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Abstract: Underwater images often exhibit detail blurring and color distortion due to light scattering,
impurities, and other influences, obscuring essential textures and details. This presents a challenge
for existing super-resolution techniques in identifying and extracting effective features, making high-
quality reconstruction difficult. This research aims to innovate underwater image super-resolution
technology to tackle this challenge. Initially, an underwater image degradation model was created by
integrating random subsampling, Gaussian blur, mixed noise, and suspended particle simulation
to generate a highly realistic synthetic dataset, thereby training the network to adapt to various
degradation factors. Subsequently, to enhance the network’s capability to extract key features,
improvements were made based on the symmetrically structured blind super-resolution generative
adversarial network (BSRGAN) model architecture. An attention mechanism based on energy
functions was introduced within the generator to assess the importance of each pixel, and a weighted
fusion strategy of adversarial loss, reconstruction loss, and perceptual loss was utilized to improve
the quality of image reconstruction. Experimental results demonstrated that the proposed method
achieved significant improvements in peak signal-to-noise ratio (PSNR) and underwater image quality
measure (UIQM) by 0.85 dB and 0.19, respectively, significantly enhancing the visual perception
quality and indicating its feasibility in super-resolution applications.

Keywords: underwater image super-resolution; degradation model; generative adversarial network;
attention mechanism

1. Introduction

Underwater imaging plays a pivotal role in marine science and engineering appli-
cations, offering significant value to oceanographic research, ecological monitoring, ex-
ploration of marine resources, and maintenance of underwater equipment [1]. It not only
enhances the monitoring capabilities of marine life and coral reefs but also plays a central
role in the precise localization, detection, and identification of underwater targets. However,
the complexity of the underwater environment leads to loss of detail, reduced contrast,
color distortion, blurred images, and increased noise in underwater images. Consequently,
super-resolution technology for underwater images becomes critical. This technology
compensates for various quality deficiencies in low-resolution images by reconstructing
high-resolution images, thereby significantly enhancing image quality.

Single image super-resolution (SISR) is a well-established challenge within the realm
of computer vision and image processing. The goal is to reconstruct a high-resolution image
from a provided low-resolution input. The application of deep learning techniques has
markedly improved the capabilities in this super-resolution (SR) task [2]; several methods
based on the convolutional neural network (CNN) have been suggested [3–7] and have
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almost dominated this field in the recent years. Subsequently, super-resolution methods
based on generative adversarial networks (GANs) [8–11] have garnered attention. These
methods enhance the quality of generated images through adversarial training, particularly
in terms of restoring image details and textures. Techniques based on GANs have emerged
as a significant branch within the field of image super-resolution, demonstrating their broad
potential across multiple application domains. Recently, due to the advancements in natural
language processing, Transformer [12] has captured the interest of the computer vision
community. After making rapid progress on high-level vision application [13], methods
based on the Transformer architecture are now being applied to low-level vision tasks,
including super-resolution [14–17].

Underwater image super-resolution technology faces unique challenges. Firstly, the
degradation process from high-resolution (HR) to low-resolution (LR) images underwater is
often unknown, deviating from the specific methods typically used (such as bilinear interpo-
lation, nearest-neighbor interpolation, etc.) to generate paired training data from HR to LR.
Consequently, when models generate high-resolution images from low-resolution images,
their performance often falls short of expectations. Secondly, in the complex underwater
environment, the abundance of impurities, suspended particles, and the optical properties
of water significantly affect image quality, leading to distortion and a considerable amount
of noise in underwater images. These factors interfere with the basic structure of images
and, to a certain extent, obscure important texture and detail information [18,19]. This
makes it difficult for networks to extract and recognize useful features from underwater
images, thereby impacting the quality and accuracy of super-resolution reconstruction.

Building upon an in-depth analysis and leveraging insights from the super-resolution
domain, specifically ESRGAN [20], this study has developed and optimized a specialized
underwater image super-resolution network tailored to address the unique challenges of
underwater imaging. Firstly, a novel approach was designed to simulate the degradation
process of underwater images, enabling the network to better learn the mapping relation-
ship between HR and LR images, thereby enhancing the quality of underwater image
reconstruction. Secondly, a series of innovative adjustments and optimizations were made
to the model. A significant improvement involves the integration of an adaptive residual
attention module within the dense residual blocks of the model, aimed at bolstering the
network’s ability to recognize and extract key features in underwater images [21]. Further-
more, a suite of targeted design optimizations was implemented, involving adjustments to
the network’s loss function and improvements to the configuration of convolutional layers,
along with the introduction of spectral normalization (SN) layers to enhance the model’s
stability and generalization capacity. These comprehensive improvement strategies work
in synergy to elevate the model’s performance in processing underwater images.

The key contributions of this paper are outlined as follows:

• We propose a method to simulate the actual degradation process for underwater
images, enabling the network to better learn the mapping between high-resolution
and low-resolution images, thereby enhancing the quality of reconstructed images.

• The adaptive residual attention module designed for underwater images automatically
assesses image importance using an energy function and, when integrated into dense
residual blocks, enhances the precision of key feature extraction and the effectiveness
of super-resolution reconstruction.

• Experimental results demonstrate that our approach achieves high PSNR values while
maintaining low LPIPS scores, traditionally seen as opposing outcomes.

2. Related Work
2.1. Deep Networks for Image Super-Resolution

Since SRCNN first applied deep convolution neural networks to the image SR task and
obtains superior performance over conventional SR methods, a variety of deep learning
models [22–24] have been developed to further elevate image reconstruction quality. For
instance, many methods apply more elaborate convolution module designs, such as residual
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block [25–27] and dense block [28], to boost the representational power of the models. Some
studies also investigate alternative architectures like recursive neural networks and graph
neural networks [29]. To enhance perceptual quality, [30] employs adversarial learning to
generate more realistic results. By integrating attention mechanism, [31–33] achieve further
improvement in terms of reconstruction fidelity. Recently, a new wave of Transformer-
based networks [34] have been introduced, consistently setting new benchmarks in the SR
field and demonstrating the robust representational capabilities of the Transformer.

2.2. Degradation Models

In current super-resolution research, many networks still rely on simple interpolation
methods [35] or traditional degradation models [36], which often struggle to accurately
simulate the complex degradation phenomena present in the real world. Underwater
images are typically affected by a variety of complex factors, including the scattering and
absorption of light, the suspension of particulate matter, and dynamic blurring caused by
water flow, all of which contribute to a decline in image quality. To effectively address
this issue, we have designed a degradation process specifically tailored for the underwater
environment. By simulating the unique degradation characteristics of underwater settings,
our method ensures that the processed high-resolution images more closely resemble the
properties of real underwater images.

2.3. Attention-Based Image Super-Resolution

Attention mechanisms enhance image reconstruction quality and model adaptability
to the diversity and complexity of underwater images by highlighting critical features and
extracting detailed information. Thus, they have become essential for improving under-
water image super-resolution. For instance, RCAN [37] enhances network performance
through channel attention mechanisms; SAN [38] leverages second-order channel attention
to strengthen feature correlation learning; NLSN demonstrates the potential of attention
mechanisms in addressing non-local dependencies; and SwinIR employs self-attention
mechanisms from transformers. Moreover, CAL-GAN [39] effectively improves the super-
resolution quality of photorealistic images by adopting a content-aware local generative
adversarial network strategy, while DAT achieves efficient feature aggregation by merging
features across spatial and channel dimensions.

3. Methods
3.1. A Practical Degradation Model

The SISR degradation model [40] can be mathematically formulated as

x = (y ⊗ k) ↓ s (1)

where y denotes the HR image; x denotes the LR image; k is the blur kernel; ⊗ denotes
convolution operator; and ↓ s denotes sub-sampling operator with stride of s.

Underwater imaging is subject to unique degradation factors distinct from those
affecting conventional images, rendering traditional models inadequate for underwater
image restoration. To address this, we have devised a degradation model specifically for
underwater scenes, concentrating on unique aquatic factors to minimize computational
overhead and enhance processing efficiency. The degradation dynamics of underwater
images are captured by the following formula:

x = ((y ⊗ k) + n + p) ↓ s (2)

where n denotes the added noise, p denotes the suspended particles in the underwater environment.
As shown in Figure 1, the degradation model employs a first-order degradation

process, and the detailed choices included in each degradation process are listed. In our
previous experiments, we tested different sequences of degradation steps and found that
their impact on the final results was negligible.
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Figure 1. Overview of the degradation model, where each degradation process employs the classical
degradation model.

3.1.1. Resize

Downsampling is a fundamental operation for generating low-resolution images in
the realm of super-resolution [41]. Broadening our scope, we evaluate both downsampling
and upsampling, that is, the resizing procedure. Various algorithms for resizing exist,
including nearest-neighbor interpolation, area resizing, bilinear interpolation, and bicubic
interpolation. Each method introduces its own distinctive effect, with some leading to
blurriness, while others may produce overly sharp images accompanied by overshoot
artifacts [42].

To encompass a richer array of complex resizing effects, we incorporate a stochastic
selection of resizing techniques from the methods mentioned. Due to the misalignment
complications presented by nearest-neighbor interpolation, we discount this method in
favor of area, bilinear, and bicubic techniques.

3.1.2. Noise

The refractive index variation of air particles is mainly attributed to scattering, in-
dicated as nscatter, with chromatic dispersion, nchromatic, being secondary and often over-
looked. The wave-based index, nwave, is essential for accurate long-distance light transmis-
sion. To accurately simulate these influences, a comprehensive stochastic noise model has
been constructed:

n = αnscatter + βnchromatic + γnwave (3)

In the proposed model, weighting coefficients α, β and γ quantify the relative contributions
of distinct noise sources, adhering to the normalization condition α + β + γ = 1. This
ensures precise modulation of each noise component within the comprehensive noise
framework. Additionally, γ is restricted to 0 ≤ γ ≤ 0.1, permitting nuanced adjustment of
noise influence in a primarily linear domain, which is crucial for accurate noise behavior
analysis. Through weighted fusion, we can better control the impact of noise on the system,
improving system performance and stability.

3.1.3. Blur

To simulate the uniform blurring effects caused by less-than-ideal lighting conditions
or environmental particulates, an isotropic Gaussian kernel is utilized. This kernel is
founded on a two-dimensional normal distribution, with the standard deviation being
equal in all directions, thus ensuring the uniformity of the blur effect. The isotropic
Gaussian kernel k can be represented as follows:

k(i, j) =
1
N

exp

(
−

1
2 (i

2 + j2)
σ2

)
(4)

Within the matrix, (i, j) denotes the spatial coordinates, N is the normalization factor
ensuring the sum of all weights equals 1, and σ represents the standard deviation [43].
During experimentation, kernels of various dimensions—3 × 3, 5 × 5, 7 × 7, and 9 × 9—
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were implemented to replicate blurring effects across different area widths. The standard
deviation was modulated from 1 to 3 to span blur intensities ranging from slight to severe.

3.1.4. Suspended Particles

In underwater imaging, image quality is notably impacted by suspended particulates
that scatter incident light, producing distinct light spots. This research utilizes random
field theory [44] to quantify scattering in this heterogeneous medium. The method allows
simulation of the stochastic interactions between light and particles, generating statistically
characterized scatter patterns. The function of the kernel based on spatial coordinates
I(x, y) is defined as follows:

I(x, y) = A exp

(
− (x − x0)

2 + (y − y0)
2

2σ2

)
(5)

The coordinates (x0, y0) denote the centroid of the osculating circle located within the
central segment of the elliptical distribution, where σ symbolizes the standard deviation
thereof. The parameter A signifies the amplitude of said distribution, providing an index
of its density, whereas the standard deviation σ conveys the extent of its dispersion.

3.1.5. Validation of the Degradation Model Efficacy

To accurately evaluate the effectiveness of the designed degradation model, this study
quantified the degree of degradation by calculating the standard deviation (STD) of texture
and noise in image samples. This approach considers the common noise and texture
distortion characteristics of underwater images. By analyzing the standard deviations, it is
possible to quantitatively assess how different models simulate underwater environments,
thereby identifying the most suitable model for super-resolution reconstruction. The
analysis results, as illustrated in Figure 2, revealed that the degraded image had a texture
STD of 19.83 and a noise STD of 15.05, figures that align more closely with the characteristic
high noise levels and lower texture clarity found in underwater imaging environments.
In contrast, the texture STD of the image subjected to direct downsampling significantly
increased to 78.95, while the noise STD decreased to 5.51. In summary, the texture and
noise characterizations of the degraded image further affirm the suitability and superiority
of our model for processing underwater images.
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To thoroughly validate the degradation model’s capability to mimic authentic un-
derwater image characteristics, we expanded our sample size and extracted a total of
100 images from the USR-248 dataset in increments of 5 for a comprehensive evaluation.
The study involved a comparative analysis of images synthesized by the model against
those produced by standard downsampling, focusing on the standard deviations of noise
and texture. The analysis organized texture deviation in descending order and noise devia-
tion in ascending order to establish trends. As shown in Figure 3, images processed by the
degradation model demonstrate a higher standard deviation in noise and a lower one in
texture, aligning more closely with the inherent properties of underwater images.
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3.2. Network Architecture
3.2.1. Overall Structure

As shown in Figure 4, our proposed symmetric degradation-aware and attention
enhanced generative adversarial network (DAE-GAN) is structured into three main compo-
nents: the degradation model, the generator, and the discriminator. The degradation model
converts high-resolution images to low-resolution ones to mimic underwater conditions.
The generator comprises a tripartite architecture, encompassing modules for shallow fea-
ture extraction, deep feature extraction, and image reconstruction. Specifically, for a given
low-resolution input ILR ∈ RH×W×Cin , we first exploit one convolution layer to extract
the shallow feature F0 ∈ RH×W×C, where Cin and C denote the channel number of the
input and the intermediate feature. Then, a series of attention enhanced residual dense
blocks (AERDB) and one 3 × 3 convolution layer are utilized to perform the deep feature
extraction, with a total of 7 blocks ultimately employed in the final experiment. The final
feature reconstruction layer ultimately generates high-resolution images. The discriminator
is composed of feature extraction and activation layers followed by a classifier. It processes
generated and real high-resolution images, uses convolutional layers and spectral normal-
ization to stabilize training, and outputs a scalar authenticity score via a sigmoid function
after a fully connected layer.
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3.2.2. Attention Enhanced Residual Dense Block

As shown in Figure 5, each AERDB fuses the residual in residual dense block (RRDB)
with the adaptive residual attention module (ARAM), the latter focusing on key features
through its unique energy function, thereby enhancing the overall performance of the mod-
ule. It is important to highlight that this structure exhibits symmetry, with both the main
architecture and the branching structure being symmetric. This symmetry ensures balanced
processing and optimization across the entire network, contributing to its effectiveness in
image super-resolution.
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Inspired by SimAM [45], the ARAM implements a unique energy function informed
by neuroscience to modulate neuronal activity within feature maps, thereby boosting the
model’s ability to capture details. This function accounts for the spatial arrangement and
activity patterns of neurons, enabling the network to process visual information with
greater precision. The energy function is

et(wt, bt, y, xi) = (yt − t̂)2
+

1
M − 1

M−1

∑
i=1

(yo − x̂i)
2 (6)



Symmetry 2024, 16, 588 8 of 17

In our approach, t̂ = wtt + bt and x̂i = wtxi + bt represent linear transformations of t
and xi, where t is the target neuron and xi signifies other neurons within a single channel
of the input feature map X that belongs to RH×W×C. i is index over spatial dimension
and M = H × W is the number of neurons on the channel. wt and bt are weight and bias
the transform. All variables are scalars, achieving minimum values when t aligns with yt
and all xi align with yo, where yt and yo represent distinct scalar values. Minimizing this
function is tantamount to ascertaining the linear separability of the target neuron t from
its peers in the channel. To streamline this process, binary labels (1 and −1) are assigned
to yt and yo Incorporating a regularizer into the equation, the final energy function is
formulated as

et(wt, bt, y, xi) =
1

M − 1

M−1

∑
i=1

(−1 − (wt · xi + bt))
2 + (1 − (wt · t + bt))

2 + λw2
t (7)

The energy function for each channel, in theory, can be computationally intensive to solve
with iterative algorithms such as SGD. Fortunately, a rapid resolution method allows for
the efficient calculation of the overall solution:

wt = − (t − µt)
2 + 2(t · µt)

2σ2
t + 2λ

(8)

bt = −1
2
(t2 + t · µt)wt (9)

In the model, µt and σ2
t , representing the mean and variance across all neurons, can be chal-

lenging to compute channel-wise. Therefore, we utilize global mean and variance as proxies.
Under this assumption, these statistics are computed over all neurons and applied to adjust the
aforementioned neurons, thereby alleviating the model’s computational load. Consequently, the
minimized energy function can be succinctly expressed by the following formula:

e∗t =
4(σ2 + λ)

(t − µ)2 + 2σ2 + 2λ
(10)

The improved e∗t can help in differentiating neurons with significant characteristic
differences, which is beneficial for feature extraction. Therefore, the importance of each
neuron can be obtained by 1/e∗t .

In this approach, the model not only learns the intensity of each pixel but also the
inter-pixel relationships. As shown in Figure 5, to incorporate SimAM into the RRDB
module, a SimAM unit is placed right after the output of each dense block. Specifically, the
feature map output from RRDB’s dense block is fed into SimAM, which then calculates
attention weights for every neuron within it, with the weighted output serving as the input
for the following layer. Through this process, SimAM adaptively emphasizes features
with higher variability or greater importance to the reconstruction task by minimizing its
energy function, while suppressing less contributory information for the current task. This
adaptive adjustment strategy not only improves RRDB’s ability to discriminate features
but also enhances the network’s generalization capabilities in complex scenarios.

Grad-CAM [46] is applied for visualizing feature activation to evaluate the perfor-
mance differences between the RRDB module used alone and the RRDB module integrated
with an attention mechanism. As shown in Figure 6, the RRDB module with integrated
attention mechanism enhances the network’s focus on key areas during image processing.
This focused attention leads to more pronounced activation of critical features, rather than
a uniform distribution of attention across the entire image. Such improvements enhance
the model’s ability to recognize important information in images, significantly benefiting
the accuracy and efficiency of deep learning models in image processing tasks.
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emphasizing key areas in underwater images for various marine species.

On the heatmap, it may be difficult to clearly observe significant differences between
different models. Therefore, to assess the model’s performance more accurately, we intro-
duced attention scores as an additional metric. Attention scores quantify the degree of
focus of deep neural networks on different regions of the image, serving as a measure of
model performance. Higher scores indicate a greater focus on key areas, improving the
recognition and understanding of critical information within the image. Thus, by utilizing
attention scores, we can comprehensively evaluate the model’s performance. The specific
scores are shown in Table 1.

Table 1. The attention scores when using the RRDB module alone and when integrating the RRDB
module with an attention mechanism, where higher scores indicate a greater focus on key areas by
the model.

Image Sample RRDB Attention Score RRDB + ARAM Attention Score

Sea Slug 0.72 0.78
Sea Turtle 0.53 0.75
Stingray 0.58 0.68

Clownfish 0.49 0.56

3.3. Networks and Training
3.3.1. Generator

This study has innovatively enhanced the generator architecture of ESRGAN by
integrating an attention mechanism within its RRDB modules. Moreover, the architecture,
initially designed for 4× upscaling, has been expanded to support super-resolution at
higher scale factors. These improvements not only bolster the network’s capability for
detail processing but also enhance its versatility across different magnification rates.
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3.3.2. Discriminator with Spectral Normalization

To ensure overall model stability, this study has incorporated spectral normalization
into the discriminator architecture to enhance its resistance to interference. The integration
of a spectral normalization layer within the discriminator helps to maintain the spectral
norm of the weights during training, preventing the weights from growing indefinitely.
This approach effectively ensures the stability of the model and significantly improves its
ability to resist interference.

3.3.3. Loss Function

The loss function used by the network in this study is defined as

LGAN = λ1Lrecons + λ2Lpercep + λ3Ladv (11)

where Lrecons is the pixel-wise reconstruction loss, Lpercep is the perceptual loss measuring
the feature distance in VGG feature space, and Ladv denotes the adversarial loss. The
coefficients λ1, λ2, and λ3 are the balancing parameters, with values typically set to 0.1, 1,
and 0.005, respectively.

4. Experiments
4.1. Datasets and Experiments Settings
4.1.1. Datasets

To train our model, two open-source datasets were selected, namely USR-248 [47] and
UFO120 [48]. The USR-248 dataset is the first dataset designed for the super-resolution
reconstruction of underwater images, containing 1060 pairs of underwater images for
training and 248 pairs for testing. The UFO120 dataset consists of 1500 training samples
and 120 testing samples. The low-resolution images in both datasets are created through
artificial simulation and deformation. All samples were processed according to standard
procedures for optical and spatial image degradation and combined with manually labeled
saliency mappings to generate data pairs. Additionally, to validate the effectiveness of
the model, two more datasets, EUVP and SQUID, were used as test datasets. We trained
the model separately on the USR-248 dataset and the UFO120 dataset, and then used the
model trained on the USR-248 dataset to test the EUVP dataset and the SQUID dataset. The
specific information of the datasets used in our experiments is shown in Table 2.

Table 2. Detailed information on training and validation datasets.

Name Type Train Samps Val/Test Samps HR Image Size

USR-248 Train 1060 248 640 × 480
UFO120 Train 1500 120 640 × 480
EUVP Val - 12,000 256 × 256
SQUID Val - 57 256 × 256

4.1.2. Implementation Details

The model in this study was developed within the PyTorch framework and trained
using the Adam optimizer, with the hyperparameters β1 and β2 for the optimizer set at
0.9 and 0.99, respectively. The initial learning rate was set to 2 × 10−4 and was halved after
200k iterations, with the entire training process spanning 400k iterations. Training on the
dataset utilized input image patches of 64 × 64 pixels, with a batch size set to 32. To improve
training effectiveness, symmetric image flipping was used as an augmentation technique.
This exposed the model to a wider range of image variations, enhancing generalization
performance and adaptability to various underwater conditions. We used NVIDIA RTX
3090 GPUs with CUDA acceleration for all training processes in the experiments. The
computer had 32GB of RAM, and the CPU was an i7 13700k.
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4.1.3. Evaluation Metrics

This study employs PSNR, structural similarity index measure (SSIM), UIQM, and
learned perceptual image patch similarity (LPIPS) to evaluate underwater image super-
resolution. PSNR and SSIM gauge signal-to-noise ratio and visual similarity of recon-
structed images. UIQM addresses quality degradation from underwater scattering and
absorption. LPIPS, using deep learning, assesses perceptual image quality, aligning evalua-
tion with human visual observation. Specifically, PSNR and SSIM are computed on the Y
channel in the YCbCr space.

4.2. Comparisons of Super-Resolution Results
4.2.1. Quantitative Results

Table 3 shows the quantitative comparison of our method against other methods on
the USR-248 dataset—Deep WaveNet [49], RDLN [50], etc.—while Table 4 presents the
quantitative comparison of our method against other methods on the UFO120 dataset:
SRDRM [51], AMPCNet [52], HNCT [53], URSCT [54], etc. These outcomes are derived
from the average performance metrics across all test samples. Notably, DAE-GAN achieved
significant improvements in both SSIM and PSNR metrics and also performed admirably
with respect to UIQM and LPIPS metrics. It is imperative to underscore that a lower LPIPS
score indicates superior image quality.

Table 3. Experimental evaluation on the USR-248 dataset, offering a quantitative comparison at
magnification factors ×2, ×4, and ×8 with other methods, utilizing four metrics: PSNR (dB)↑, SSIM↑,
UIQM↑, and LPIPS↓. The best results are highlighted in red and the second-best in blue.

Method
PSNR(dB)↑ SSIM↑ UIQM↑ LPIPS↓

×2 ×4 ×8 ×2 ×4 ×8 ×2 ×4 ×8 ×2 ×4 ×8

SRCNN 26.81 23.68 19.07 0.76 0.65 0.57 2.59 2.38 2.01 0.56 0.71 0.86
VDSR 27.98 24.70 20.15 0.79 0.69 0.61 2.61 2.44 2.09 0.53 0.67 0.83

SRGAN 26.68 23.46 19.83 0.73 0.63 0.54 2.55 2.38 1.98 0.30 0.48 0.61
ESRGAN 28.08 24.50 20.08 0.76 0.67 0.57 2.59 2.45 2.02 0.24 0.40 0.54
BSRGAN 28.15 25.05 20.33 0.79 0.69 0.59 2.63 2.47 2.07 0.20 0.32 0.42

Real-ESRGAN 28.86 25.11 20.45 0.80 0.71 0.62 2.68 2.50 2.10 0.19 0.33 0.44
Deep WaveNet 29.09 25.40 21.70 0.83 0.73 0.63 2.72 2.53 2.13 0.44 0.61 0.72

RDLN 29.76 25.59 22.40 0.82 0.71 0.62 2.74 2.58 2.19 0.29 0.50 0.66
DAIN 29.97 26.16 22.86 0.84 0.73 0.63 2.77 2.64 2.17 0.43 0.63 0.69

DAE-GAN(ours) 29.95 26.23 22.83 0.85 0.75 0.64 2.80 2.68 2.20 0.19 0.31 0.40

Table 4. Experimental evaluation on the UFO120 dataset, offering a quantitative comparison at
magnification factors ×2, ×3, and ×4 with other methods, utilizing four metrics: PSNR (dB)↑, SSIM↑,
UIQM↑, and LPIPS↓. The best results are highlighted in red and the second-best in blue.

Method
PSNR(dB)↑ SSIM↑ UIQM↑ LPIPS↓

×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4

SRCNN 24.75 22.22 19.05 0.72 0.65 0.56 2.39 2.24 2.12 0.56 0.65 0.71
SRGAN 25.11 23.01 19.93 0.75 0.70 0.58 2.44 2.39 2.35 0.24 0.33 0.37

Deep WaveNet 25.71 25.23 23.26 0.77 0.76 0.73 2.89 2.86 2.85 0.40 - 0.53
AMPCNet 25.24 25.43 25.08 0.71 0.70 0.70 2.76 2.65 2.68 0.31 - 0.47
ESRGCNN 25.82 25.98 24.70 0.73 0.71 0.71 2.88 2.86 2.75 0.34 0.46 0.51

HNCT 25.73 25.86 24.91 0.72 0.73 0.70 2.76 2.78 2.64 0.27 0.40 0.47
URSCT 25.96 - 25.37 0.81 - 0.69 - - - 0.37 0.49 0.50
RDLN 26.20 26.13 25.56 0.78 0.74 0.73 2.87 2.84 2.83 0.29 0.37 0.39

DAE-GAN(ours) 26.26 26.19 25.89 0.80 0.76 0.74 2.88 2.87 2.85 0.19 0.25 0.30

Upon evaluating the DAE-GAN approach against other state-of-the-art methods, it
emerges as the clear leader in the USR-248 dataset, particularly excelling at a 2× scale with
a PSNR of 29.95dB and an SSIM of 0.85. Its prowess extends to superior image quality
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metrics, outshining competitors with the lowest LPIPS score, indicative of higher image
fidelity at a 4× scale. As magnification increases to 8×, DAE-GAN consistently upholds its
exceptional performance, achieving a PSNR of 23.83dB and an SSIM of 0.64, reinforcing
its robustness in enhancing image resolution and quality across scales. Further analysis
on the UFO120 dataset corroborates DAE-GAN’s superior capabilities. It leads with a
notable margin, particularly at 2× magnification, where it achieves a PSNR of 26.26dB and
a remarkable SSIM of 0.80, surpassing other methodologies. Even at higher magnifications
of 3× and 4×, DAE-GAN maintains its supremacy, reflected through its consistent scores,
notably, a top-tier LPIPS of 0.25 at 3× and 0.30 at 4× magnification.

4.2.2. Qualitative Results

To conduct a comprehensive evaluation of DAE-GAN’s performance, this study visually
compares the effectiveness of various methods. Figures 7 and 8 illustrate the reconstruction
results of our method at a 4× scale using a single network for arbitrary-scale SR, clearly
showing from the comparisons that DAE-GAN excels in restoring image clarity and texture
details, particularly at the edges. These visual results underscore the significant advantages of
DAE-GAN in enhancing image quality, demonstrating its efficacy in the task of refined image
restoration. This paper employs symmetrical images for visualizing results, clearly demon-
strating the DAE-GAN model’s precision in symmetry reconstruction. These visualizations
are both appealing and assist in the detailed evaluation of the reconstruction process.
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Figure 7. Qualitative comparison of different methods on ×4 super-resolution for the USR-248 dataset.
Regions for comparison are highlighted with red boxes in the original high-resolution images. Zoom
in for the best view. Higher PSNR, better quality; lower LPIPS, closer to original.
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Regions for comparison are highlighted with red boxes in the original high-resolution images. Zoom 
in for the best view. Higher PSNR, better quality; lower LPIPS, closer to original. 
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4.3. Model Performance Evaluation on Test Datasets

To rigorously ascertain the efficacy and robustness of the DAE-GAN model pro-
pounded in this research, an extensive battery of tests was executed on the EUVP and
SQUID datasets. As shown in Table 5, the DAE-GAN model proposed in this study demon-
strates solid overall performance in the quantitative evaluation of 4× super-resolution, un-
derscoring its effectiveness in tackling the challenges of underwater image super-resolution
from various dimensions. Upon closer examination, the model displays the best perfor-
mance across all assessment metrics on the SQUID dataset. On the EUVP dataset, it scores
slightly lower in the LPIPS index compared to CAL-GAN and is slightly outperformed in
the PSNR index by BSRDM [55]; however, it secures the top results in all other relevant
evaluation metrics.

Table 5. Experimental evaluation on the EUVP and SQUID test datasets, offering a quantitative
comparison exclusively at a magnification factor of ×4 against other methods, utilizing four metrics:
PSNR (dB)↑, SSIM↑, UIQM↑, and LPIPS↓. The best results are highlighted in red and the second-best
in blue.

Method Scale
EUVP SQUID

PSNR↑ SSIM↑ UIQM↑ LPIPS↓ PSNR↑ SSIM↑ UIQM↑ LPIPS↓
SRCNN

×4

23.64 0.63 2.37 0.70 23.66 0.65 2.38 0.70
SRGAN 23.31 0.59 2.38 0.48 23.37 0.63 2.40 0.45

ESRGAN 24.40 0.66 2.44 0.38 23.62 0.68 2.48 0.38
BSRGAN 24.89 0.70 2.47 0.32 25.11 0.72 2.51 0.31

Real-ESRGAN 25.01 0.73 2.48 0.33 25.23 0.75 2.53 0.33
PDM-SRGAN 25.89 0.74 - 0.29 26.04 0.74 - 0.28

BSRDM 26.35 0.76 2.40 0.38 26.40 0.73 2.43 0.36
CAL-GAN 26.09 0.71 - 0.31 26.11 0.69 - 0.29

DAE-GAN (ours) 26.33 0.78 2.63 0.30 26.41 0.77 2.68 0.29

4.4. Ablation Study

In this section, we examine the importance of every fundamental element within
our suggested approach. Through a series of exhaustive ablation experiments on the
USR-248 dataset, this study comprehensively evaluates and confirms the performance
and effectiveness of the proposed degradation model (DM) and ARAM when applied
independently and in conjunction, as shown in Table 6.
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Table 6. Ablation study on the impact of degradation models and ARAM for ×4 super-resolution in
the USR-248 dataset. The best results are highlighted in red and the second-best in blue.

DM ARAM PSNR↑ SSIM↑ UIQM↑ LPIPS↓
24.50 0.66 2.45 0.40√
25.02 0.68 2.64 0.34√
25.89 0.72 2.47 0.37√ √
26.23 0.75 2.68 0.31

We have employed an innovative training strategy by horizontally flipping every
other image and rotating them 180 degrees to augment the dataset, increasing it by
1.5 times. This approach helps the model better grasp symmetry features, enhancing
image super-resolution performance. Introducing symmetry enables more accurate cap-
ture and reconstruction of symmetric structures, particularly in imagery rich in symmetry
like underwater images. This strategy enriches dataset diversity and strengthens the
model’s ability to recognize and reconstruct various types of symmetric structures un-
derwater, ultimately improving generalization and robustness. The other experimental
conditions, consistent with previous experiments, are reflected in the experimental results
shown in Table 7.

Table 7. The ablation study on the impact of image flipping for ×4 super-resolution in the USR-248
dataset aims to investigate the effect of image flipping on the symmetry features in the super-
resolution task.

Image Flipping Applied PSNR↑ SSIM↑ UIQM↑ LPIPS↓
Not Applied 26.23 0.75 2.68 0.31

Applied 26.33 0.77 2.69 0.30

5. Conclusions

In this work, an innovative generative adversarial network architecture, termed
DAE-GAN, is introduced with the aim of enhancing the super-resolution processing of
underwater images. To more accurately reflect the inherently complex and irregular degra-
dation phenomena present in underwater environments, a specialized degradation model
was specifically designed and placed at the forefront of the super-resolution network. This
model not only simulates the unique degradation process of underwater images but also
provides more realistic input conditions for subsequent super-resolution reconstruction.
To effectively capture the delicate features in underwater images, an adaptive residual
attention module and dense residual blocks were integrated, boosting the network’s sensi-
tivity to details and its feature extraction capability. Extensive experiments conducted on
multiple datasets, and evaluations at different magnification scales, have demonstrated
not only a significant improvement in visual effects but also outstanding performance
across multiple objective evaluation metrics. These achievements indicate the potential and
practical value of DAE-GAN in the field of underwater image super-resolution. Further-
more, this approach not only provides a fresh avenue for the enhancement of underwater
visual technology but also carries substantial implications for the progression of under-
water image processing methodologies. Future research directions may involve exploring
super-resolution processing in more complex underwater environments, such as deep-sea
or multimodal underwater imagery. Potential enhancements could entail the design of
novel neural network architectures tailored to deep-sea characteristics and the development
of multimodal fusion algorithms. Nevertheless, these avenues also present challenges,
including the computational resource requirements for handling large-scale datasets and
the high costs associated with data acquisition.
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6. Patents

The work reported in this manuscript has led to the filing of a patent, currently in the
acceptance stage. The patent is entitled “A Method for Super-Resolution Reconstruction
of Underwater Images Based on Generative Adversarial Networks”, with the applica-
tion number 202410044547.5. This patent encompasses an innovative approach utilizing
generative adversarial network technologies for the super-resolution reconstruction of
underwater image, aiming to address some of the limitations in current image processing
techniques and to enhance the clarity and quality of underwater imaging. Through this
patent application, this research seeks to advance the field of image processing, particularly
in the area of image reconstruction in underwater environments.
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