithm (JSOA) [50], butterfly algo-
rithm (BOA) [51], marine predator algorithm (MPA) [52], whale algorithm (WOA) [53],
Myxomyces algorithm (SMA) [54], and tarp sheath optimization algorithm (SSOA) [55]
were compared.

TSO is a novel intelligent optimization algorithm that simulates the foraging behavior
of tuna populations to optimize problems and has the characteristic of fast convergence
speed. SSA simulates the foraging behavior of sparrows, which utilizes many operations
to avoid getting stuck in local optima and improve population diversity. JSOA provides
a good balance between the development and exploration of solution search spaces and
solves global optimization problems. BOA draws inspiration from the foraging and mat-
ing behavior of butterflies, utilizing fragrance, pheromones, and mutation operations for
global and local searches, with the characteristic of simple implementation. MPA is an
optimization algorithm that simulates the process of ocean survival, quickly seeking op-
timal solutions through local search and local optimal strategies. WOA is a new type of
swarm intelligence optimization search method, which originated from the simulation of
the hunting behavior of humpback whales. The entire process of this algorithm includes
the following three stages: search and foraging, contraction and encirclement, and spiral
updating of position. The inspiration for SMA comes from the predatory behavior of slime
molds, which search for the optimal solution by updating individual weights and positions.
SSOA searches for the optimal solution through cooperation and competition among group
members, which has good robustness and adaptability and can be applied to different
types of optimization problems. The above heuristic algorithms have fast convergence
speed, strong search ability, good robustness, and excellent overall performance. In the
experimental part of this article, the improved IHHO algorithm is compared with these
advanced algorithms to highlight the better performance of the proposed algorithm.

The test functions selected were seven commonly used test functions from the stan-
dard test function set CEC 2005. The CEC 2005 benchmark test suite includes 25 testing
functions. Based on the characteristics of the problems, they can be further divided into
four categories as follows: unimodal problems, basic multimodal problems, extended
multimodal problems, and mixed composite problems. They can test the convergence
performance of the algorithm and the balance ability between global exploration and local
development of the decision space. Therefore, this benchmark test suite can effectively
evaluate the performance of the algorithm and is one of the most widely used and classic
testing sets. The number of populations is 30, and the maximum number of iterations is
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1000. The environment for this experiment is Matlab2018b, and the test platform processor
is i7-1255U (1.7 GHz). The details of the test function are as follows in Table 4:

Table 4. Basic information of the test function.

Function Dimension Range Minimum

F1 =
n
∑

i=1
xi

2 30 [−100, 100] 0

F2(x) =
n
∑

i=1
|xi|+

n
∏
i=1

|xi| 30 [−10, 10] 0

F3(x) =
n
∑

i=1

(
i

∑
j−1

xj

)2
30 [−100, 100] 0

F4(x) = maxi{|xi|, 1 ≤ x ≤ n} 30 [−100, 100] 0

F5(x) =
n
∑

i=1

[
xi

2 − 10cos(2πxi) + 10
] 30 [−5.12, 5.12] 0

F6(x) = −20exp(− 0.2

√
1
n

n
∑

i=1
xi

2)−

exp( 1
n

n
∑

i=1
cos(2πxi)) + 20 + e

30 [−32, 32] 0

F7(x) = 1
4000

n
∑

i=1
xi

2 −
n
∏
i=1

cos( xi√
i
) + 1 30 [−600, 600] 0

F1 to F4 are unimodal functions, while F5 to F7 are multimodal functions. Based on
Figures 7–13, the convergence speed of the improved algorithm has been greatly improved
for both unimodal and multimodal functions. In Figures 7–10, JSOA has the fastest conver-
gence speed among the nine emerging swarm intelligence algorithms, followed by SMA
and TSO. However, the convergence speed of the improved Harris Eagle algorithm sur-
passes them in unimodal test functions. In Figures 11–13, JSOA, SSA, TSO, MPA, and WOA
all demonstrate excellent optimization capabilities, but overall, IHHO still has the fastest
convergence speed and the most excellent optimization performance. The reason why
IHHO exhibits excellent convergence speed is due to the improved prey energy formula
and the nonlinear inertia factor in the particle swarm optimization algorithm, which can
accelerate the algorithm’s transformation from a global search strategy to a local search
strategy and accelerate local search speed during the iteration process. HHO is suitable
for a wide range of optimization problems. A hybrid improvement method is present.
IHHO significantly improves the optimization of continuous problems from experimental
results, especially in the processing of some unimodal functions. The improved hybrid
method also performs well in multimodal functions. Table 5 compares the test results of
the various algorithms.
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Table 5. Test results of each algorithm.

F1 F2 F3 F4 F5 F6 F7

HHO
best 3.1150 × 10−211 5.9675 × 10−109 7.1556 × 10−178 1.0611 × 10−103 0 8.8818 × 10−16 0
mean 1.1513 × 10−189 1.9371 × 10−95 1.3219 × 10−146 4.5387 × 10−95 0 8.8818 × 10−16 0
std 0 8.4299 × 10−95 5.9115 × 10−146 1.5693 × 10−94 0 2.0234 × 10−31 0

IHHO
best 0 0 0 0 0 8.8818 × 10−16 0
mean 0 0 0 0 0 8.8818 × 10−16 0
std 0 0 0 0 0 2.0234 × 10−31 0

TSO
best 0 2.7763 × 10−251 0 6.9128 × 10−244 0 8.8818 × 10−16 0
mean 0 1.1669 × 10−228 0 1.3651 × 10−222 0 8.8818 × 10−16 0
std 0 0 0 0 0 2.0234 × 10−31 0

SSA
best 0 3.2666 × 10−223 0 0 0 8.8818 × 10−16 0
mean 5.3221 × 10−92 2.3238 × 10−124 1.0403 × 10−74 9.4200 × 10−42 0 8.8818 × 10−16 0
std 2.2580 × 10−91 1.0285 × 10−123 4.1824 × 10−74 4.2128 × 10−41 0 2.0234 × 10−31 0

JSOA
best 0 0 0 0 0 8.8818 × 10−16 0
mean 0 4.0251 × 10−251 0 1.5087 × 10−247 0 8.8818 × 10−16 0
std 0 0 0 0 0 2.0234 × 10−31 0

BOA
best 1.5105 × 10−14 2.7026 × 10−12 1.5180 × 10−14 1.0503 × 10−11 0 3.2339 × 10−12 0
mean 1.7872 × 10−14 1.0193 × 10−11 1.7741 × 10−14 1.2049 × 10−11 20.5156 1.2001 × 10−11 2.1316 × 10−15

std 1.0932 × 10−15 2.5939 × 10−12 1.2703 × 10−15 6.4790 × 10−13 59.1436 2.1933 × 10−12 1.6391 × 10−15

MPA
best 1.1239 × 10−51 7.9576 × 10−30 1.9301 × 10−19 3.4795 × 10−20 0 8.8818 × 10−16 0
mean 3.7722 × 10−50 6.0506 × 10−28 9.1105 × 10−12 2.3215 × 10−19 0 4.0856 × 10−15 0
std 3.7781 × 10−50 1.2852 × 10−27 4.0200 × 10−11 1.5989 × 10−19 0 1.0935 × 10−15 0

WOA
best 1.3718 × 10−168 1.5552 × 10−114 152.2944 0.1975 0 8.8818 × 10−16 0
mean 1.6648 × 10−148 1.8893 × 10−101 2.2701 × 104 38.6550 2.8421 × 10−15 4.7962 × 10−15 0
std 7.4452 × 10−148 8.4374 × 10−101 1.2968 × 104 26.3268 1.2710 × 10−14 2.5515 × 10−15 0

SMA
best 0 0 0 0 0 8.8818 × 10−16 0
mean 0 8.2035 × 10−202 0 2.4372 × 10−184 0 8.8818 × 10−16 0
std 0 0 0 0 0 2.0234 × 10−31 0

SSOA
best 5.8679 × 10−9 8.3940 × 10−4 54.5625 5.1065 31.8387 1.1551 4.5420 × 10−8

mean 1.1892 × 10−8 1.2820 286.5403 7.5636 61.0406 2.2548 0.0073
std 3.2202 × 10−9 2.7615 168.6921 2.4589 20.6527 0.5109 0.0092
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The high accuracy of the IHHO results is due to the improvement in the global search
strategy of HHO resulting from the spiral motion of BWO. In addition, the optimized prey
energy formula and the modified Levy strategy have both improved the accuracy of HHO.
JSOA is a new type of swarm intelligence algorithm inspired by the idea of the black widow
algorithm. It performs very well in test results, finding the optimal value in the results
of multiple test functions. Next are the tuna algorithm and slime fungus algorithm. The
tuna algorithm is a heuristic algorithm newly proposed in 2021, which can quickly seek
optimization by relying on two strategies, i.e., spiral feeding and parabolic feeding, and
has a convergence speed and result accuracy of the optimal value. This was verified by the
convergence image and test results above. The slime mold algorithm has a wide range of
applications in many fields and is characterized by high accuracy. Compared with these
algorithms, the traditional Harris Hawk algorithm does not have an advantage, but the
IHHO changed this situation, making it comprehensively superior to the current emerging
swarm intelligence algorithms in terms of both accuracy and convergence speed.

4.2. Contrast Experiment of Low-Illuminance Image Enhancement

This article proposes an improved heuristic algorithm combined with a correction
function for a low-illumination image enhancement strategy. The objective is to use the
combination of optimized correction parameters to optimize the best fitness value. First,
random low-illumination image information is input, and the image is preprocessed and
normalized. Then, the relevant parameters of the intelligent algorithm (specific parameter
information is shown in Table 6) are initialized with the image entropy value as the objective
function, and then the improved heuristic algorithm in Section 3 is used to solve it to obtain
the best parameter combination of the incomplete β correction function and the double
gamma correction function, which is used to globally correct the image based on the
parameter combination information. Finally, the image information is normalized, and the
enhanced image effect is output. Since this adaptive method of determining parameters
through intelligent algorithms does not require training, it can effectively prevent under-
enhancement and over-enhancement while saving computational resources. The algorithm
parameter values used in the experiment are shown in Table 6.

Table 6. The algorithm parameter values used in the experiment.

Parameters Values

α1 5
β1 1
α3 0.01
β3 1.5
N 30
T 50
T0 1000
w_start 0.9
w_end 0.4

This paper used the LOL dataset to test several images enhancement methods to study
the performance of IHHO in low-illumination image enhancement. The images in LOL
data are all taken from a real environment and are part of a dataset containing many real
scene images. This dataset preserves the characteristics and attributes under real conditions
and is widely used in image enhancement research. Our research and testing methods
include contrast-limited adaptive histogram equalization (CLAHE), single scale Retinex
enhancement (SSR), homomorphic filtering, and the proposed IHHO and gamma-corrected
adaptive image enhancement (IHHO-BIGA) and IHHO and incomplete beta adaptive
image enhancement (IHHO-NBeta). IHHO-BIGA and IHHO-Nbeta are two adaptive image
enhancement methods proposed in this study that utilize swarm intelligence algorithms
with correction functions. The population number is set to 30, and the maximum number
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of iterations is set to 50. The corresponding search dimension is set based on the correction
function. The enhancement results of various algorithms for low-illumination images and
their corresponding grayscale histograms are in the following order: low-illumination
source image, CLAHE method, SSR method, homomorphic filtering method, IHHO-BIGA,
and IHHO-NBeta. In the following figure, a represents the processed image and b represents
the grayscale histogram.

The enhancement effects of the three methods shown in Figure 14, including CLAHE,
SSR, and homomorphic filtering, are average. The enhancement in dark areas is not
obvious but highlights the details of the red carpet. IHHO-BIGA and IHHO-Nbeta have the
most obvious enhancement effects on low-illumination images of audience seats, but the
enhanced IHHO-Nbeta images have richer and more prominent details, and fewer noise
points appear.
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(a4,b4) H-f. (a5,b5) IHHO-BIGA. (a6,b6) IHHO-NBeta.

Figure 15 shows the low-illumination image enhancement of a number plate, where
CLAHE has the worst enhancement effect with many dark areas not enhanced, and the
image contrast is also very low. Both the SSR and homomorphic filtering methods highlight
some details, such as the red light above the image and the bright area on the left, but the
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overall brightness of the image is not high. IHHO-BIGA and IHHO-Nbeta enhance the
overall brightness of the low-illumination number plate images, resulting in a significant
improvement in the image information.
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Figure 15. Enhancement results of various algorithms on the low-illumination image numbered
665 and their corresponding grayscale histograms. (a1,b1) S-image. (a2,b2) CLAHE. (a3,b3) SSR.
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Figure 16 shows the enhancement of the image of a climbing site. It can be intuitively
seen that the enhancement effects of CLAHE and SSR are very general. Although ho-
momorphic filtering highlights some details, such as light highlights, the overall image
shows insufficient exposure and low contrast. Although IHHO-BIGA greatly improved the
brightness and contrast, there is still an overall underexposure situation. Compared with
this, the enhancement effect of IHHO-Nbeta on rock climbing sites is more eye-catching, not
only enhancing multiple dark places but also retaining rich details, without any exposure
or underexposure.
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Figure 16. Enhancement results of various algorithms on the low-illumination image numbered
757 and their corresponding grayscale histograms. (a1,b1) S-image. (a2,b2) CLAHE. (a3,b3) SSR.
(a4,b4) H-f. (a5,b5) IHHO-BIGA. (a6,b6) IHHO-Nbeta.

Figure 17 shows the enhancement of a low-illumination image of a swimming pool.
CLAHE, SSR, and homomorphic filtering all provide better-detailed information than
IHHO-BIGA. Although using IHHO-BIGA to enhance a low-illumination image of a
swimming pool improves brightness to some extent, the contrast is poor. The enhancement
effect using IHHO-Nbeta is excellent, not only effectively suppressing noise but also further
improving image quality in terms of contrast, brightness, and detail information.
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Figure 18 shows the enhancement of low-illumination images in a table tennis room. 
It can be seen that homomorphic filtering has a significant improvement effect on the 
image, not only improving the brightness to a certain extent but also resulting in high 
contrast. However, compared with the latter two methods, CLAHE, SSR, and 
homomorphic filtering have a weaker improvement in brightness. During the process of 
image enhancement in the table tennis room by IHHO-BIGA, there was a phenomenon of 
insufficient exposure, and some detailed information was not presented in place. The 
enhancement effect of IHHO-Nbeta on the table tennis room image is the most 
outstanding, which is also the most intuitive visual experience. It not only highlights some 
detailed information such as lighting and wooden frames but also has a very intuitive 
enhancement effect on brightness and contrast. Based on the results of the grayscale his-
togram, compared with the other methods, IHHO-Nbeta has a more uniform grayscale 
distribution, which has an excellent enhancement effect. 

Figure 17. Enhancement results of various algorithms on the low-illumination image numbered 748
and their corresponding grayscale histograms. (a1,b1) S-image. (a2,b2) CLAHE. (a3,b3) SSR. (a4,b4)
H-f. (a5,b5) IHHO-BIGA. (a6,b6) IHHO-NBeta.

Figure 18 shows the enhancement of low-illumination images in a table tennis room. It
can be seen that homomorphic filtering has a significant improvement effect on the image,
not only improving the brightness to a certain extent but also resulting in high contrast.
However, compared with the latter two methods, CLAHE, SSR, and homomorphic filtering
have a weaker improvement in brightness. During the process of image enhancement in
the table tennis room by IHHO-BIGA, there was a phenomenon of insufficient exposure,
and some detailed information was not presented in place. The enhancement effect of
IHHO-Nbeta on the table tennis room image is the most outstanding, which is also the
most intuitive visual experience. It not only highlights some detailed information such as
lighting and wooden frames but also has a very intuitive enhancement effect on brightness
and contrast. Based on the results of the grayscale histogram, compared with the other
methods, IHHO-Nbeta has a more uniform grayscale distribution, which has an excellent
enhancement effect.
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the image details are. Spatial frequency refers to the rate of change in the gray scale of an 
image, reflecting the overall activity of the spatial domain of an image. The higher the 
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greater the entropy, the more information it contains. This paper also uses correlation 
coefficients as evaluation indicators to verify the difference in and relationship between 
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Figure 18. Enhancement results of various algorithms on the low-illumination image numbered
760 and their corresponding grayscale histograms. (a1,b1) S-image. (a2,b2) CLAHE. (a3,b3) SSR.
(a4,b4) H-f. (a5,b5) IHHO-BIGA. (a6,b6) IHHO-NBeta.

This paper also used five evaluation indicators, namely, the average gradient (AG),
standard deviation (SD), spatial frequency (SF), information entropy (IE), and correlation
coefficient (CC), to measure the enhancement effect of each method. The average gradient
refers to the difference in gray levels near the edge or both sides of the shadow line of
an image, reflecting the clarity and texture changes in the image. The larger the average
gradient, the clearer the image. The standard deviation represents the degree of dispersion
of gray levels relative to the mean value of gray levels and is commonly used to evaluate
the contrast of an image. The larger the standard deviation, the more prominent and clear
the image details are. Spatial frequency refers to the rate of change in the gray scale of
an image, reflecting the overall activity of the spatial domain of an image. The higher
the spatial frequency, the clearer the image. Information entropy is the most used image
evaluation index, which measures the amount of information contained in an image. The
greater the entropy, the more information it contains. This paper also uses correlation
coefficients as evaluation indicators to verify the difference in and relationship between
the enhanced image and the highlighted image. The correlation coefficients reflect the
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correlation between the two images. The larger the correlation coefficients, the higher the
similarity between the two images.

AG =
1

(M)(N)

M

∑
i=1

N

∑
j=1

√(
∇x I(i, j))2 +

(
∇y I(i, j))2

2
(20)

In Equation (20), (∇x I(i, j)) represents the horizontal gradient and
(
∇y I(i, j)

)
repre-

sents the vertical gradient.

SD =

√√√√ 1
M × N

M

∑
i=1

N

∑
j=1

(P(i, j)− µ)2 (21)

In Equation (21), P(i, j) represents the pixel value and µ represents the mean value.

SF =
√

RF2 + CF2RF =

√√√√ M

∑
i=1

N

∑
j=1

(F(i, j)− F(i, j − 1))2

CF =
√

∑ M
i=1∑ N

j=1(F(i, j)− F(i − 1, j))2 (22)

In Equation (22), F(i, j) represents the values of pixels in the i-th row and the j-th
column of the fused image.

IE = −∑ N−1
n=0 pnlog2 pn (23)

In Formula (23), N represents the gray level of the fused image and pn represents the
normalized histogram of the corresponding gray level in the fused image.

CC(IH , IW) =
∑M

i=1 ∑N
j=1
(

IH(i, j)− IH
)(

IW(i, j)− IW
)√

∑M
i=1 ∑N

j=1
(

IH(i, j)− IH
)2 × ∑M

i=1 ∑N
j=1
(

Iw(i, j)− Iw
)2

(24)

In Equation (24), IH and Iw are the pixel averages of the fused image and the ideal
reference image, respectively. In the following tables, S-image represents the original image,
CLAHE represents the limited contrast adaptive histogram equalization method, SSR
represents the single-scale Retinex enhancement method, H-f represents the homomorphic
filtering method, Method1 refers to IHHOBIGA proposed in this study, and Method2 refers
to IHHO-NBeta proposed in this study.

Based on Table 7, the various evaluation indicators of IHHO-Nbeta are the highest,
with both IHHO-BIGA and IHHO-Nbeta having relatively high AG indicators. This
indicates that the correction function adaptive enhancement method optimized by the two
population intelligent algorithms proposed in this article has a significant enhancement
effect on the clarity of low-illumination images in the audience. The standard deviation
data results also show that these two methods highlight the details of the image. The
data of SSR and homomorphic filtering are close in terms of standard deviation, spatial
frequency, and the correlation coefficient, which are significantly different from the two
methods proposed in this article. The standard deviation of IHHO-Nbeta increased by
8.26% compared with IHHO-BIGA and increased by 120.91% compared with SSR. From
the perspective of information entropy, the difference between IHHO-BIGA and IHHO-
Nbeta is not significant, indicating that the information content displayed by the two is
similar. The information entropy of the image enhanced using IHHO-BIGA is 76.84%
higher than the original image. From the perspective of the correlation coefficient, the value
of IHHO-Nbeta is closest to 1, indicating that the enhancement result of this method for
low-illumination images is closest to that of high-brightness images.
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Table 7. Low-illumination image enhancement evaluation index data numbered 778.

AG SD SF IE CC

S-image 3.1702 8.1606 6.5411 4.3397 0.8975
CLAHE 6.2416 23.3295 15.5480 6.0138 0.8843
ssr 7.0360 27.8816 17.3021 6.2577 0.8834
H-f 6.3814 27.1519 18.9249 4.4692 0.8458
IHHO-BIGA 19.9441 56.8938 38.0151 7.6334 0.9092
IHHO-Nbeta 21.2186 61.5943 40.1471 7.6742 0.9213

Based on Table 8, homomorphic filtering, IHHO-BIGA, and IHHO-Nbeta have excel-
lent enhancement data for low-illumination images of number plates, while CLAHE and
SSR have average enhancement effects on the images. Among them, the homomorphic
filtering method exhibits the highest average gradient value and spatial frequency value,
which indicates that the sharpness of the low-illumination image of the number plate has
been greatly improved after homomorphic filtering. However, the standard deviation, in-
formation entropy, and correlation coefficient of the homomorphic filtering method are not
as high as IHHO-BIGA and IHHO-Nbeta, which indicates that the homomorphic filtering
method is not as good as the two methods proposed in this article in terms of contrast
and detail performance. At the same time, IHHO-Nbeta exhibits the highest standard
deviation, information entropy, and correlation coefficient values, indicating that using
IHHO-Nbeta for enhancement is the best. The standard deviation data of IHHO-Nbeta
is 4.69% higher than that of IHHO-BIGA, and 25.57% higher than that of homomorphic
filtering. The information entropy of the number plate image enhanced by IHHO-Nbeta
increased by 59.01% compared with the original image with low illumination.

Table 8. Low-illumination image enhancement evaluation index data numbered 665.

AG SD SF IE CC

S-image 2.7434 5.3244 3.7491 4.2579 0.8696
CLAHE 3.7611 14.7350 7.4791 5.7686 0.8172
ssr 5.8038 20.4278 11.1222 6.2590 0.8748
H-f 8.2414 24.8869 15.4647 5.3619 0.7709
IHHO-BIGA 7.4097 29.8503 14.7174 6.7349 0.9192
IHHO-Nbeta 7.3122 31.2504 13.9868 6.7703 0.9228

Based on Table 9, the correlation coefficient value of SSR is the highest, and compared
with the homomorphic filtering and CLAHE methods, SSR has a relatively good enhance-
ment effect on rock climbing site images. However, compared with the latter two methods,
there is still a significant gap. In addition to the correlation coefficient, the enhanced image
indicators of IHHO-Nbeta are the best, displaying the highest clarity, contrast, detail promi-
nence, and brightness. The standard deviation of the image enhanced by IHHO-Nbeta is
113.91% higher than that of IHHO-BIGA and 138.60% higher than that of homomorphic
filtering, and the information entropy of the enhanced image is 71.47% higher.

Based on Tables 10 and 11, IHHO-Nbeta has the highest evaluation indicators for the
five low-illumination images after enhancement and has significant data advantages over
the previous four methods, especially in terms of average gradient, standard deviation, and
spatial frequency. This also proves that using IHHO-Nbeta to enhance low-illumination
images provides significant improvements in image texture clarity, contrast, detail perfor-
mance, and brightness. In the low-illumination image enhancement process of the swim-
ming pool and table tennis room, the 16 standard deviations of IHHO-Nbeta compared
with the homomorphic filtering method increased by 55.80% and 63.02%, respectively. The
information entropy of the enhanced image increased by 51.03% and 44.02%, respectively.
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Table 9. Low-illumination image enhancement evaluation index data numbered 757.

AG SD SF IE CC

S-image 2.5104 6.4304 4.6213 4.3429 0.8536
CLAHE 2.9167 16.2350 6.5828 5.7731 0.8962
ssr 3.1696 15.8214 6.7094 5.7996 0.9243
H-f 2.0652 18.3787 7.1302 4.1899 0.8285
IHHO-BIGA 4.4760 20.5003 8.2642 6.3395 0.8842
IHHO-Nbeta 12.2920 43.8519 21.4519 7.4467 0.8925

Table 10. Low-illumination image enhancement evaluation index data numbered 748.

AG SD SF IE CC

S-image 3.6233 10.0421 9.3485 4.7943 0.7949
CLAHE 5.7452 21.5673 12.9745 6.2995 0.8961
ssr 5.7954 22.0931 13.4155 6.3678 0.8933
H-f 6.4745 25.1076 15.7843 5.8584 0.8919
IHHO-BIGA 4.9597 20.3172 11.6035 6.2909 0.9257
IHHO-Nbeta 10.5824 39.1181 22.6541 7.2409 0.9430

Table 11. Low-illumination image enhancement evaluation index data numbered 760.

AG SD SF IE CC

S-image 3.5139 15.9728 11.2243 5.4324 0.9257
CLAHE 5.7343 28.9035 15.1955 6.6614 0.9310
ssr 5.6648 28.7513 15.0870 6.6752 0.9341
H-f 5.4220 39.8834 17.9716 6.2036 0.9698
IHHO-BIGA 6.4993 31.3341 16.4246 6.9233 0.9579
IHHO-Nbeta 12.5877 65.0176 29.8398 7.8238 0.9663

This paper compared the processing time of the method in the text to further verify
the superior performance of the proposed method. This paper did not compare them in the
experiment because of the average low-illumination image enhancement effect of traditional
methods and the short processing time. The comparison of processing time emphasizes the
improvement brought by the heuristic hybrid optimization method proposed in this article
before and after.

The optimization method using heuristic algorithms combined with dual gamma
correction has a slightly shorter processing time than the incomplete beta, as shown in
Table 12. The method proposed in this article takes longer than traditional methods partly
because the heuristic algorithm takes some time to optimize the fitness function iteratively
and partly because of the combination of correction functions to optimize the optimal
parameter combination. IHHO-BIGA and IHHO-Nbeta shortened the corresponding time
compared with the previous HHO without improvement thanks to the improvement in the
algorithm solving speed through optimization methods such as PSO’s inertia weight factor.
This paper selected image 760 as an example, which performed the best in the previous
experiment. IHHO-Nbeta and IHHO-BIGA reduced the processing time by 6.32% and
15.83%, respectively, compared with that before improvement. There is still a certain gap
in processing time compared with the traditional image enhancement methods, although
the processing time of the proposed method significantly improved compared with the
previous heuristic algorithms. Our future research will focus on further speeding up the
processing time for image enhancement.
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Table 12. Comparison of processing time of the methods proposed in this article (in seconds).

HHO-BIGA HHO-Nbeta IHHO-BIGA IHHO-Nbeta

Image 778 104.6218 123.3315 91.4637 121.7633
Image 665 120.4861 137.3496 99.4199 133.9149
Image 757 115.6043 128.1015 109.4023 123.7776
Image 748 109.7199 126.6448 93.0412 119.8669
Image 760 110.1762 155.1992 95.1130 145.9654

5. Conclusions

This research proposes an improved Harris Hawk algorithm combined with a gamma
correction function and incomplete beta function for adaptive image enhancement, which
can effectively improve the shortcomings of low-illumination images such as low bright-
ness, poor contrast, and excessive noise. In this paper, several parts of the Harris Hawk
algorithm have been improved, which not only enriches the population and enhances the
search ability of the Harris Hawk, but also effectively speeds up the conversion between
global search and local search, improves the convergence speed of the algorithm, and
maintains better algorithm accuracy. The improvement measures proposed in this study
can make the Harris Eagle algorithm stand out among many emerging algorithms and
achieve the most excellent performance. IHHO-Nbeta proposed in this article has shown
the best results in low-illumination image enhancement results from multiple LOL datasets.
It can not only improve the brightness and contrast of low-illumination images but also
effectively overcomes noise and avoids color distortion. The comparison methods include
CLAHE, SSR, homomorphic filtering, and IHHO-BIGA. The method of combining heuristic
algorithms with correction functions for low-illumination image enhancement does not
have an advantage in processing time compared to traditional methods. Our future work
will focus on accelerating the processing time of image enhancement. We will continue to
explore methods of fusing other image enhancement in our future research. The method
proposed in this study is expected to have good reference significance and practical appli-
cation effects in underwater photography applications, medical images, remote sensing
images, and meteorological image fog removal because of the many application fields of
low-illumination image enhancement. Our future work will also focus on the above areas.
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