
Citation: Al-Daraiseh, A.; Sanjalawe,

Y.; Fraihat, S.; Al-E’mari, S. Novel,

Fast, Strong, and Parallel: A Colored

Image Cipher Based on SBTM

CPRNG. Symmetry 2024, 16, 593.

https://doi.org/10.3390/

sym16050593

Academic Editors: Karl Hess and Jie

Yang

Received: 18 March 2024

Revised: 22 April 2024

Accepted: 30 April 2024

Published: 10 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Novel, Fast, Strong, and Parallel: A Colored Image Cipher Based
on SBTM CPRNG
Ahmad Al-Daraiseh 1 , Yousef Sanjalawe 2 , Salam Fraihat 3,* and Salam Al-E’mari 4

1 Computer Science Department, Faculty of Information Technology, American University of Madaba,
Amman 11821, Jordan; a.daraiseh@aum.edu.jo

2 Cybersecurity Department, Faculty of Information Technology, American University of Madaba,
Amman 11821, Jordan; y.sanjalawe@aum.edu.jo

3 Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology,
Ajman University, Ajman P.O. Box 346, United Arab Emirates

4 Information Security Department, Faculty of Information Technology, University of Petra,
Amman 11196, Jordan; salam.ammari@uop.edu.jo

* Correspondence: s.fraihat@ajman.ac.ae

Abstract: Smartphones, digital cameras, and other imaging devices generate vast amounts of high-
resolution colored images daily, stored on devices equipped with multi-core central processing units
or on the cloud. Safeguarding these images from potential attackers has become a pressing concern.
This paper introduces a set of six innovative image ciphers designed to be stronger, faster, and more
efficient. Three of these algorithms incorporate the State-Based Tent Map (SBTM) Chaotic Pseudo
Random Number Generator (CPRNG), while the remaining three employ a proposed modified
variant, SBTMPi. The Grayscale Image Cipher (GIC), Colored Image Cipher Single-Thread RGB
(CIC1), and Colored Image Cipher Three-Thread RGB (CIC3) showcase the application of the pro-
posed algorithms. By incorporating novel techniques in the confusion and diffusion phases, these
ciphers demonstrate remarkable performance, particularly with large colored images. The study
underscores the potential of SBTM-based image ciphers, contributing to the advancement of secure
image encryption techniques with robust random number generation capabilities.

Keywords: chaos theory; chaotic systems; color image encryption; colored image; cryptography;
image encryption; security

1. Introduction

The rapid progress and widespread adoption of contemporary digital communication
and network technologies have revealed significant potential in improving online data
storage and electronic data exchange. However, ensuring the protection of confidential
information is equally essential, leading to the continuous prioritization of network security
and data integrity [1]. Consequently, scientists have implemented appropriate safety
measures to enhance visibility and prevent security vulnerabilities. Since a large portion
of multimedia content shared and stored online consists of images, it becomes necessary
to guarantee the confidentiality and authenticity of digital images through the utilization
of image encryption techniques. The process of image encryption involves utilizing a
mathematical algorithm to convert the original image into an intricate format, making it
challenging to interpret. This transformation strengthens the image’s resistance to security
attacks [2–4]. Image encryption finds practical applications in diverse fields such as medical
imaging, telemedicine, business, biometric authentication, and military communication.
To address the security demands of these applications, various image encryption techniques
have been developed, including digital watermarking techniques [5], image scrambling
methods [6], image steganography [7], and image cryptography [8].

In recent decades, there has been a significant rise in interest surrounding the applica-
tion of chaos in cryptography. This interest stems from the fundamental property of chaos,

Symmetry 2024, 16, 593. https://doi.org/10.3390/sym16050593 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16050593
https://doi.org/10.3390/sym16050593
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-5240-286X
https://orcid.org/0000-0002-4442-1865
https://orcid.org/0000-0002-1025-7868
https://orcid.org/0000-0002-2134-4158
https://doi.org/10.3390/sym16050593
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16050593?type=check_update&version=2

Symmetry 2024, 16, 593 2 of 46

which makes it sensitive to initial conditions and produces deterministic data sets that
resemble randomness. By leveraging chaos-based cryptographic models, researchers have
developed pioneering techniques for designing efficient image encryption systems. These
systems showcase remarkable attributes in multiple areas, such as speed, cost-effectiveness,
computational power, computational overhead, complexity, vulnerability, and more. The
utilization of chaotic systems in cryptography offers notable benefits, such as sensitivity to
initial values, strong randomness, and resistance to cracking [9]. Consequently, chaotic sys-
tems have gained significant attention and been extensively studied for image encryption
purposes [10–12].

In 1989, mathematician Matthews pioneered the integration of chaos into encryption
systems and introduced the concept of chaotic cryptography [13]. Compared to traditional
image encryption methods, encryption techniques based on chaotic systems demonstrate
higher efficiency. Consequently, researchers have proposed a multitude of image encryp-
tion schemes that leverage chaotic systems [5,14,15]. In a color image encryption (CIE)
algorithm, it is common practice to encrypt the three components of R, G, and B sepa-
rately and then merge them to generate a color image [16]. Alternatively, one can create a
unified grayscale image by dividing and encrypting the three components, allowing for
the restoration of the original size [17]. After extensive research conducted by countless
scholars, the field of color image CIE has made significant progress and achieved a more
refined state. The amalgamation of chaotic systems and scrambling methods within the
scrambling–diffusion framework has proven effective in meeting the majority of encryp-
tion needs.

Nevertheless, there is still scope for enhancing the existing encryption algorithms.
However, when it comes to proposing algorithms for image encryption, scholars have
primarily utilized chaos theory, optical transformation, DNA encoding, and compressed
sensing. These theories serve as the foundation for developing a wide range of image en-
cryption algorithms that modify the positions and values of pixels. Despite the abundance
of proposed image encryption algorithms, most of them concentrate on single grayscale
images, raising doubts about their security and efficiency. To address these concerns, this
paper introduces a new algorithm that strives to improve both the security and efficiency of
image encryption. In order to enhance both security and efficiency, a novel CIE algorithm
is introduced. The core contributions of this paper are outlined as follows:

• Enhanced parallel execution: The proposed algorithms were developed to enable
efficient parallel execution across all phases.

• Innovations in confusion and diffusion techniques: The proposed algorithms incor-
porate original approaches within the confusion and diffusion processes, resulting in
streamlined and parallel execution.

• Robust random number generation: These algorithms make use of SBTM, which not only
is highly efficient but also boasts remarkable strength in random number generation.

• Streamlined encryption methods for grayscale and color images: The encryption and
decryption processes for images have been optimized to achieve swift performance,
with encryption times as low as 1 ms for small images and 1 s for larger images
(100 MB).

• Heightened sensitivity to key and image modifications: Through a single round of
encryption, the cipher images exhibit extraordinary responsiveness to alterations in
both the encryption key and the original image.

The structure of this paper is organized as follows: Section 2 provides a comprehensive
analysis of previous studies. Section 3 introduces a new CIE algorithm. Section 4 showcases
the experimental results and provides detailed analyses. Finally, Section 5 concludes the
paper by summarizing the findings.

2. Related Works

In this section, a synthetic analysis of the latest colored image encryption techniques
is presented. Numerous algorithms for encrypting colored images have been proposed,

Symmetry 2024, 16, 593 3 of 46

showcasing variations in terms of their effectiveness and robustness. The encryption of
images is the procedure of securing them from unauthorized access utilizing a secret
key. Digital visual data are structured in the form of rectangular frames consisting of
individual elements referred to as pixels, each assigned a numerical value. With the
progress of information technologies, digital images, encompassing diverse formats like
medical images, grayscale images, color images, binary images, and others, have become
increasingly prevalent in applications, storage, and transmission. Consequently, protecting
this type of information has emerged as a crucial challenge [18]. Considering the distinctive
attributes of image data, numerous encryption algorithms have been proposed, employing
various technologies, including [19–27].

A color image encryption technique was proposed by Aqeel ur Rehman et al., utilizing
an exclusive-OR operation with DNA complementary rules. The basis of this approach
was the integration of chaos theory and the SHA-256 hash function to modify the initial
conditions and control parameters of the chaotic system [28]. The color image’s three
channels were transformed into a one-dimensional vector and sorted according to the
chaotic sequence generated via the Piecewise Linear Chaotic Map. This permuted array
was then divided into three parts, representing each color channel, and independently
permuted using Lorenz’s chaotic system. Following the dual permutation, each pixel in
every channel was encoded independently using deoxyribonucleic acid (DNA) bases in a
chaotic manner. Notably, the algorithm’s novelty lies in substituting each pixel in a channel
with an exclusive-OR operation based on DNA complementary rules. Multiple DNA rules
were employed, repeating this operation for a random number of cycles in a cyclic fashion.
The selection of DNA rules at the beginning of this cyclic operation and its continuation
depended on Chen’s chaotic sequence. Extensive simulated experiments demonstrated the
algorithm’s exceptional encryption performance achieved within a single round.

In their work, Seyedzadeh et al. [29] proposed an innovative image encryption al-
gorithm that utilized chaos theory, employing a Coupled Two-Dimensional Piecewise
Nonlinear Chaotic Map (CTP-NCM) and a masking process specifically designed for
encrypting color images. Through computer simulations, it was demonstrated that the
algorithm achieved a high level of security while maintaining exceptional speed in practical
color image encryption applications. The algorithm incorporated a 256-bit external secret
key to generate the initial conditions and parameters of the CTP-NCM. Experimental results
substantiated the superior security performance of the proposed algorithm in comparison
to other existing algorithms. Tong et al. presented a rapid algorithm for encrypting color
images, utilizing a four-dimensional chaotic system as its foundation [30]. To enhance the
encryption algorithm’s complexity and key space, the researchers introduced an innova-
tive method for designing four-dimensional chaotic systems based on classical equations
from three-dimensional chaotic systems. The authors proposed a new pseudo-random
sequence generator. The generator utilizes bits from the four values produced via the four-
dimensional chaotic systems to generate three keys instead of one, leveraging the generated
sequence to enhance the speed of the image encryption process. The authors employed
row-major and column-major techniques to diffuse the original image, and they employed
a cat map with a parameter to scramble the image pixels and achieve the desired encryption
effect. Extensive simulations and security analyses confirmed that the proposed encryption
algorithm demonstrated remarkable performance in terms of security, robustness, and high
encryption speed.

Li et al. introduced an image encryption algorithm that leveraged hyper-chaos, uti-
lizing a 5D, multi-wing, hyper-chaotic system in which the key stream was derived from
the original image [31]. The algorithm integrated pixel-level and bit-level permutations to
enhance the cryptosystem’s security. Furthermore, a diffusion operation was employed
to modify the pixels. Theoretical analysis and numerical simulations substantiated the
algorithm’s ability to provide high security and reliability for image encryption. In a sepa-
rate study, researchers proposed a simple and effective chaotic system by combining two
existing one-dimensional chaotic maps (seed maps) [18]. Simulations and performance eval-

Symmetry 2024, 16, 593 4 of 46

uations demonstrated that this system generated one-dimensional chaotic maps with larger
chaotic ranges and improved chaotic behaviors compared to the seed maps. The chaotic
system was then utilized in a novel image encryption algorithm to address multimedia
security. Notably, with the utilization of the same set of security keys, the algorithm gen-
erated distinct encrypted images for the same original image in each encryption process.
Experimental investigations and security analyses verified the algorithm’s exceptional
performance in image encryption and its resilience against various attacks. In addition, El-
Latif et al. presented an innovative scheme for encrypting color images based on a quantum
chaotic system [32]. The method involved applying new substitution total automorphism
in the integer wavelet transform, specifically scrambling only the Y (luminance) component
of the L frequency sub-band. Subsequently, two diffusion modules were created by com-
bining the features of horizontally and vertically adjacent pixels using a quantum chaotic
map. In the final stage, a substitution/confusion process was generated by employing an
intermediate chaotic key stream image derived from the quantum chaotic system. Thor-
ough security and performance analyses were conducted through extensive experimental
investigations, showcasing the exceptional characteristics of the proposed color image
encryption method, including robust security and satisfactory performance. Comparative
evaluations favored the proposed scheme in most cases.

Furthermore, Liu et al. proposed an image encryption scheme based on chaos using
bijection [33]. In this algorithm, the entire color image was diffused using XOR operations
for a random number of rounds. Each color component was separated into blocks of equal
size. A bijective function, denoted as f: B→S, was established between the block set B
and the S-box set S. The corresponding 8 × 8 S-box was dynamically generated via the
Chen system, incorporating variable conditions. The encrypted image was obtained by
substituting each block with the corresponding paired S-box. Numerical simulations and
security analyses indicated that the scheme exhibited the potential for practical application
in image encryption. Additionally, Mazloom et al. introduced a novel image encryption
algorithm based on chaos, specifically utilizing a coupled nonlinear chaotic map (CNCM),
to encrypt color images [34]. The algorithm employed symmetric key cryptography with a
stream cipher structure. To enhance the security of the algorithm, a 240-bit secret key was
used to generate the initial conditions and parameters of the chaotic map through algebraic
transformations applied to the key. These transformations, combined with the nonlinear
and coupling characteristics of the CNCM, resulted in an improved level of security within
the cryptosystem. In this study, the image size and color components were incorporated to
achieve higher security and complexity, thereby significantly increasing the approach’s re-
sistance to known and chosen–plaintext attacks. The algorithm’s efficacy and security were
validated through various experimental and statistical analyses, as well as key sensitivity
tests, demonstrating its suitability for real-time image encryption and transmission.

Kadir et al. presented a color image encryption scheme that employed a couple of
hyperchaotic Lorenz systems [35]. The scheme introduced a novel approach by injecting
impulse signals randomly into the coupled Lorenz system during iterations to enhance the
complexity of the trajectory. Six sequences of state variables were generated to encrypt the
R, G, and B components using bitwise operations such as XOR and a left or right cyclic shift.
The utilization of six initial values and multiple indeterminate impulse signals expanded
the cryptosystem’s key space, providing resistance to exhaustive attacks, including those
from quantum computers. Simulations demonstrated the stability of the mean encryption
speed, which was influenced by the hardware equipment and the algorithm employed.
Statistical analysis confirmed the high effectiveness of the proposed image encryption
algorithm. Existing color image encryption techniques using chaotic techniques have
several main limitations.

• Security: Some existing algorithms are vulnerable to attacks such as brute-force,
statistical, and differential attacks. These vulnerabilities can compromise the security
of encrypted images.

Symmetry 2024, 16, 593 5 of 46

• Key space: Chaotic systems often have a limited key space, making them susceptible
to exhaustive key search attacks. If the key space is small, it is easier for an attacker to
try all possible keys and decrypt the encrypted image.

• Robustness: Some algorithms are not robust enough to withstand common signal pro-
cessing operations or geometric transformations applied to the encrypted image. This
can lead to a loss of information or a decrease in the quality of the decrypted image.

• Speed: Chaos-based encryption algorithms can sometimes be computationally inten-
sive, leading to slower encryption and decryption speeds. This can limit their practical
use in real-time applications or scenarios requiring quick processing.

• Resistance to attacks: Existing algorithms may not provide sufficient resistance to
advanced attacks such as chosen-plaintext attacks or known-plaintext attacks. These
attacks exploit the algorithm’s vulnerabilities and can potentially reveal the original
content of the encrypted image.

Addressing these limitations is crucial to ensuring the development of more secure
and efficient color image encryption algorithms based on chaotic techniques. In addition to
the limitations mentioned above, there are also other challenges that need to be addressed
in order to develop more secure and efficient color image encryption algorithms using
chaotic techniques. These challenges include the following:

• Developing more secure chaotic systems with a larger key space.
• Developing more robust chaotic-based encryption algorithms that are resistant to

common signal processing operations and geometric transformations.
• Developing more efficient chaotic-based encryption algorithms that can achieve high

encryption and decryption speeds.
• Developing chaotic-based encryption algorithms that are resistant to advanced attacks,

such as chosen-plaintext attacks and known-plaintext attacks.

The development of more secure and efficient color image encryption algorithms using
chaotic techniques is an active area of research. By addressing the challenges mentioned
above, it is possible to develop more secure and efficient color image encryption algorithms
that can be used to protect sensitive data.

3. Proposed Technique

This section provides an overview of the proposed image ciphers. A total of six
versions have been developed, with three of them employing the SBTM [36] random
number generator, while the other three adopt a modified version utilizing digits of PI as
its state. This modification demonstrates the flexibility of SBTM, showcasing its ability to
yield strong random numbers with diverse initial values. The following presents a brief
description of the first three algorithms that were developed:

1. A Grayscale Image Cipher (GIC), a cipher that can only be used with grayscale images.
2. Colored Image Cipher Single Thread RGB (CIC1), a cipher that can be used with

color images and uses a single thread to handle the red, green, and blue channels of a
sub-image.

3. Colored Image Cipher Three Thread RGB (CIC3), a cipher that can be used with color
images and that uses three threads to handle the red, green, and blue channels of a
sub-image.

The preceding three algorithms rely on the original SBTM random number generator, while
the remaining three ciphers share identical structures but implement a modified version
of SBTM. All six versions adhere to a common logic; therefore, we discuss GIC in detail,
and subsequently, we explore the distinctions present in the other variants. The description
of a step-by-step implementation can be found in the appendices.

3.1. Image Encryption Methods and Ciphers

In this article, we focus on a number of strategies to produce image ciphers that are
very strong and efficient. In particular, we consider the following:

Symmetry 2024, 16, 593 6 of 46

1. The use of strong and efficient CPRNG: Random number generators are essential
components in ciphers. They determine the cipher strength and time of execution. We
decided to use SBTM CPRNG for its strong sequences and speed. Details about SBTM
and the proposed variant, SBTMPi, are provided in the next section.

2. Parallel processing: Currently, almost all CPUs are multi-core, even those of smart-
phones and tablets. Encrypting an image in a sequential fashion takes a long time.
Due to the nature of random number generators and the sequences they produce,
many of the ciphers operate sequentially. In this article, however, we create four
arrays of random numbers in advance and use them to shuffle and encrypt an image.
This method allows for parallel processing utilizing all cores of the CPU, which results
in a huge speed gain.

3. Number of random numbers required: Many of the image ciphers produce as many
random numbers as the number of pixels in an image. Depending on the efficiency
of the PRNG used, this process requires a large amount of time, especially for large
images. In this article, we only produce a small number of random numbers to encrypt
the image; for example, for images of size (1000 * 1000), we produce only 4000 random
numbers. The numbers are then utilized in a smart way to provide strong encryption,
as evidenced by the results shown in the Implementation and Evaluation section.

4. Efficient shuffling of pixels: Another aspect of image encryption that usually consumes
time is the shuffling process. Shifting and rolling columns and rows of an image is
time-consuming and gets worse with large images. We utilized a clever method
to calculate new indices of a plain image pixel and store the encrypted pixel in the
calculated indices in the encrypted image. This method avoided the actual shifting of
pixels and allowed for parallel processing as well.

5. Sensitivity to change: We developed an efficient method that provides very strong
sensitivity to changes in either plain images or their keys. A change of one to any
of the plain image’s pixels leads to a drastic change in the encrypted image. The
method used produces a digest of the image that can be used for an integrity check as
a byproduct.

As mentioned above, a total of six ciphers are proposed, namely GIC, CIC1, and
CIC3, which utilize SBTM CPRNG, and another three that uilize a proposed variant of
SBTM, which are discussed in the next section. The overall processes of the six ciphers are
summarized below, while a description of their detailed implementation is delegated to the
appendices. The main steps followed in all six ciphers are listed below:

1. Load the image.
2. Divide the image into a number of sub-images.
3. Generate strong keys: as can be seen in Figure 1, uk1 and US are used to initialize

SBTM. Ninety-seven values are generated, and then uk2 is used to replace the control
variable of SBTM, and so on until all keys are used. The state of SBTM is now
influenced by all user input. ek1 is assigned to the next random value. Ninety-seven
values are generated, and the last one is assigned to ek2. This step is repeated for ek3
to ek6.

4. Use a number of threads to initialize the required arrays: GIC has only two arrays to
hold random double values, Di f f 1 size r and Di f f 2 size c. Hence, only two threads
are needed.

5. Use a number of threads to calculate a digest called ES: based on the number of
sub-images, create as many threads to calculate ES. The process is basically the sum
of all the elements of the image after adding a random value to it and multiplying it
with the sum of two random values from Di f f 1 and Di f f 2 as shown in the equation
below. This process produces a simple digest that is affected by any modification to

any pixel of the original image.
r,c
∑

i=0,j=0
(I[i, j] + Di f f 2[j]) ∗ (Di f f 1[i] + Di f f 2[j]).

6. Use a number of threads to initialize another set of arrays utilizing the calculated
digest: GIC has only two arrays to hold random integer values, Roll1, size r, and

Symmetry 2024, 16, 593 7 of 46

Roll2, size c. Hence, only two threads are needed. Note that these two arrays hold
randomly ordered indices.

7. Use a number of threads to encrypt the image: based on the number of sub-images,
create as many threads to encrypt the image. Each thread is assigned one sub-image.
The encryption step is rather simple. It XORs pixels from the plain image with four
values from the four arrays, Di f f 1, Di f f 2, Roll1, and Roll2. Shift emulation is done
here, through which new indices are calculated for any given pixel in the encrypted
image, and the plain image pixel at the calculated indices is encrypted.

8. Save the digest and the encrypted image to file.

Figure 1. Key generation process.

Symmetry 2024, 16, 593 8 of 46

Figure 2 summarizes the encryption process. A step-by-step example can be found
in Appendix D.4.

Figure 2. CIC1 encryption process.

3.2. SBTM and SBTMPi

SBTM is the CPRNG proposed in [36]. It was specifically designed to generate se-
quences with exceptional statistical properties and a high degree of security while maintain-
ing a low computational cost. It utilizes a modified 1D chaotic tent map with enhanced at-
tributes to produce chaotic sequences. SBTM utilizes the well-known tent map function and
adds to it a circular array to serve as a state. The initial values of the state are square roots
of prime numbers. The main functionality of SBTM is shown in Equation (1). With every
random number generated, an element of the state is updated. An automatic reset of state
values is applied to keep them within a specific range. SBTM was thoroughly tested and
proved to produce extremely strong sequences with a low computational time. The size of
the state array was chosen to be five. In the original article, many sizes were tested, and they
all produced strong sequences. Five, however, kept the size of the generator small. The val-
ues produced from Equation (1) can be greater than one; only the fraction is returned to keep
the random values between zero and one. In [36], it was stated that other well-chosen val-
ues can be used for the initial state without impacting the strength of the generator. In this

Symmetry 2024, 16, 593 9 of 46

article, we propose SBTMPi, which uses digits from the fraction part of PI. The digits were
multiplied by 100 and then by the constant (e). The state array used is of length 13, as shown
below: State of SBTMPi = {271.8281828459045, 1087.312731383618, 271.8281828459045,
1359.1409142295227, 2446.4536456131405, 543.656365691809, 1630.969097075427,
1359.1409142295227, 815.4845485377135, 1359.1409142295227, 2174.625462767236,
2446.4536456131405, 1902.7972799213317 }. GICPi, CIC1Pi, and CIC3Pi use the proposed
CPRNG, namely SBTMPi.

rn+1 =

{
rn × µ× state[i], if n < 0.5
(1− rn)× µ× state[i], otherwise

(1)

3.3. Image Decryption Process

The decryption process is simpler and faster than the encryption process due to the fact
that the digest does not have to be calculated, as it is impeded in the encrypted file. The gen-
eral procedure followed for all six ciphers can be summarized in the following steps:

1. Load ES, then load the encrypted image.
2. Divide the image into a number of sub-images.
3. Generate strong keys: a similar process as that of the encryption.
4. Use a number of threads to initialize the required arrays
5. Use a number of threads to decrypt the image, which is the opposite of the encryp-

tion step.
6. Save the decrypted image to file.

The detailed algorithms of the decryption processes are presented in the appendices.

3.4. Analytical Discussions

In this section, the reason for developing new image ciphers and the design decisions
made are discussed.

Why develop a new image cipher? There are at least three reasons that can be used.
(1) With the increasing number of cyber attacks and privacy issues, stronger ciphers need
to be developed. (2) The current hardware used in PCs, laptops, and smartphones uses
multi-core chips that need to be utilized. (3) The increasing number of images taken, and the
enormous size of such images, makes a clear case for faster and more efficient ciphers.

Why use SBTM? A random number generator is an essential part of most if not all
image ciphers. Many of the used PRNGs in the literature suffer from weaknesses such as a
limited range of the control variable, non-uniform distribution, being slow, and/or weak
sequences of random numbers. On the contrary, SBTM is a new CPRNG that is very strong
and efficient, as demonstrated in [36].

Why use PI as the initial seed? Practically any value could be used. To avoid simple
and suspicious values, common constants are utilized. PI and the square roots of prime
numbers are irrational and very random in nature.

Why use six keys, not seven, ten, or three, for example? SBTM uses only one control
variable as a key by default. The users may choose weak values such as 1 or 5 as a key.
To enlarge the key space of the cipher and to make it harder for an attacker, more keys are
needed. Of course, there needs to be a balance between usability and security. While using
fewer keys makes it more usable it also makes it weaker. On the other hand, using more
keys makes it less usable but stronger. Six keys seem to achieve such balance. This number
of keys has been used in the literature as well [37].

Why generate digest ES? There are two reasons here. (1) The user may choose a
simple seed, such as 0.1 or 0.2, which makes it easy to guess. (2) Since, usually, images
are encrypted pixel by pixel after being confused, a change in the original image will only
impact one pixel in the encrypted image. For these two reasons, the proposed algorithms
generate a strong digest dependent on the following: the user seed US, the generated Diff
arrays, and the pixel value. The Diff arrays make the position of the pixel somewhat unique;

Symmetry 2024, 16, 593 10 of 46

i.e., if a white image were used, and only pixel values were used, changing pixel [0, 0] by
adding one to it would produce the same digest as changing pixel [0, 1] or [5, 5], and so on.
Utilizing a pair of random doubles will produce a different seed if the change is made to a
pixel at a different location, given that all pixels have the same value. Experimental results
show this impact.

Why generate encryption keys other than the user keys uk1 through 6? The user
may choose simple keys such as all zero or one, etc. Despite the fact that SBTM is very
strong, it will generate the same sequence if given the same key and seed. This will
definitely negatively impact the strength of the encrypted image. To avoid such a situation,
the algorithm uses the user keys to generate strong and different keys EK1 through 6 that
are used to generate the random sequences.

Why do we divide the image? It is very clear that time is very important, and the
current hardware is capable. Using a single thread to encrypt or decrypt an image is a
waste of time and resources. The proposed algorithms give the user a choice to decide
on the number of sub-images to be used and, hence, reduce time and improve hardware
utilization. Experimental results show a huge gain when parallelizing the process.

Why emulate the shuffling of the image? Shuffling the image before encryption is
essential in almost all image ciphers. This process takes a large amount of time, especially
for large images of 10 MP and above. The goal is to make this process more efficient. A
novel approach to calculate where the location of the pixel will be after shuffling, and then
encrypting that pixel is proposed. It saves a large amount of time when dealing with large
images, as shown in the results.

4. Implementation and Verification

All six algorithms, including SBTM and SBTMPi, were implemented in Java on a
laptop equipped with an Intel Core i7 twelfth-generation processor and 16 GB of RAM,
running Windows 11. Java was chosen for its concurrent programming capabilities and
user-friendly nature. Numerous images were subjected to testing, but only the results for
those listed in Table 1 are reported due to space constraints. Throughout all experiments,
the following values were consistently used: US = 0.3, and uk1 through uk6 were 3.4, 5.6,
2.1, 7.8, 6.1, and 9.4, respectively. The time results presented are averages from 100 runs.
The results were compared with those from the prior literature [37–50].

Table 1. Used images and their sources. Sources were accessed on 2 May 2024.

Name Size Source

1 Colored Lenna.png 512 * 512 https://en.wikipedia.org/wiki/Lenna
2 Colored Peppers.tiff 512 * 512 https://sipi.usc.edu/database/
3 Colored Baboon.tiff 512 * 512 https://sipi.usc.edu/database/
4 bernard-hermant-nHRXNv2qeDE-unsplash.jpg 6000 * 4000 https://unsplash.com
5 White.png 512 * 512 Created
6 Black.png 10,000 * 10,000 Created
7 Gray jocelyn-morales-ybDvbCvh9Ro-unsplash.jpg 2918 * 2832 https://unsplash.com
8 Gray danny-M7l0CS4yBsY-unsplash.jpg 4032 * 3024 https://unsplash.com
9 Gray Lenna.png 512 * 512 Created from original

In this section, the evaluation of the proposed algorithms concerning key space,
statistical analysis, sensitivity, and time complexity is explored. For statistical analysis,
the histogram, correlation, and entropy are assessed. To examine sensitivity, the perfor-
mances of NPCR, UACI, and BACI are calculated. Following that, the obtained results are
compared with results from the prior literature [37–50].

4.1. Key Space Analysis

To effectively thwart brute force attacks, it is crucial to have a sufficiently large key
space. In cryptography, a computational complexity exceeding 128 bits is considered
adequately secure. In this section, we analyze the key space of the proposed algorithms to

https://en.wikipedia.org/wiki/Lenna
https://sipi.usc.edu/database/
https://sipi.usc.edu/database/
https://unsplash.com
https://unsplash.com
https://unsplash.com

Symmetry 2024, 16, 593 11 of 46

ensure that it significantly surpasses the 128-bit threshold. The secret parameters used for
this analysis are the user seed (US), and the six user keys, (UK1 . . . UK6). Each parameter
is represented as a double with 15 digits of precision, equivalent to 52 bits. Equation (2)
demonstrates that the keyspace indeed spans 364 bits, far exceeding the required minimum
of 128 bits. As a result, the key meets this crucial security requirement.

key length = 7 ∗ 52 = 364 bits, Key space = 2364 (2)

4.2. Statistical Analysis

In the literature, three commonly employed statistical analysis tools are typically
taken into account: histograms, correlation, and entropy. Histogram analysis involves
evaluating the distribution of pixel values in images. To assess the relationship between
the original and encrypted images, the correlation coefficients of the horizontal, vertical,
and diagonal directional features are calculated. Additionally, Shannon’s entropy is utilized
to demonstrate the randomness of the encrypted images.

4.2.1. Histogram Analysis

The significance of the histogram lies in its ability to reveal crucial insights into the
randomness of an encrypted image. For an encrypted image to be secure, the distribution
of pixel values should be uniform, preventing adversaries from extracting any valuable
information through statistical attacks. Samples of histograms of the original images,
as well as those of the encrypted images, are shown in Figure 3. It is very clear that the
histogram of the encrypted image is uniformly distributed, even for images with very little
entropy, such as white.png and black.png, as can be seen in the following figures.

Figure 3. baboon.tiff (512, 512) colored: (a) original image, (b) encrypted image, (c) correlation of
two adjacent columns in (b), (d) correlation of two adjacent columns in (a), (e) histogram of (a),
and (f) histogram of (b).

4.2.2. Correlation Analysis

In typical images, there is often a strong correlation between adjacent pixels. Nev-
ertheless, an effective encryption scheme should generate cipher images with a mini-

Symmetry 2024, 16, 593 12 of 46

mal correlation between neighboring pixels to conceal the underlying image information.
The correlation coefficient can be computed using Equation (3).

rxy =
E(x− E(x))E(y− E(y))√

D(x)D(y)
(3)

where x and y are two adjacent pixels selected for calculation. E(x) and E(y) are the
expectation of x and y, while D(x) and D(y) are the variances of x and y. For both the
plain and cipher images, pairs of all pixels were considered in three directions: horizontal,
vertical, and diagonal. The correlation coefficient was then computed, and the outcomes
are displayed in Table 2.

The analysis reveals that the plain images exhibit a significant correlation between
adjacent pixels, whereas the cipher images generated via GIC, CIC1, and CIC3 demonstrate
notably low correlation values. Figures 4–7 visually illustrate the correlation between two
adjacent columns in both the plain and cipher images. The figure vividly demonstrates
that pixels in the cipher images appear to be randomly distributed, while those in the same
columns of the plain image exhibit a pronounced correlation.

Figure 4. Lenna.png colored: (a) original image, (b) encrypted image, (c) correlation of two adjacent
columns in (b), (d) correlation of two adjacent columns in (a), (e) histogram of (a), and (f) histogram
of (b).

4.2.3. Information Entropy

Information entropy is a mathematical property used to measure the randomness of
an information source. It is calculated based on Equation (4).

H(s) = −
2N−1

∑
i=0

P(si) log2(P(si)) (4)

where s is the information source; N is the number of bits used to represent s; and P(si) is
the probability of the occurrence of symbol xi. The entropy value of a genuinely random
source with 256 gray levels is expected to be 8. After calculating the information entropy for
all images, the results were compiled in Table 3. The entropy values for all cipher images
surpassed 7.999, while for Black.jpg, they exceeded 7.99999. This indicates that GIC, CIC1,
and CIC3 effectively generate cipher images that withstand entropy analysis, ensuring
robust security.

Symmetry 2024, 16, 593 13 of 46

Table 2. Correlation values produced by GIC, CIC1, and CIC3.

Lenna.png Baboon.tiff
Bernard-hermant-

nHRXNv2qe
DEunsplash.jpg https

White.png Black.png Peppers.tiff Jocelyn–
Morales Danny Lennag.png

Correlation of Original

Horizontal Correlation
Coefficient 0.971928377 0.866543103 0.968008701 1 1 0.976770914 0.982348334 0.999713197 0.976212614

Vertical Correlation
Coefficient 0.985029604 0.758730154 0.959743177 1 1 0.97920518 0.987638886 0.99973431 0.986572767

Diagonal Correlation
Coefficient 0.959331116 0.726188678 0.935853441 1 1 0.963934813 0.974356812 0.999537899 0.964138041

Correlation of Encrypted—SBTM

Horizontal Correlation
Coefficient 2.439× 10−3 4.979× 10−3 −2.219× 10−4 5.78× 10−4 −1.48× 10−5 3.734× 10−3 2.234× 10−4 6.27× 10−5 −1.17× 10−3

Vertical Correlation
Coefficient

−6.538×
10−4

−4.314×
10−3 −2.83× 10−5 1.483× 10−4 −5.86× 10−5 −2.07× 10−3 3.103× 10−4 1.855× 10−4 −1.805×

10−3

Diagonal Correlation
Coefficient

−4.148×
10−3

−2.290×
10−3 4.36× 10−5 7.277× 10−4 −2.995×

10−4 −1.56× 10−3 3.118× 10−4 5.35× 10−6 −1.15× 10−3

Correlation of Encrypted—SBTMPi

Horizontal Correlation
Coefficient

−4.553×
10−4 0.976770914 −1.238× 10−4 −4.374×

10−4
−1.719×

10−3
−2.653×

10−3
−3.986×

10−4
−2.153×

10−4 3.239× 10−3

Vertical Correlation
Coefficient

−1.143×
10−3 0.97920518 −3.24× 10−5 −9.716×

10−4 7.546× 10−4 2.852× 10−3 −4.177×
10−4

−3.295×
10−4 2.597× 10−3

Diagonal Correlation
Coefficient

−1.291×
10−3 0.963934813 −1.506× 10−4 6.831× 10−4 −1.050×

10−3 5.539× 10−4 −2.19× 10−5 −1.609×
10−4

−3.304×
10−4

Symmetry 2024, 16, 593 14 of 46

Figure 5. bernard-hermant-nHRXNv2qeDE-unsplash.jpg (6000 * 4000): (a) original image, (b) en-
crypted image, (c) correlation of two adjacent columns in (b), (d) correlation of two adjacent columns
in (a), (e) histogram of (a), and (f) histogram of (b).

Figure 6. white.png: (a). original image, (b) encrypted image, (c) correlation of two adjacent columns
in (b), (d) correlation of two adjacent columns in (a), (e) histogram of (a), and (f) histogram of (b).
(512 * 512).

Symmetry 2024, 16, 593 15 of 46

Figure 7. BLACK.png (10,000 * 10,000): (a) original image, (b) encrypted image, (c) correlation of
two adjacent columns in (b), (d) correlation of two adjacent columns in (a), (e) histogram of (a),
and (f) histogram of (b).

4.2.4. Sensitivity Analysis

Claude Shannon identified two crucial properties of a secure cipher: confusion and
diffusion. Confusion involves the relationship between the cipher text and the encryption
key, while diffusion pertains to the relationship between the cipher text and the plain text.
In other words, any change to a character of the key or the plain text should result in multi-
ple characters of the cipher text being altered. Contemporary cryptographic algorithms
often employ a substitution–permutation (SP) network as a straightforward approach to
achieving both confusion and diffusion. The S-Box used in AES is a popular method for
achieving substitution. However, this type of substitution can require large memory usage
or lead to high computational complexity.

To address this limitation, the proposed algorithms adopt a novel approach to com-
puting the digest ES and another novel approach to emulating pixel shifting. Furthermore,
they utilize all the cores available in the CPU in the main steps to enhance efficiency.
To demonstrate that these algorithms yield cipher images satisfying Shannon’s proper-
ties, three evaluation metrics were calculated for all test images: NPCR (Number of Pixel
Change Rate), UACI (Unified Average Changing Intensity), and BACI (Blocked Average
Changing Intensity). NPCR and UACI were computed for all three color channels between
the following pairs of images:

1. The original image and the cipher image.
2. Two cipher images: the cipher image and one generated after adding one to pixel

[0, 0, 0] of the original image.
3. Two cipher images: the cipher image and one generated after adding 10−15 to the user

seed US or any of the user keys.

BACI values were calculated for two pairs of images, cases 2 and 3 of the above. NPCR,
UACI, and BACI were calculated using Equations (5), (7), and (9).

Symmetry 2024, 16, 593 16 of 46

Table 3. Entropy of original images vs encrypted images.

Lenna.png Baboon.tiff
Bernard-hermant-

nHRXNv2qeD
Eunsplash.jpg https

White.png Black.png Peppers.tiff Jocelyn–
Morales Danny Lennag.png

Entropy of Original

Red Channel 6.968426946 7.752217172 7.784196631 0 0 7.058305579 1.072629341 7.762109322 7.457123508
Green Channel 7.594037916 7.474431586 7.765855155 0 0 7.496253345
Blue Channel 7.253102357 7.706671843 7.81265644 0 0 7.338826961

Entropy of Encrypted—SBTM

Red Channel 7.999292363 7.999361961 7.999992751 7.999290305 7.999998056 7.999265701 7.999981573 7.999985503 7.999312018
Green Channel 7.999262644 7.999348141 7.999992205 7.999319074 7.999998152 7.999383295
Blue Channel 7.999293901 7.999293719 7.999992849 7.999278883 7.999998185 7.999368216

Entropy of Encrypted—SBTMPi

Red Channel 7.999288148 7.058305579 7.999992368 7.999311326 7.999292731 7.99926848 7.999979201 7.99998552 7.999227501
Green Channel 7.999253219 7.496253345 7.999992296 7.999322162 7.999341788 7.999290724
Blue Channel 7.999311461 7.338826961 7.999992204 7.999410048 7.999238474 7.99924015

Symmetry 2024, 16, 593 17 of 46

NPCR =
∑H

j=1 ∑W
i=1 D(i, j)

WH
× 100% (5)

D(i, j) =

{
1, if c1(i, j) ̸= c2(i, j)
0, if c1(i, j) = c2(i, j)

(6)

UACI =
H

∑
j=1

W

∑
i=1

|c1(i, j)− c2(i, j)|
P×WH

(7)

UACI(P1, P2) =
1

mN

M

∑
i=1

N

∑
j=1

|P1(i, j)− P2(i, j)|
255

× 100%. (8)

BACI(P1, P2) =
1

(M− 1)(N − 1)

(M−1)(N−1)
mk
255

∑
k=1

(9)

The comprehensive details and expected values for the equations mentioned above,
specifically when comparing the plain image with the cipher image and when comparing
cipher images with each other, can be found in [51], where the expected values are shown
in Table 4. The relevant results are presented in Table A1.

Table 4. Theoretical values of NPCR, UACI, and BACI indexes

Images Image Size NPCR (%) UACI (%) BACI (%)

Between two random images 256 ∗ 256 99.6094 33.435 26.7712
Between Lena and random image 256 ∗ 256 99.6094 28.5923 21.3268

Between Mandrill and random image 256 ∗ 256 99.6094 27.4210 20.1118
Between Peppers and random image 256 ∗ 256 99.6094 29.5685 22.1874
Between All-black and random image 256 ∗ 256 99.6094 50.0000 33.4635
Between All-white and random image 256 ∗ 256 99.6094 50.0000 33.4635

Table A1 demonstrates that the calculated values for the three indexes closely align
with the theoretical values provided in Table 4. For NPCR, all calculated values were
consistently greater than 99.6 across all three color channels. Regarding UACI between
cipher images, the values were always above 33.4 for all channels, except for peppers.tiff,
where it was 33.39456. However, when considering the average UACI value across all three
channels, it exceeded 33.4. Furthermore, UACI between the original images and the cipher
images was in close agreement with the results in Table A1, particularly for the Lenna,
Peppers, White, and Black images. The BACI results were even more promising than those
of UACI. According to [51], the obtained BACI values were around the theoretical value
of 26.7712 for all cipher images. These findings indicate that the proposed algorithms
effectively generate cipher images that exhibit a high level of randomness and sensitivity
to changes in the original image or any of the keys used.

4.2.5. X2 Test

The X2 test is a quantitative method used to assess the extent of deviation in the
pixel distribution of an image from a perfectly uniform distribution. The calculation is
represented in Equation (10), where pi denotes the frequency of pixel i in the image, and p
is the average frequency of all pixels, computed for (m× n)/256, where m and n represent
the height and width of the image, respectively.

C2 =
255

∑
i=0

(Pi − P̄)2

P̄
(10)

Symmetry 2024, 16, 593 18 of 46

A smaller X2 value indicates a closer adherence of the image to a uniform distribution,
signifying a more uniform pixel distribution. Table 5 displays the X2 values for both the
plain and cipher images. Notably, the X2 values of the cipher images are significantly lower
compared to those of the plain images. The X2 values for the proposed algorithms are
generally around 250, which is the expected value. Particularly, for six of the nine images,
it was less than 250.

Table 5. X2 values.

SBTM SBTMi

Image X2 Original X2 Encrypted X2 Original X2 Encrypted
Lenna.png 236,580.67 259.6582 236,580.67 [259.0983]
Baboon.tiff 100,859.73 240.7334 100,859.73 [248.74544]

Bernard-hermant-nHR
XNv2qeDE-unsplash.jpg https 7,984,348 244.85942 7,984,348 [256.04306]

White.png 261,120 254.85449 261,120 [236.34863]
Black.png 2.55× 1010 258.76398 2.55× 1010 [256.9603]

Peppers.tiff 339,975.53 210.97806 339,975.53 [266.7067]
Jocelyn-morales 1.7× 109 239.7806 1.7× 109 [237.87653]

Danny 4,219,045.5 243.0403 219,045.5 [244.72905]
Lennag.png 159,456.94 245.01074 159,456.94 [280.40234]

4.2.6. Digest ES Sensitivity

Each of the six algorithms produces a digest ES, which is crucial for both the encryption
and the decryption processes. ES serves as a highly random and sensitive parameter used
in conjunction with the user seed, US, to seed both SBTM and SBTMPi in order to generate
the random numbers used during encryption and decryption. Table A1 presents the
distinct values obtained when encrypting the original image, an image with only one pixel
modified, and when the encryption key is altered for all test images. Notably, the values
are remarkably different even when the changes introduced to the image or the key are
minimal. This highlights the robustness and sensitivity of ES, making it a vital component
in ensuring the security and effectiveness of the encryption process. It is worth noting that
ES is written to file. This is very safe, as no parameters can be extracted from it, and before
using it, it is mixed with the user seed.

4.2.7. SBTM vs. SBTMPi-Based Ciphers

This article introduces SBTMPi as a proposed extension of SBTM, showcasing the
remarkable robustness and flexibility of the original CPRNG. By carefully selecting different
values for the state of SBTM, the strength of the generated sequences remains unaffected.
The encryption of all test images was conducted using GICPi and CIC3Pi. The evaluation
results, displayed in Tables A2 and A3, illustrate that the generated cipher images are
equally strong, if not better, compared to those produced using GIC and CIC3.

For instance, in many cases, the X2 value of the encrypted black and white images
was lower, signifying improved performance. Additionally, the entropy of many encrypted
images exceeded 7.99999, further validating their robustness. Overall, all other evaluation
metrics exhibited equally favorable outcomes, highlighting the efficacy of SBTMPi and its
ability to produce secure and strong cipher images.

4.2.8. CIC1 vs. CIC3

CIC1 and CIC3 are two algorithms employed to encrypt colored images. The key
difference between them lies in their approach to processing sub-images during encryption.
CIC3 utilizes three threads to encrypt each sub-image, while CIC1 employs a single thread.

To determine which algorithm is more suitable and to illustrate the significance of
dividing the image into various sub-images determined according to the values of R and
C, a comprehensive experiment was conducted. Two images, one small (peppers.tiff) and

Symmetry 2024, 16, 593 19 of 46

one large (bernard-hermant-nHRXNv2qeDE-unsplash.jpg), were selected for testing. Each
image was encrypted using both CIC1 and CIC3 with a varying number of sub-images,
where R and C ranged from 1 to 10. The entire process was repeated 100 times, and the
average encryption time was recorded.

A similar experiment was conducted to compare CIC1Pi and CIC3Pi. Figure 8 and
Tables A2 and A3 illustrate the results obtained from these experiments. Notably, when
the number of generated sub-images was one, CIC3 performed nearly three times faster
than CIC1 for both images. However, as the number of sub-images increased, the behavior
differed. For the large image, the encryption time was quite similar, but CIC3 demonstrated
better performance with a minimum average of 246.7 ms compared to 256.1 ms for CIC1.
Conversely, for the small image, CIC1 performed better as the number of sub-images grew.
The minimum average was 1.5 ms (when R = 4 and C = 1) for CIC1 and 2.5 ms (when
R = 5 and C = 1) for CIC3. It is worth noting that both algorithms required more time as
the number of sub-images increased.

Similar outcomes were observed when comparing CIC1Pi and CIC3Pi. In conclusion,
for large images, CIC3 with a large number of sub-images is recommended, while for small
images, CIC1 with few sub-images is more suitable for efficient encryption.

Figure 8 shows the encryption time vs. the number of sub-images in the following:
A. SBTM-based CIC1 is compared with CIC3 for a large image. B. SBTM-based CIC1 is
compared with CIC3 for a small image. C. SBTMPi-based CIC1 is compared with CIC3 for
a large image. D. SBTMPi-based CIC1 is compared with CIC3 for a small image.

(a) SBTM-based ciphers—large image (b) SBTM-based ciphers—small image

(c) SBTMPi-based ciphers—large image (d) SBTMPi-based ciphers—small image

Figure 8. CIC1 and CIC3 performance against the number of sub-images used. h and v represent the
horizontal and vertical numbers of sub-images.

Symmetry 2024, 16, 593 20 of 46

4.2.9. Comparisons

In this section, we compare the results obtained from various metrics with those
reported by other researchers. It is crucial to acknowledge that this comparison may not be
entirely accurate in many cases due to differences in the images used and the evaluation
metrics employed. Nonetheless, presenting this comparison is essential to showcase how
the proposed algorithms fare against those introduced by other researchers. Tables 6–9
show comparison results between the proposed encryption techniques with state-of-the-
art methods when encrypting an image, which offers valuable insights into the quality
and effectiveness of the image encryption process using the proposed technique. As
depicted in Table 6, the proposed technique demonstrates superior performance compared
to the approach presented in [43] when encrypting the “lenna.png” colored image. This
superiority is evident in several aspects, including a substantial reduction in encryption
time, from 1670 ms to 2.38 ms consumed for the proposed encryption technique compared
to the time consumed for [43] to encrypt the “lenna.png” colored image. Additionally, there
was a notable improvement in the correlation between the original and encrypted images,
as well as in the UACI and NPCR metrics for channel “0”.

Moreover, Table 7 presents a more extensive comparison with state-of-the-art en-
cryption techniques, as proposed in ([37–41,44–50]). It is evident that the proposed en-
cryption technique surpasses all previously mentioned encryption techniques when ap-
plied to encrypting “Lenna Gray.png”. Furthermore, when compared to the existing
techniques ([39,41,43–45,48,52]) that have encrypted the “Peppers.png” image, Table 8
provides compelling evidence of the superior performance of the proposed encryption tech-
nique across various metrics, including encryption time, MSE, correlation, entropy, UACI,
NPCR, BACI, and more. Finally, in Table 9, the comparison results with existing encryption
techniques ([37,42–48,52]) that utilized “baboon.tiff”, “white.png”, and “black.png” images
in their experiments are presented. These results further underscore the superiority of the
proposed encryption technique over the existing methods.

In sum, the series of experiments conducted in this study consistently demonstrate
the clear and substantial superiority of the proposed encryption techniques over existing
encryption methods. Across various test scenarios, including the encryption of the “Lenna
Gray.png”, “Peppers.png”, “baboon.tiff”, “white.png”, and “black.png” images, the pro-
posed encryption technique consistently outperforms its counterparts. This superiority is
evident in multiple performance metrics, such as reduced encryption times, a lower MSE,
improved correlation, enhanced entropy, and better performance in metrics like UACI,
NPCR, and BACI. These compelling results collectively reinforce the effectiveness and ro-
bustness of the proposed encryption techniques, making them a noteworthy advancement
in the field of image encryption.

Table 6. The results of running CIC1 on "Colored Lenna.png" compared to Ref. [43].

CIC1 Ref. [43] (256,256)

Time in ms 2.38 1670

seed 0.407910552
seedp 0.320717184
seedk 0.238859246

MSE Original vs. Encrypted

ch1 7094.403336
ch2 9068.194191
ch3 10655.87563

Symmetry 2024, 16, 593 21 of 46

Table 6. Cont.

CIC1 Ref. [43] (256,256)

Time in ms 2.38 1670

PSNR

ch1 9.621644852
ch2 8.555595491
ch3 7.854912181

X2 Original 236580.67
X2 ENC 259.6582

Correlation of Original

Horizontal Correlation Coefficient 0.971928377
Vertical Correlation Coefficient 0.985029604

Diagonal Correlation Coefficient 0.959331116

Correlation of Encrypted

Horizontal Correlation Coefficient 0.002439681 0.0027
Vertical Correlation Coefficient −0.000653871 −0.0027

Diagonal Correlation Coefficient −0.004147642 0.0003

Entropy of Original

Red Channel 6.968426946
Green Channel 7.594037916
Blue Channel 7.253102357

Original vs. Encrypted

Channel 0 UACI 27.58842019 33.4531
Channel 0 NPCR 99.62539673 99.6078
Channel 1 UACI 30.6128558
Channel 1 NPCR 99.6181488
Channel 2 UACI 33.04622276
Channel 2 NPCR 99.62730408

Encrypted vs. One-Pixel Modified Encryption

CH0 UACI 33.45865287 33.4531
CH0 NPCR 99.63378906 99.6078
CH1 UACI 33.44524907
CH1 NPCR 99.5967865
CH2 UACI 33.47020018
CH2 NPCR 99.59068298

Encrypted vs. Key Modified Encrypted

CH0 UACI 33.51181329
CH0 NPCR 99.61051941
CH1 UACI 33.50390266
CH1 NPCR 99.61357117
CH2 UACI 33.51181329
CH2 NPCR 99.61051941

BACI Encryption vs. Pixel Modified Encrypted

CH0 0.267705363
CH1 0.26795032
CH2 0.267637681

BACI Encrypted vs. Key Modified Encrypted

CH0 0.267943492

CH1 0.267892948
CH2 0.267742368

Symmetry 2024, 16, 593 22 of 46

Table 7. The results of running GIC on “Gray Lenna.png” compared to results from a number of articles.

GIC [38] 6_Rounds [39] [40] 256 * 256 [41] CPU Size Only [41] GPU [44] Single Core [44] Multi_Cores [44] GPU [45] GPU [37] Gray Avg [37] Color Avg [46] [47] [48] [49] [50]

Time in ms 1.26 6.739 1.26 103.4 11.4 0.9126 * 4 0.4832 * 4 0.0862 * 4 3.4365 450.7 1353.3 80 ms 402 600.7 (256, 256) 1100

seed 0.573094037

seedp 0.469779666

seedk 0.442810324

MSE of Original vs. Encrypted

ch1 8087.48698

PSNR

ch1 9.052667663

X2 Original 159456.94

X2 Encrypted 245.01074 230 265 248.875

Correlation of Original

Horizontal Correlation Coefficient 0.976212614

Vertical Correlation Coefficient 0.986572767

Diagonal Correlation Coefficient 0.964138041

Correlation of Encrypted

Horizontal Correlation Coefficient −0.00117 −0.003 0.0021 −0.0052 0.0149 0.0022 0.0073 0.0019 0.0024 0.00246 −0.002359 0.001 0.0090266 −0.00058

Vertical Correlation Coefficient −0.001804761 −0.003 0.0019 0.0031 0.0151 0.0015 0.009 0.0036 0.0028 0.00134 0.001385 0.003 −0.0059255 0.0048

Diagonal Correlation Coefficient −0.00115 −0.009 0.0006 0.0003 0.0113 0.0025 0.0053 0.0033 0.002 0.00132 −0.000238 0.006 0.0055227 −0.0243

Entropy of Original

Red Channel 7.457123508 6.43834544 7.9457

Entropy of encrypted

Red Channel 7.999312018 7.819824649 7.9973 7.9991 7.999382 7.9998 7.9997 7.99929 7.99926 7.9994 7.9992856 7.7.9968

Original vs. Encrypted

Channel 0 UACI 29.23137141 28.61734577 33.4573 33.28 33.51 33.499 34.048559 33.52 33.4199 33.08

Channel 0 NPCR 99.67632 99.63645935 99.6122 99.65 0.9962 99.616 99.795532 99.63 99.617 99.58

Encrypted vs. one-pixel Modified Encrypted

CH0 UACI 33.44539717

CH0 NPCR 99.631732

Encrypted vs. Key Modified Encrypted

CH0 UACI 33.4 33.45 33.691 33.51

CH0 NPCR 99.61013794 0.9961 99.6399 99.63

BACI of Encrypted vs. Pixel Modified Encrypted

CH0 0.267822753

BACI Encrypted vs. Key Modified Encrypted

CH0 0.267919803

Symmetry 2024, 16, 593 23 of 46

Table 8. The results of running CIC1 on “Colored Peppers.tiff” compared to results from a number of
articles.

CIC1 [39] [41] CPU Size Only [41] GPU [43] [44] [45] [48] [52]

Time in ms 2.2 1.26 103.4 11.4 5130 1756

seed 0.41079142

seedp 0.323598052

seedk 0.188286409

MSE Original vs. Encryption

ch1 11168.92522

ch2 11205.73839

ch3 8015.177773

PSNR

ch1 7.650689775 11.89

ch2 7.636398818

ch3 9.091672016

X2 Original 339975.53

X2 Encryption 239.7806

Correlation of Original

Horizontal Correlation
Coefficient 0.976770914

Vertical Correlation
Coefficient 0.97920518

Diagonal Correlation
Coefficient 0.963934813

Correlation of Encrypted

Horizontal Correlation
Coefficient 0.003734691 0.0021 0.0035 0.0038 0.0092

Vertical Correlation
Coefficient -2.07E-03 0.0019 -

0.0054 0.0007 0.0068

Diagonal Correlation
Coefficient -1.56E-03 0.0006 0.0012 0.0032 0.0084

Entropy of Original

Red Channel 7.058305579

Green Channel 7.496253345

Blue Channel 7.338826961

Entropy of Encrypted

Red Channel 7.999265701 7.9472 7.9959 7.9998 7.999283

Green Channel 7.999383295

Blue Channel 7.999368216

Symmetry 2024, 16, 593 24 of 46

Table 8. Cont.

CIC1 [39] [41] CPUsizeonly [41] GPU [43] [44] [45] [48] [52]

Time in ms 2.2 1.26 103.4 11.4 5130 1756

Original vs. Encrypted

Channel 0 UACI 33.84835337

Channel 0 NPCR 99.61853027

Channel 1 UACI 33.87297088

Channel 1 NPCR 99.60289001

Channel 2 UACI 29.00593776

Channel 2 NPCR 99.60365295

Encrypted vs. One Pixel Modified Enc

CH0 UACI 33.3822213 38.572 33.5 33.3626 33.48 33.4349 33.45 34.35

CH0 NPCR 99.60517883 99.629 99.85 99.5818 0.9662 99.6244 99.64 99.98

CH1 UACI 33.45076617

CH1 NPCR 99.60136414

CH2 UACI 33.45834321

CH2 NPCR 99.6131897

Encrypted vs. Key Modified Encrypted

CH0 UACI 33.42832079 33.37

CH0 NPCR 99.58992004 0.9958

CH1 UACI 33.41574575

CH1 NPCR 99.60479736

CH2 UACI 33.42832079

CH2 NPCR 99.58992004

BACI Encrypted vs. Pixel Modified Encrypted

CH0 0.267719515

CH1 0.26752743

CH2 0.267476458

BACI Encrypted vs. Key Modified Encrypted

CH0 0.267598371

CH1 0.267275973

CH2 0.267223026

Symmetry 2024, 16, 593 25 of 46

Table 9. The results of running CIC3 on “Colored Baboon.tiff”, “white.png”, and “black.png” compared to results from a number of articles

CIC3: Baboon CIC3: White CIC3: Black [42]
Baboon

[42]
White [42] Black [43] Baboon (256, 256) [44]

Baboon
[45]

Baboon
[37]

Baboon
[46]

Baboon
[47]

Baboon
[48]

Baboon [52]

Time in ms 2.5 1.6 1.0825 × 103 925 avg 1.65 × 103 2.456 × 103

seed 0.223152919 0.383265968 0.269633424

seedp 0.635959551 0.617574674 0.356997044

seedk 0.278755113 0.494579228 0.575921297

MSE Original vs. Encrypted

ch1 9485.679642 21709.18221 21718.32024 6.80× 103 2.17× 104 2.18× 104

ch2 7743.157845 21761.82545 21714.44178

ch3 8642.982521 21722.63377 21717.76086

PSNR

ch1 8.360119077 4.764368972 4.762541283 9.8067 4.7607 4.7503 13.08

ch2 9.241622484 4.753850382 4.763316915

ch3 8.764167262 4.761678805 4.762653142

X2 Original 100859.73 261120 2.55× 1010

X2 Encrypted 240.7334 254.85449 258.76398 258 250

Correlation Original

Horizontal Correlation
Coefficient 0.866543103 1 1

Vertical Correlation
Coefficient 0.758730154 1 1

Diagonal Correlation
Coefficient 0.726188678 1 1

Correlation of Encrypted

Horizontal Correlation
Coefficient 0.004979382 5.78× 10−4 −1.48× 10−5 2.00× 10−4 2.50×

10−3
1.90×
10−3

−2.128×
10−3

2.00×
10−3

Vertical Correlation
Coefficient −0.004313788 0.000148297 −5.86× 10−5 −1.00× 10−4 0.0052 0.0074 −1.812×

10−3 0.004

Diagonal Correlation
Coefficient −0.002290213 0.000727736 −0.000299487 0.0027 0.0018 0.0005 −1.473×

10−3 0.008

Entropy of Original

Red Channel 7.752217172 0 0

Green Channel 7.474431586 0 0

Blue Channel 7.706671843 0 0

Symmetry 2024, 16, 593 26 of 46

Table 9. Cont.

CIC3: Baboon CIC3: White CIC3: Black [42]
Baboon [42] White [42] Black [43] Baboon (256, 256) [44]

Baboon
[45]

Baboon
[37]

Baboon
[46]

Baboon
[47]

Baboon
[48]

Baboon [52]

Time in ms 2.5 1.6 1082.5 925avg 1650 2456

Entropy of Encrypted

Red Channel 7.999361961 7.999290305 7.999998056 7.9959 7.9999 7.99928 7.99925 7.99931 7.9993

Green Channel 7.999348141 7.999319074 7.999998152

Blue Channel 7.999293719 7.999278883 7.999998185

Original vs. Encrypted

Channel 0 UACI 31.25569362 50.00645656 50.00223729 33.54939 33.54164 33.53024 33.3373 33.42 33.4354 33.47 33.62068 26.67

Channel 0 NPCR 99.57885742 99.59144592 99.610097 99.59793 99.60442 99.61929 99.6246 0.996 99.6132 99.63 99.666976 99.98

Channel 1 UACI 28.58791576 50.07205739 49.99562481

Channel 1 NPCR 99.62654114 99.59564209 99.608358

Channel 2 UACI 29.98062732 50.02933278 50.00090204

Channel 2 NPCR 99.62844849 99.60479736 99.609502

Encrypted vs. One-pixel Modified Encrypted

CH0 UACI 33.4608639 33.39831782 33.46571685 33.51

CH0 NPCR 99.609375 99.62501526 99.608265 0.9961

CH1 UACI 33.55413998 33.43291339 33.46277882

CH1 NPCR 99.62005615 99.60670471 99.608928

CH2 UACI 33.467678 33.47475388 33.46288022

CH2 NPCR 99.61357117 99.60670471 99.609083

Encrypted vs. Key Modified Encrypted

CH0 UACI 33.46980974 33.55993233 33.46169072

CH0 NPCR 99.60289001 99.62539673 99.608933

CH1 UACI 33.43826593 33.51012286 33.46330268

CH1 NPCR 99.62043762 99.61128235 99.61017

CH2 UACI 33.46980974 33.55993233 33.46304682

CH2 NPCR 99.60289001 99.62539673 99.617289

Symmetry 2024, 16, 593 27 of 46

Table 9. Cont.

CIC3: Baboon CIC3: White CIC3: Black [42]
Baboon [42] White [42] Black [43] Baboon (256, 256) [44]

Baboon
[45]

Baboon
[37]

Baboon
[46]

Baboon
[47]

Baboon
[48]

Baboon [52]

Time in ms 2.5 1.6 1082.5 925avg 1650 2456

BACI Encrypted vs. Pixel Modified Encrypted

CH0 0.267642274 0.267526324 0.267686784

CH1 0.267546125 0.267869938 0.267712745

CH2 0.267424658 0.267902475 0.267707479

BACI Encrypted vs. Key Modified Encrypted

CH0 0.268003697 0.267389723 0.267668858

CH1 0.267900605 0.268049608 0.267694917

CH2 0.267638505 0.267642845 0.267700614

Symmetry 2024, 16, 593 28 of 46

4.2.10. Time Complexity and Average Time

The time complexity of all six algorithms is linear, denoted as O(n), concerning the
number of pixels in the image. For grayscale images, we generated only 2 ∗ r and 2 ∗ c
random numbers. Generating a random number with SBTM or SBTMPi was constant.
Subsequently, each pixel was encrypted according to step 11 of GIC, wherein all the
calculations were performed in constant time. Thus, the algorithm exhibits a linear time
complexity relative to the number of pixels. The average encryption time is of significant
importance, albeit challenging to directly compare with other algorithms due to variations
in hardware, images, and running environments. Nonetheless, it is crucial to emphasize
that the proposed algorithms showcased excellent performance with the utilized hardware.
Notably, encrypting a colored Lenna image of size (512, 512) took a mere 1.26 ms, while
encrypting the considerably larger image Black.png (100 MB) only required 1.0825 seconds.
The decryption results are even more impressive since the decryption algorithm does not
need to calculate the digest, ES, leading to an even faster processing times.

Figure 9 shows an image in the following forms: plain, encrypted, one pixel changed,
key change of 10−15, both pixel and key changes, and decrypted.

Figure 9. Result of MODPI on Peppers.tiff: (a). Plain, (b). Encrypted, (c). Encrypted/one pixel
changed, (d). Encrypted/ key change of 10−15, (e). Encrypted/both pixel and key changes, and
(f). Decrypted

4.2.11. Exploring the Performance and Attributes of Proposed Ciphers

In this section, we explore the attributes claimed for the proposed ciphers, namely fast,
strong, and parallel. The encryption time achieved using the proposed ciphers is remarkably
short compared to the existing literature, as evidenced in Table 7. Our cipher was able to
encrypt the image Lenna in just 1.26 ms, whereas the reported literature ranges from 1.26 ms
to over 1300 ms. Similar outcomes are observed in Tables 8 and 9. Notably, our ciphers
required only 1082.5 ms to encrypt the Black image, which consists of 100 million pixels.
This exceptional speed led us to consider our ciphers to be fast. Assessing the strength of
an encrypted image involves employing various statistical tests. In Sections 4.2.1–4.2.5, we
discuss a comprehensive array of tests conducted on the encrypted images. The results
closely align with the theoretical values for each test, indicating that our ciphers possess
a remarkable strength, thus earning the label of strong. Our implementation prioritized
parallel processing to enhance efficiency. We found no practical limit to the number of
sub-images we could create, which translates to no practical limit to the number of threads
operating on an image. Figure 10 illustrates this, demonstrating a nearly tenfold speedup
when dividing the image into 30 sub-images compared to just one sub-image (one thread on
CIC1). Although utilizing more sub-images is feasible, the overhead of managing threads

Symmetry 2024, 16, 593 29 of 46

becomes significant, especially considering our use of a single CPU with only 14 cores.
For larger images (24 million pixels) or more, we experimented with 100 sub-images, which
utilized 300 threads on CIC3, and we still observed improvements in the encryption time,
as depicted in Figure 8. Therefore, we confidently affirm that the proposed ciphers utilize
parallel execution to improve the encryption time by a good margin.

Figure 10. Speedup: This figure shows that a speedup of nearly 10 is obtained as the number of
threads increases from 1 to [30 in CIC1, 90 in CIC3] to encrypt a 24M-Pixel colorful image. Note that
the number of cores is constant (14 cores).

5. Conclusions

This paper presents a significant contribution to the field of image encryption through
the development of a novel, fast, and strong cryptographic scheme. The proposed colored
image cipher, built upon a state-based modified tent map and cryptographically secure
pseudo-random number generators, addresses several key challenges in image encryp-
tion and security. One of the primary achievements of this work is the introduction of a
parallel implementation approach. By leveraging parallel processing techniques, the en-
cryption process is expedited, enabling the real-time encryption and decryption of colored
images. This advancement is particularly relevant in today’s fast-paced digital environ-
ment, where speed and efficiency are of utmost importance. The paper also introduces
a novel approach to confusion and diffusion, essential components of effective encryp-
tion algorithms. By incorporating state-based modified tent map CPRNGs, the proposed
cipher achieves an enhanced level of cryptographic strength. The synergy between the
CPRNG and the encryption algorithm results in a robust system that withstands various
cryptanalysis techniques.

Furthermore, this research tackles the crucial aspect of random number generation.
The employed cryptographically secure pseudo-random number generator ensures a high
degree of randomness, making the generated keys and masks resilient to prediction and
attacks. This strong foundation contributes to the overall security of the proposed image
cipher. Efficiency in encryption algorithms is another hallmark of this work. The devel-
oped encryption scheme is tailored to address the unique characteristics of colored images,
optimizing both security and computational efficiency. This practicality ensures that the
proposed cipher is not only theoretically robust but also feasible for real-world applica-
tions. Lastly, the cipher exhibits a remarkable sensitivity to key variations and plane image
modifications. This attribute enhances the security of the encrypted images by rendering
unauthorized decryption attempts ineffective. The proposed scheme’s robustness against
unauthorized access is a testament to its practicality in safeguarding sensitive visual infor-

Symmetry 2024, 16, 593 30 of 46

mation. In sum, this paper’s contributions mark a significant step forward in the realm of
image encryption. The combination of a highly parallel implementation, a novel confusion
and diffusion strategy, a strong CPRNG, efficient encryption algorithms for colored im-
ages, and heightened sensitivity to key and plane image modifications collectively form a
comprehensive and effective image encryption scheme. As digital data security becomes
increasingly paramount, the findings presented in this paper offer valuable insights and
methodologies for advancing the field of image encryption and secure data communication.

Future work should encompass an exploration of adaptive encryption algorithms,
an investigation of hardware implementation, an integration with cloud services, a con-
sideration of post-quantum security, and user experience enhancement. Additionally,
potential extensions to multi-modal encryption, the exploration of advanced parallelization
techniques, contributions to cryptographic standardization efforts, and real-world deploy-
ment scenarios are vital directions to further strengthen and apply the proposed image
cipher’s contributions.

Author Contributions: Conceptualization: A.A.-D. and Y.S.; methodology: A.A.-D., Y.S., S.F. and
S.A.-E.; formal analysis: A.A.-D. and Y.S.; investigation: S.F. and S.A.-E.; writing—original draft
preparation: A.A.-D. and Y.S.; writing—review and editing: S.F. and S.A.-E.; supervision: A.A.-D.
and Y.S.; funding acquisition: S.F. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Artificial Intelligence Research Center (AIRC), College of
Engineering and Information Technology, Ajman University, Ajman, UAE.

Data Availability Statement: Links to sources of the images used in our experimentation: 1.
Created Images (White, Black and Gray Lenna): https://drive.google.com/drive/folders/18o978
6iPDNmijDx4Ze6dCV24mWqRChVj?usp=drive_link; 2. Colored Lenna: https://en.wikipedia.org/
wiki/Lenna; 3. Peppers and Baboon: https://sipi.usc.edu/database/; 4. Images from unsplash.com:
https://unsplash.com/photos/woman-checking-labels-nHRXNv2qeDE, https://unsplash.com/
photos/grayscale-photo-of-short-coated-dog-M7l0CS4yBsY, https://unsplash.com/photos/white-
and-black-flower-in-white-background-ybDvbCvh9Ro, (Sources were accessed on 2 May 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. GIC Detailed Implementation

GIC introduces a groundbreaking strategy into the confusion phase, optimizing paral-
lelism to its fullest potential. Additionally, it incorporates another innovative technique in
the diffusion phase, enhancing efficiency and sensitivity to variations. A detailed descrip-
tion of this algorithm is provided below:

1. Load grayscale image.
2. Get image dimensions: r and c.
3. Allocate matrices and arrays: one matrix, I, size r ∗ c, to store the original image,

another matrix, E, size r ∗ c, to store the encrypted image, two arrays, Roll1 and Roll2,
of lengths r and c of integers to store shift values, and finally, two arrays, Di f f 1
and Di f f 2, of lengths r and c of doubles to store values in order to assist in the
diffusion process.

4. Initialize variables: GIC uses six keys (uk1 . . . uk6), a user-provided seed, US, of the
double type, and two integer values, R and C, to divide the image, all read from the
user; a fixed initial seed, IS, holds the fraction part of PI.

5. Extract the pixel values into matrix I.
6. Divide the image: generate indices for R ∗ C sub-matrices. For example, if R = 2,

C = 2, r = 6, and c = 7, the generated indices of the four sub-matrices would be as
follows: sub1 = [0, 0, 3, 3], sub2 = [0, 3, 3, 7], sub3 = [3, 0, 6, 3], and sub4 = [3, 3, 6, 7].
Notice that, if r does not divide R or if c does not divide C without a remainder,
the extra pixels are added to the right and bottom sub-matrices.

7. Generate encryption keys: use the user-provided keys: uk1 . . . uk6 and US to generate
two encryption keys, ek1 and ek2, as follows:

https://drive.google.com/drive/folders/18o9786iPDNmijDx4Ze6dCV24mWqRChVj?usp=drive_link
https://drive.google.com/drive/folders/18o9786iPDNmijDx4Ze6dCV24mWqRChVj?usp=drive_link
https://en.wikipedia.org/wiki/Lenna
https://en.wikipedia.org/wiki/Lenna
https://sipi.usc.edu/database/
https://unsplash.com/photos/woman-checking-labels-nHRXNv2qeDE
https://unsplash.com/photos/grayscale-photo-of-short-coated-dog-M7l0CS4yBsY
https://unsplash.com/photos/grayscale-photo-of-short-coated-dog-M7l0CS4yBsY
https://unsplash.com/photos/white-and-black-flower-in-white-background-ybDvbCvh9Ro
https://unsplash.com/photos/white-and-black-flower-in-white-background-ybDvbCvh9Ro

Symmetry 2024, 16, 593 31 of 46

(a) Initialize an SBTM object with (seed = IS/2 + US/2) as a seed and uk1 for the
control variable.

(b) Generate n random numbers; a value of 97 is used for n. Note that SBTM is
extremely chaotic.

(c) Set the control variable of SBTM to uk2; this changes the control variable but
keeps the state of the STBM object intact.

(d) Repeat steps b and c for uk3 . . . uk6. At this point, the internal state of SBTM is
influenced by all six user keys.

(e) Generate ek1 and ek2: use the next double random number, n1, and the 97th
random number n97 to generate ek1 = n1 and ek2 = n97.

8. Generate Di f f 1 and Di f f 2: create two threads, one to generate random double
values for Di f f 1 and the other to generate random values for Di f f 2. The SBTM
used is initialized with seed = IS/2 + US/2, and the control variable is ek1 and
ek2, respectively.

9. Generate the digest, ES: the digest should be sensitive to any change in the original
image. i.e., a change of one to any pixel of the image should produce a significantly
different ES. The extremely chaotic and random behavior of SBTM is used to produce a
strong and efficient digest as follows: create R ∗C threads, one for each sub-image/sub-
matrix; each thread returns Seedk as follows:

Seedk ← 0
i← subk[0]
while i < subk [2] do

j← subk[1]
while j < subk [3] do

Seedk ← Seedk + (I[i][j] + Di f f 2[j]) ∗ (Di f f 1[i] + Di f f 2[j])
Seedk ← Fraction part of Seedk
j← j + 1

end while
i← i + 1

end while
return Seedk

at this point, we have k sub-seeds Seedk. Calculate ES as follows:

ES←
k

∑
1

Seedk

ES← ES− (int)ES

seed← seed/2 + ES/2

ES is a very random digest influenced by all user variables and all pixel values of the
image, I. Save ES to file. At this point, two strong keys and a strong seed are created,
and the encryption process can commence.

10. Generate Roll1 and Roll2: create two threads, one to generate random integer values
for Roll1 and the other to generate random integer values for Roll2. The SBTM
used is initialized with seed, and the control variable is ek1 and ek2, respectively.
Note that Roll1 and Roll2 hold unique random values in the ranges of [0, r] and
[0, c], respectively.

11. Encrypt the image: create R ∗ C threads, one for each sub− image/sub−matrix. Each
thread will do the following, assuming it will work on subk:

i← subk[0]
while i < subk [2] do

j← subk[1]
while j < subk [3] do

Simulate the shifting of pixels as follows:

Symmetry 2024, 16, 593 32 of 46

Calculate new row value as row← (i + Roll2[j])%r
Calculate new column value as col ← (j + Roll1[row])%c

(This will give us the coordinates of a I[i, j] after being shifted/rolled horizontally
and vertically without actually moving the pixel value to this new location. This
gives a huge performance boost and allows for the parallel encryption of the image.)

x ← Di f f 1[row] ∗ 256
y← Di f f 2[col] ∗ 256
Encrypt pixel

E[i, j] as: E[i, j]← I[row, col]
⊕
((Roll1[i]

⊕
Roll2[j])%256))

⊕
x
⊕

y
(This step is another performance improvement. Usually, a random number is
generated and XORed with I[row, col]. Here, however, the random integers used
to confuse the image are also used to encrypt it. An XOR and a modulus replace a
function call.)

j← j + 1
end while
i← i + 1

end while
It is very important to understand that all threads are working on separate regions of
the shared matrix, E, and hence, no locking or synchronization is needed.

12. Create an image, encImage, from E.
13. Save encImage to file.
14. Save the six user keys uk1 through 6, and the user seed US, or share them with people

who will have access to decrypt the image.

Appendix B. CIC1 Detailed Implementation

This version was developed to encrypt colored images. It uses one thread to encrypt
all three channels of a sub-image. It follows the same procedure as GIC. The differences are
highlighted below:

1. Load colored image.
2. Get image dimensions: r and c.
3. Allocate matrices and arrays: three matrices, IR, IG, and IB, size r ∗ c, to store

the original image, another three matrices, ER, EG, and EB, size r ∗ c, to store the
encrypted image, three pairs of arrays, Roll1 and Roll2 of length r and c of integers to
store shift values (Roll1r and Roll2r are used for the red channel, Roll1g and Roll2g
for the green channel, and Roll1b and Roll2b for the blue one), and three pairs of
arrays, Di f f 1 and Di f f 2 of length r and c of doubles to store values to assist in
the diffusion process (Di f f 1r and Di f f 2r are used for the red channel, Di f f 1g and
Di f f 2g for the green channel, and Di f f 1b and Di f f 2b for the blue one).

4. Initialize variables: same as step 4 in GIC.
5. Extract pixel values into matrices IR, IG, and IB
6. Divide the image: same as 6 in GIC.
7. Generate encryption keys: use the user-provided keys and seed, uk1 . . . uk6, and US

to generate six encryption keys ek1 through ek6 as follows:
a. Initialize an SBTM object with (seed = IS/2 + US/2) as a seed and uk1 for the
control variable
b. Generate n random numbers; a value of 97 is used for n. (Note that SBTM is
extremely chaotic.)
c. Set the control variable of SBTM to uk2; (this changes the control variable but
keeps the state of the STBM object intact.)
d. Repeat b and c for uk3 . . . uk6. At this point, the internal state of SBTM is
influenced by all six user keys.
e. Generate ek1 through ek6:
j← 1
while j <= 6 do

Symmetry 2024, 16, 593 33 of 46

ekj← next random number
generate 97 random numbers (note that 97 is a prime number. Any arbitrary

number of steps can be used as SBTM produces drastically different next values.)
j← j + 1

end while
8. Generate six Diff arrays: create six threads; each one generates random double values for

one of the Diff arrays. The SBTM objects used are initialized with seed = IS/2+US/2
and one of the six keys, ek1 . . . ek6, for its control variable.

9. Generate the digest, ES: create R ∗ C threads to calculate k sub-seeds, one for each
sub-image. Then, calculate ES as follows:

Seedk ← 0
i← subk[0]
while i < subk [2] do

j← subk[1]
while j < subk [3] do

Seedk ← Seedk + (IR[i][j] + Di f f 2r[j]) ∗ (Di f f 1r[i] + Di f f 2r[j])
Seedk ← Fraction part of Seedk
Seedk ← Seedk + (IG[i][j] + Di f f 2g[j]) ∗ (Di f f 1g[i] + Di f f 2g[j])
Seedk ← Fraction part of Seedk
Seedk ← Seedk + (IB[i][j] + Di f f 2b[j]) ∗ (Di f f 1b[i] + Di f f 2b[j])
Seedk ← Fraction part of Seedk
j← j + 1

end while
i← i + 1

end while
return Seedk
Follow the rest of step 9 in GIC.

ES is a very random digest influenced by all user variables and all pixel values of
image I. Save ES to file. At this point, six strong keys and a strong seed are created,
and the encryption process can commence.

10. Generate six roll arrays: create six threads; each one generates random integer values
for one of the Roll arrays. The SBTM objects used are initialized with seed and one of
the six keys, ek1 . . . ek6, for its control variable. Note that Roll1 and Roll2 arrays hold
unique random values in the ranges of [0, r] and [0, c], respectively.

11. Encrypt the image: create R ∗ C threads, one for each sub-image. Each thread will do
the following, assuming it will work on subk:

i← subk[0]
while i < subk [2] do

j← subk[1]
while j < subk [3] do

Simulate the shifting of pixels as follows:
For the red channel:
1. Calculate the new row value as follows: row← (i + Roll2r[j])%r
2. Calculate the new column value as follows: col ← (j + Roll1r[row])%c
3. x ← Di f f 1r[row] ∗ 256
4. y← Di f f 2r[col] ∗ 256
5. Encrypt pixel ER[i, j] as follows:

E[i, j]← IR[row, col]
⊕
((Roll1r[i]

⊕
Roll2r[j])%256))

⊕
x
⊕

y
6. Repeat 1, 2, 3, 4, and 5 using IG, EG, Roll1g, Roll2g, Di f f 1g, and Di f f 2g.
7. Repeat 1, 2, 3, 4, and 5 using IB, EB, Roll1b, Roll2b, Di f f 1b, and Di f f 2b.
j← j + 1

end while
i← i + 1

end while

Symmetry 2024, 16, 593 34 of 46

(Note that this thread encrypted all the pixels from the three channels of this sub-
image)

12. Create an image, encImage, from matrices ER, EG, and EB.
13. Save encImage to file.
14. Save/share user keys and US.

Appendix C. CIC3 Detailed Implementation

This version is a very similar to CIC1; however, in step 11, a thread working on subk
creates three threads, one to encrypt the red channel of this sub-image and the other two to
encrypt the green and blue channels. So, for example, if R = 2 and C = 2, four sub-images
will be created. While CIC1 will create only four threads to do the encryption step (11),
CIC3 will create 12 threads to do the same step.

Appendix D. Decryption Detailed Implementation

Appendix D.1. GICD

The description of the decryption algorithm is given below:

1. Load ES from file, and then load the encrypted image.
2. Get image dimensions: r and c.
3. Allocate matrices and arrays: one matrix, E, size r ∗ c, to store the encrypted image,

another matrix, D, size r ∗ c, to store the decrypted image, and two arrays, Roll1 and
Roll2, of lengths r and c of integers to store shift values. Finally, two arrays, Di f f 1
and Di f f 2, of lengths r and c of doubles to store values are used to assist in the
diffusion process.

4. Initialize variables: GICD uses six keys (uk1 . . . uk6), the user seed, US, digest ES of
the double type generated in the encryption part, and two integer values, R and C, to
divide the image, all read from the user. Providing different values for R and C does
not affect the process.

5. Extract pixel values into matrix E.
6. Divide the image: generate indices for the R ∗ C submatrices. Same as step 6 in GIC.
7. Generate encryption keys: use the user-provided keys uk1 . . . uk6, and US to generate

two encryption keys, ek1 and ek2, as in step 7 of GIC.
8. Generate Diff arrays: same as step 8 in GIC.
9. Generate Roll1 and Roll2: same as step 10 in GIC; use seed = ES/2 + seed/2 as a seed

for SBTM.
10. Decrypt the image: create R ∗ C threads, one for each sub-image. Each thread will do

the following, assuming it will work on subk:
i← subk[0]
while i < subk [2] do

j← subk[1]
while j < subk [3] do

Simulate the shifting of pixels as follows:
Calculate new row value as follows: row← (i + Roll2[j])%r
Calculate new column value as follows: col ← (j + Roll1[row])%c
x ← Di f f 1[row] ∗ 256
y← Di f f 2[col] ∗ 256
Decrypt pixel

D[row, col] as follows: D[row, col]← E[i, j]
⊕

y
⊕

x((Roll1[i]
⊕

Roll2[j])%256))
j← j + 1

end while
i← i + 1

end while
11. Create an image, DecImage, from matrix D.

Symmetry 2024, 16, 593 35 of 46

12. Save DecImage to disk. A lossless format such as PNG is used for the ability to
compare it with the original image.

Appendix D.2. CIC1D

1. Load ES from file, then load the encrypted color image.
2. Get image dimensions: r and c.
3. Allocate matrices and arrays: three matrices, DR, DG, and DB, size r ∗ c, to store

the decrypted image, another three matrices, ER, EG, and EB, size r ∗ c, to store the
encrypted image, three pairs of arrays, Roll1 and Roll2 of lengths r and c of integers
to store shift values (Roll1r and Roll2r are used for the red channel, Roll1g and Roll2g
for the green channel, and Roll1b and Roll2b for the blue one), and three pairs of
arrays, Di f f 1 and Di f f 2 of lengths r and c of doubles to store values to assist in
the diffusion process (Di f f 1r and Di f f 2r are used for the red channel, Di f f 1g and
Di f f 2g for the green channel, and Di f f 1b and Di f f 2b for the blue one).

4. Initialize variables: same as step 4 in GICD.
5. Extract pixel values into matrices ER, EG, and EB
6. Divide the image: same as in step 6 in GICD. Providing different values for R and C

does not affect the process.
7. Generate encryption keys: use the user-provided keys and seed, uk1 . . . uk6, and US

to generate six encryption keys, ek1 through ek6, as in step 7 of CIC1.
8. Generate six Diff arrays: same as step 8 in CIC1. use seed = IS/2 + US/2 to

initialize SBTM.
9. Generate six Roll arrays: create six threads; each one generates random integer values for

one of the Roll arrays. The SBTM objects used are initialized with seed = ES/2+ seed/2
and one of the six keys, ek1 . . . ek6, for its control variable.

10. Decrypt the image: create R ∗ C threads, one for each sub-image. Each thread will do
the following, assuming it will work on subk:

i← subk[0]
while i < subk [2] do

j← subk[1]
while j < subk [3] do

Simulate the shifting of pixels as follows:
For the red channel:
1. Calculate the new row value as follows: row← (i + Roll2r[j])%r
2. Calculate the new column value as follows: col ← (j + Roll1r[row])%c
3. x ← Di f f 1r[row] ∗ 256
4. y← Di f f 2r[col] ∗ 256
5. Decrypt pixel DR[row, col] as follows:

DR[row, col]← ER[i, j]
⊕
((Roll1r[i]

⊕
Roll2r[j])%256))

⊕
x
⊕

y
6. Repeat 1, 2, 3, 4, and 5 using DG, EG, Roll1g, Roll2g, Di f f 1g, and Di f f 2g.
7. Repeat 1, 2, 3, 4, and 5 using DB, EB, Roll1b, Roll2b, Di f f 1b, and Di f f 2b.
j← j + 1

end while
i← i + 1

end while
(Note that this thread encrypted all the pixels from the three channels of this sub-
image)

11. Create an image, decImage, from matrices DR, DG, and DB.
12. Save decImage to disk. A lossless format such as PNG is used for the ability to compare

it with the original image.

Symmetry 2024, 16, 593 36 of 46

Appendix D.3. CIC3D

This version is very similar to CIC1D; however, in step 10, a thread working on subk
creates three threads, one to decrypt the red channel of this sub-image and the other two to
decrypt the green and blue channels. So, for example, if R = 2 and C = 2, four sub-images
will be created. While CIC1 will create only four threads to do the decryption step (10),
CIC3D will create 12 threads to do the same step. GICPiD, CIC1PiD, and CIC3PiD use the
proposed CPRNG, namely SBTMPi.

Appendix D.4. Example

Figure A1 demonstrates how GIC works in a simple example. In this figure, an
8 * 8 image, I, is divided into four sub-images (Sub0 to Sub3). First, the ES calculation is
explained: Four threads are created. Assuming that Thread0 will work on Sub0, it will work
on Seed0, initially zero. Considering the pixel at I[0,0], Seed0 = Seed0 + (I[0, 0] + Di f f 2[0]) ∗
(Di f f 1[0] + Di f f 2[0]). In numbers, Seed0 = Seed0+(152+ 0.431) ∗ (0.113+ 0.431) = 82.922.
The fraction part is kept, so Seed0 = 0.922. Then, the pixel at I[0,1] is considered, and
so on. Thread1 will work on sub1, starting at I[0,4]. Thread2 will work on sub2, starting
at I[4,0]. Finally, Thread3 will work on sub3, starting at I[4,4]. Secondly, the encryption
process follows. The encryption process is very simple, and it can be represented in the
following steps:

row← (i + Roll2[j])%r
col ← (j + Roll1[row])%c
x ← Di f f 1[row] ∗ 256
y← Di f f 2[col] ∗ 256
E[i, j]← I[row, col]

⊕
((Roll1[i]

⊕
Roll2[j])%256))

⊕
x
⊕

y

E is a matrix that holds the encrypted image. Four threads are created. Each thread
works on a different sub-image. To show how E[0, 0] is encrypted, we need to calculate a
new row and column as row = (0+ 5)%8 = 5 and col = (0, 1)%8 = 1. This means I[5,1] will be
encrypted and stored in E[0,0]. We then calculate x and y as follows: x = Di f f 1[5] ∗ 256 =
0.918 ∗ 256 = 235 and y = Di f f 2[1] ∗ 256 = 0.747 ∗ 256 = 191. Next, we encrypt E[0,0]
as follows: E[0, 0] = I[5, 1]

⊕
((2

⊕
5)%256))

⊕
234

⊕
191 = 80.

Figure A1. Simplified example of 8 * 8 image along with created arrays of random values.

Symmetry 2024, 16, 593 37 of 46

Appendix E. Sensitivity Results

Table A1. Sensitivity to change.

Lenna.png Baboon.tiff Bernard-hermant-nHRXNv2qeDE-unsplash.jpg https White.png Black.png Peppers.tiff Jocelyn–Morales Danny Lennag.png

SBTM-Based Cipher

Original Image vs. Encrypted Image

Channel 0 UACI 27.58842019 31.25569362 34.21017768 50.00645656 50.00223729 33.84835337 49.00735754 34.09528189 29.23137141
Channel 0 NPCR 99.62539673 99.57885742 99.6115375 99.59144592 99.610097 99.61853027 99.61275572 99.60907154 9.96× 101

Channel 1 UACI 30.6128558 28.58791576 33.77552621 50.07205739 49.99562481 33.87297088
Channel 1 NPCR 99.6181488 99.62654114 99.60817083 99.59564209 99.608358 99.60289001
Channel 2 UACI 33.04622276 29.98062732 32.76111791 50.02933278 50.00090204 29.00593776
Channel 2 NPCR 99.62730408 99.62844849 99.61207917 99.60479736 99.609502 99.60365295

Encrypted Image vs. One-pixel Modified Encrypted Image

CH0 UACI 33.45865287 33.4608639 33.46644977 33.39831782 33.46571685 33.3822213 33.46162264 33.47240301 33.44539717
CH0 NPCR 99.63378906 99.609375 99.60886667 99.62501526 99.608265 99.60517883 9.96× 101 9.96× 101 9.96× 101

CH1 UACI 33.44524907 33.55413998 33.46451575 33.43291339 33.46277882 33.45076617
CH1 NPCR 99.5967865 99.62005615 99.60915833 99.60670471 99.608928 99.60136414
CH2 UACI 33.47020018 33.467678 33.4594643 33.47475388 33.46288022 33.45834321
CH2 NPCR 99.59068298 99.61357117 99.60969167 99.60670471 99.609083 99.6131897

Encrypted Image vs. Encrypted Image with 1 bit Modified Key

CH0 UACI 33.51181329 33.46980974 33.47242631 33.55993233 33.46169072 33.42832079 3.35× 101 3.35× 101 3.34× 101

CH0 NPCR 99.61051941 99.60289001 99.61035833 99.62539673 99.608933 99.58992004 99.61118259 99.60820217 99.61013794
CH1 UACI 33.50390266 33.43826593 33.46260324 33.51012286 33.46330268 33.41574575
CH1 NPCR 99.61357117 99.62043762 99.607475 99.61128235 99.61017 99.60479736
CH2 UACI 33.51181329 33.46980974 33.47242631 33.55993233 33.46304682 33.42832079
CH2 NPCR 99.61051941 99.60289001 99.61035833 99.62539673 99.617289 99.58992004

Original Image vs. Encrypted Image

Channel 0 UACI 27.65708175 33.80914127 34.20732696 49.99485988 49.85856898 33.85631486 48.9874037 34.09150993 29.2967643
Channel 0 NPCR 99.62501526 99.59335327 99.6116875 99.62654114 99.60250854 99.60594177 99.61094057 99.60797253 99.61013794
Channel 1 UACI 30.59006036 33.95360909 33.77049199 50.03437416 49.97832654 34.00023516
Channel 1 NPCR 99.59716797 99.62272644 99.60960417 99.59869385 99.61585999 99.60365295
Channel 2 UACI 33.04504694 29.0490603 32.76702029 49.97035905 49.99389948 29.0110719
Channel 2 NPCR 99.6055603 99.62615967 99.6105125 99.61166382 99.60594177 99.6257782

Symmetry 2024, 16, 593 38 of 46

Table A1. Cont.

Lenna.png Baboon.tiff Bernard-hermant-nHRXNv2qeDE-unsplash.jpg https White.png Black.png Peppers.tiff Jocelyn–Morales Danny Lennag.png

SBTMPi-Based Cipher

Encrypted Image vs. One-pixel Modified Encrypted Image

CH0 UACI 33.44363942 33.44716689 33.46292327 33.44132666 33.42157401 33.47747504 33.46663227 33.45831224 33.48127926
CH0 NPCR 99.61700439 99.62310791 99.60818333 99.60136414 99.62882996 99.61395264 99.61052913 99.60846462 99.59793091
CH1 UACI 33.45829384 33.44710107 33.46661425 33.47128775 33.50682576 33.49143533
CH1 NPCR 99.6131897 99.59602356 99.60992083 99.61204529 99.62272644 99.5967865
CH2 UACI 33.43248405 33.42796924 33.45198296 33.47009547 33.41540318 33.45033683
CH2 NPCR 99.60021973 99.62730408 99.60812083 99.5967865 99.61624146 99.59907532

Encrypted Image vs. Encrypted Image with 1 bit Modified Key

CH0 UACI 33.57714485 33.44705918 33.46863444 33.4321325 33.4786718 33.39455997 33.47517681 33.45534616 33.56725506
CH0 NPCR 99.62501526 99.60479736 99.60951667 99.60632324 99.61433411 99.61433411 99.60845986 99.60848103 99.5967865

CH1 UACI 33.48337211 33.44716988 33.46864886 33.46274881 33.47088982 33.55970794
CH1 NPCR 99.61967468 99.60021973 99.6104 99.60365295 99.61051941 99.62844849
CH2 UACI 33.57714485 33.44705918 33.46863444 33.4321325 33.4786718 33.39455997
CH2 NPCR 99.62501526 99.60479736 99.60951667 99.60632324 99.61433411 99.61433411

BACI: Encrypted Image vs. One Pixel Modified Encrypted Image

CH0 0.267672155 0.267825962 0.267701983 0.268154275 0.266954088 0.267924489 0.267713061 0.26774138 0.268127337
CH1 0.266889922 0.267832658 0.267613922 0.267658944 0.267743993 0.267803635
CH2 0.267346784 0.267305749 0.267742205 0.267814098 0.267509664 0.267944045

BACI: Encrypted Image vs. Encrypted Image with 1 bit Modified Key

CH0 0.267588754 0.268173128 0.267719424 0.267722194 0.267755487 0.268633796 0.26767393 0.267654332 0.268329708
CH1 0.268129267 0.267638943 0.267753272 0.267616856 0.267014916 0.26709827
CH2 0.267633281 0.267697571 0.267743322 0.268080133 0.267898144 0.267849135

Symmetry 2024, 16, 593 39 of 46

Appendix F. Ciphers Performance vs. Number of Sub-Images

Table A2. SBTM Results.

SBTM

Bernard-hermant-nHRXNv2qeDE-unsplash.jpg Peppers.tiff

cic1 cic3 cic1 cic3

h,v sub avg time ms h,v sub avg time ms h,v sub avg time ms h,v sub avg time ms

[1, 1] 2553.4 [1, 1] 786 [1, 1] 14.1 [1, 1] 6.46

[1, 2] 1009 [1, 2] 434 [1, 2] 5.5 [1, 2] 4.08

[1, 3] 688.3 [1, 3] 397.1 [1, 3] 4.6 [1, 3] 3.44

[1, 4] 543.1 [1, 4] 344.7 [1, 4] 3.2 [1, 4] 3.14

[1, 5] 444.4 [1, 5] 316 [1, 5] 2.5 [1, 5] 3.46

[1, 6] 379.1 [1, 6] 292.7 [1, 6] 3.1 [1, 6] 3.12

[1, 7] 418.1 [1, 7] 286.6 [1, 7] 4.7 [1, 7] 3.22

[1, 8] 397.5 [1, 8] 286.7 [1, 8] 3.2 [1, 8] 3.48

[1, 9] 366.6 [1, 9] 292.2 [1, 9] 3.1 [1, 9] 3.42

[1, 10] 347.2 [1, 10] 289.3 [1, 10] 3.1 [1, 10] 3.84

[2, 1] 981 [2, 1] 434.2 [2, 1] 4.8 [2, 1] 3.14

[2, 2] 523.4 [2, 2] 351.1 [2, 2] 3.1 [2, 2] 3.14

[2, 3] 378.4 [2, 3] 290.7 [2, 3] 3.1 [2, 3] 2.9

[2, 4] 388.5 [2, 4] 283.6 [2, 4] 3.2 [2, 4] 3.14

[2, 5] 366.2 [2, 5] 288.7 [2, 5] 1.5 [2, 5] 3.76

[2, 6] 324.1 [2, 6] 275.4 [2, 6] 3.2 [2, 6] 3.84

[2, 7] 299.3 [2, 7] 265.8 [2, 7] 3.1 [2, 7] 4.4

[2, 8] 288.6 [2, 8] 271.8 [2, 8] 2 [2, 8] 4.86

[2, 9] 272.2 [2, 9] 266 [2, 9] 3.2 [2, 9] 5

[2, 10] 261.6 [2, 10] 262.6 [2, 10] 3.1 [2, 10] 5.74

[3, 1] 679.2 [3, 1] 391.5 [3, 1] 3.1 [3, 1] 2.9

[3, 2] 379.7 [3, 2] 290.8 [3, 2] 3.2 [3, 2] 2.76

[3, 3] 365.4 [3, 3] 291.1 [3, 3] 4.7 [3, 3] 3.52

[3, 4] 331.7 [3, 4] 274.5 [3, 4] 3.1 [3, 4] 3.76

[3, 5] 309.6 [3, 5] 266.1 [3, 5] 1.6 [3, 5] 4.4

[3, 6] 270.6 [3, 6] 262.8 [3, 6] 4.7 [3, 6] 5.6

[3, 7] 271.3 [3, 7] 261.7 [3, 7] 1.6 [3, 7] 5.76

[3, 8] 274.9 [3, 8] 260.7 [3, 8] 3.1 [3, 8] 6.38

[3, 9] 287.9 [3, 9] 258.1 [3, 9] 3.1 [3, 9] 7.06

[3, 10] 280.2 [3, 10] 262.9 [3, 10] 4.8 [3, 10] 7.94

[4, 1] 524.8 [4, 1] 343.1 [4, 1] 1.5 [4, 1] 2.82

[4, 2] 386.7 [4, 2] 283.3 [4, 2] 3.1 [4, 2] 3.14

[4, 3] 323.5 [4, 3] 273.3 [4, 3] 3.7 [4, 3] 3.84

[4, 4] 288.8 [4, 4] 267.3 [4, 4] 1.6 [4, 4] 5.14

[4, 5] 258.3 [4, 5] 261.3 [4, 5] 3.2 [4, 5] 5.28

Symmetry 2024, 16, 593 40 of 46

Table A2. Cont.

SBTM

Bernard-hermant-nHRXNv2qeDE-unsplash.jpg Peppers.tiff

cic1 cic3 cic1 cic3

h,v sub avg time ms h,v sub avg time ms h,v sub avg time ms h,v sub avg time ms

[4, 6] 274.3 [4, 6] 262.7 [4, 6] 3.1 [4, 6] 6.58

[4, 7] 281.6 [4, 7] 261.2 [4, 7] 3.2 [4, 7] 7.34

[4, 8] 280.5 [4, 8] 256.8 [4, 8] 3.1 [4, 8] 8.22

[4, 9] 271.2 [4, 9] 256.5 [4, 9] 3.1 [4, 9] 9.18

[4, 10] 263 [4, 10] 254.9 [4, 10] 4.7 [4, 10] 10.14

[5, 1] 436.7 [5, 1] 316.3 [5, 1] 1.6 [5, 1] 2.5

[5, 2] 357.1 [5, 2] 286.1 [5, 2] 3.1 [5, 2] 3.76

[5, 3] 295.1 [5, 3] 267.4 [5, 3] 1.6 [5, 3] 4.52

[5, 4] 261.9 [5, 4] 261 [5, 4] 3.2 [5, 4] 5.64

[5, 5] 280 [5, 5] 257.5 [5, 5] 3.1 [5, 5] 6.68

[5, 6] 280.3 [5, 6] 257.2 [5, 6] 3.1 [5, 6] 7.92

[5, 7] 276.9 [5, 7] 257.5 [5, 7] 3.2 [5, 7] 8.88

[5, 8] 263.3 [5, 8] 256.8 [5, 8] 3.1 [5, 8] 9.8

[5, 9] 266.1 [5, 9] 253.2 [5, 9] 3.1 [5, 9] 11.04

[5, 10] 266.3 [5, 10] 252 [5, 10] 5.2 [5, 10] 12.04

[6, 1] 379.8 [6, 1] 289.5 [6, 1] 1.6 [6, 1] 3.14

[6, 2] 318.8 [6, 2] 270 [6, 2] 3.1 [6, 2] 3.86

[6, 3] 274.5 [6, 3] 263.7 [6, 3] 1.6 [6, 3] 5.02

[6, 4] 276.7 [6, 4] 259.6 [6, 4] 3.1 [6, 4] 6.68

[6, 5] 285.8 [6, 5] 256.6 [6, 5] 3.2 [6, 5] 7.52

[6, 6] 273.2 [6, 6] 251.9 [6, 6] 3.1 [6, 6] 9.2

[6, 7] 264 [6, 7] 250.2 [6, 7] 3.2 [6, 7] 10.42

[6, 8] 268.2 [6, 8] 250.3 [6, 8] 4.6 [6, 8] 11.78

[6, 9] 267.7 [6, 9] 250 [6, 9] 4.8 [6, 9] 12.92

[6, 10] 275.6 [6, 10] 252.6 [6, 10] 4.7 [6, 10] 14.52

[7, 1] 404.3 [7, 1] 283.4 [7, 1] 1.5 [7, 1] 2.92

[7, 2] 302.5 [7, 2] 262.9 [7, 2] 3.1 [7, 2] 4.38

[7, 3] 273.3 [7, 3] 258.1 [7, 3] 1.6 [7, 3] 5.76

[7, 4] 289.5 [7, 4] 271.1 [7, 4] 3.2 [7, 4] 7.22

[7, 5] 276.7 [7, 5] 266.2 [7, 5] 3.1 [7, 5] 8.86

[7, 6] 263.2 [7, 6] 250.4 [7, 6] 4.2 [7, 6] 10.42

[7, 7] 267.9 [7, 7] 251.8 [7, 7] 4.7 [7, 7] 12

[7, 8] 266.2 [7, 8] 250.2 [7, 8] 4 [7, 8] 13.32

[7, 9] 263.2 [7, 9] 248.9 [7, 9] 3.8 [7, 9] 15.12

[7, 10] 263.3 [7, 10] 249.8 [7, 10] 4.7 [7, 10] 16.78

[8, 1] 384.6 [8, 1] 279.6 [8, 1] 3.2 [8, 1] 3.12

Symmetry 2024, 16, 593 41 of 46

Table A2. Cont.

SBTM

Bernard-hermant-nHRXNv2qeDE-unsplash.jpg Peppers.tiff

cic1 cic3 cic1 cic3

h,v sub avg time ms h,v sub avg time ms h,v sub avg time ms h,v sub avg time ms

[8, 2] 287.9 [8, 2] 266.4 [8, 2] 1.5 [8, 2] 4.48

[8, 3] 278.5 [8, 3] 258.2 [8, 3] 3.1 [8, 3] 6.58

[8, 4] 284.4 [8, 4] 253.4 [8, 4] 3.2 [8, 4] 8.24

[8, 5] 264.6 [8, 5] 249.5 [8, 5] 3.1 [8, 5] 9.82

[8, 6] 267.1 [8, 6] 247.5 [8, 6] 3.2 [8, 6] 11.68

[8, 7] 265 [8, 7] 249.4 [8, 7] 4.7 [8, 7] 13.58

[8, 8] 261.2 [8, 8] 247.6 [8, 8] 4.7 [8, 8] 15.22

[8, 9] 261.4 [8, 9] 250 [8, 9] 4.9 [8, 9] 17.12

[8, 10] 257.3 [8, 10] 252.6 [8, 10] 4.9 [8, 10] 18.98

[9, 1] 364.6 [9, 1] 280.5 [9, 1] 3.1 [9, 1] 3.46

[9, 2] 273.7 [9, 2] 257.6 [9, 2] 2 [9, 2] 5.04

[9, 3] 285.4 [9, 3] 253.8 [9, 3] 2.7 [9, 3] 6.94

[9, 4] 270.3 [9, 4] 253.4 [9, 4] 4.7 [9, 4] 9.26

[9, 5] 263.4 [9, 5] 249 [9, 5] 3.2 [9, 5] 11.06

[9, 6] 264.7 [9, 6] 247.1 [9, 6] 4.7 [9, 6] 12.94

[9, 7] 261.5 [9, 7] 247 [9, 7] 3.1 [9, 7] 14.9

[9, 8] 260 [9, 8] 250.2 [9, 8] 6.3 [9, 8] 17.1

[9, 9] 256.8 [9, 9] 246.7 [9, 9] 6.3 [9, 9] 19.2

[9, 10] 263.1 [9, 10] 248.5 [9, 10] 4.7 [9, 10] 21.16

[10, 1] 343.8 [10, 1] 277.5 [10, 1] 3.1 [10, 1] 3.22

[10, 2] 268.2 [10, 2] 261.5 [10, 2] 1.6 [10, 2] 5.66

[10, 3] 285.2 [10, 3] 258.4 [10, 3] 3.5 [10, 3] 7.62

[10, 4] 273.6 [10, 4] 257.6 [10, 4] 3.1 [10, 4] 10.04

[10, 5] 275.4 [10, 5] 247.4 [10, 5] 4.8 [10, 5] 12.02

[10, 6] 269.9 [10, 6] 248.8 [10, 6] 3.1 [10, 6] 14.6

[10, 7] 269.8 [10, 7] 246.9 [10, 7] 6.3 [10, 7] 16.58

[10, 8] 259.7 [10, 8] 246.7 [10, 8] 4.7 [10, 8] 18.82

[10, 9] 264 [10, 9] 247 [10, 9] 7.8 [10, 9] 21.24

[10, 10] 256.1 [10, 10] 248.6 [10, 10] 6.4 [10, 10] 23.38

min time is 256.1 min time is 246.7 min time is 1.5 min time is 2.5

Symmetry 2024, 16, 593 42 of 46

Table A3. SBTMi Results.

SBTMi

Bernard-hermant-nHRXNv2qeDE-unsplash.jpg Peppers.tiff

cic1 cic3 cic1 cic3

h,v sub avg time ms h,v sub avg time ms h,v sub avg time ms h,v sub avg time ms

[1, 1] 2504.9 [1, 1] 791.5 [1, 1] 9.9 [1, 1] 6.28

[1, 2] 995.9 [1, 2] 431.4 [1, 2] 5.04 [1, 2] 4.16

[1, 3] 674.5 [1, 3] 400.5 [1, 3] 3.5 [1, 3] 3.46

[1, 4] 519 [1, 4] 352.5 [1, 4] 3.14 [1, 4] 3.14

[1, 5] 433.5 [1, 5] 329 [1, 5] 3.14 [1, 5] 3.22

[1, 6] 383.6 [1, 6] 307.9 [1, 6] 2.52 [1, 6] 3.14

[1, 7] 408.7 [1, 7] 285.1 [1, 7] 2.96 [1, 7] 3.14

[1, 8] 393 [1, 8] 296.4 [1, 8] 2.44 [1, 8] 3.54

[1, 9] 362.6 [1, 9] 294 [1, 9] 2.82 [1, 9] 3.44

[1, 10] 345.7 [1, 10] 292 [1, 10] 2.54 [1, 10] 3.76

[2, 1] 980.6 [2, 1] 428.8 [2, 1] 4.16 [2, 1] 3.2

[2, 2] 519.2 [2, 2] 346.9 [2, 2] 2.84 [2, 2] 2.82

[2, 3] 375.5 [2, 3] 292.7 [2, 3] 2.2 [2, 3] 2.84

[2, 4] 390.5 [2, 4] 291.4 [2, 4] 2.6 [2, 4] 3.22

[2, 5] 343.2 [2, 5] 287.3 [2, 5] 2.5 [2, 5] 3.76

[2, 6] 320.4 [2, 6] 279.3 [2, 6] 2.52 [2, 6] 4.06

[2, 7] 299.4 [2, 7] 271.5 [2, 7] 2.2 [2, 7] 4.5

[2, 8] 286.7 [2, 8] 280.6 [2, 8] 2.28 [2, 8] 4.7

[2, 9] 274.9 [2, 9] 270.1 [2, 9] 2.52 [2, 9] 5.12

[2, 10] 259.8 [2, 10] 267.4 [2, 10] 2.52 [2, 10] 5.96

[3, 1] 671.2 [3, 1] 394.7 [3, 1] 3.12 [3, 1] 2.88

[3, 2] 382.5 [3, 2] 295.7 [3, 2] 2.32 [3, 2] 2.84

[3, 3] 362.6 [3, 3] 291.7 [3, 3] 2.52 [3, 3] 3.44

[3, 4] 320.8 [3, 4] 278 [3, 4] 2.2 [3, 4] 3.84

[3, 5] 295.5 [3, 5] 272.8 [3, 5] 2.54 [3, 5] 4.72

[3, 6] 271.7 [3, 6] 268.8 [3, 6] 2.26 [3, 6] 5.42

[3, 7] 269.5 [3, 7] 262.2 [3, 7] 2.52 [3, 7] 5.64

[3, 8] 274.9 [3, 8] 263.9 [3, 8] 2.82 [3, 8] 6.6

[3, 9] 279.8 [3, 9] 263.6 [3, 9] 2.52 [3, 9] 7.28

[3, 10] 284.7 [3, 10] 261 [3, 10] 2.94 [3, 10] 7.84

[4, 1] 517 [4, 1] 347 [4, 1] 2.82 [4, 1] 2.58

[4, 2] 395.3 [4, 2] 287.5 [4, 2] 2.18 [4, 2] 3.46

[4, 3] 321.6 [4, 3] 276.2 [4, 3] 2.52 [4, 3] 4.08

[4, 4] 288.7 [4, 4] 273.1 [4, 4] 2.4 [4, 4] 4.8

[4, 5] 260.6 [4, 5] 265.1 [4, 5] 2.4 [4, 5] 5.64

[4, 6] 275.4 [4, 6] 266 [4, 6] 2.82 [4, 6] 6.36

[4, 7] 282.5 [4, 7] 262.8 [4, 7] 2.82 [4, 7] 7.62

Symmetry 2024, 16, 593 43 of 46

Table A3. Cont.

SBTMi

Bernard-hermant-nHRXNv2qeDE-unsplash.jpg Peppers.tiff

cic1 cic3 cic1 cic3

h,v sub avg time ms h,v sub avg time ms h,v sub avg time ms h,v sub avg time ms

[4, 8] 278.1 [4, 8] 258.3 [4, 8] 2.94 [4, 8] 8.24

[4, 9] 269.3 [4, 9] 261.2 [4, 9] 3.14 [4, 9] 9.12

[4, 10] 263.5 [4, 10] 257.5 [4, 10] 3.24 [4, 10] 10.1

[5, 1] 432.2 [5, 1] 316.3 [5, 1] 2.5 [5, 1] 2.6

[5, 2] 342.1 [5, 2] 284.5 [5, 2] 2.2 [5, 2] 3.76

[5, 3] 297.2 [5, 3] 270 [5, 3] 2.52 [5, 3] 4.54

[5, 4] 258.9 [5, 4] 263.7 [5, 4] 2.5 [5, 4] 5.64

[5, 5] 279.5 [5, 5] 261.3 [5, 5] 2.66 [5, 5] 6.74

[5, 6] 279.9 [5, 6] 260.5 [5, 6] 2.82 [5, 6] 7.92

[5, 7] 269.8 [5, 7] 258.5 [5, 7] 2.82 [5, 7] 8.8

[5, 8] 262.7 [5, 8] 259 [5, 8] 3.46 [5, 8] 10.12

[5, 9] 261.6 [5, 9] 255.8 [5, 9] 3.54 [5, 9] 11.14

[5, 10] 266.8 [5, 10] 255.4 [5, 10] 4.08 [5, 10] 12.32

[6, 1] 370.4 [6, 1] 290.9 [6, 1] 2.2 [6, 1] 2.82

[6, 2] 318.7 [6, 2] 276.6 [6, 2] 2.3 [6, 2] 3.76

[6, 3] 272.5 [6, 3] 269 [6, 3] 2.52 [6, 3] 5.42

[6, 4] 275.1 [6, 4] 262.4 [6, 4] 2.56 [6, 4] 6.34

[6, 5] 284.2 [6, 5] 259.3 [6, 5] 2.76 [6, 5] 7.86

[6, 6] 267.7 [6, 6] 255.2 [6, 6] 3.24 [6, 6] 9.18

[6, 7] 261.4 [6, 7] 262.1 [6, 7] 3.44 [6, 7] 10.42

[6, 8] 268.6 [6, 8] 259.5 [6, 8] 3.76 [6, 8] 11.68

[6, 9] 263.1 [6, 9] 261.3 [6, 9] 4.04 [6, 9] 13.04

[6, 10] 266.2 [6, 10] 262.1 [6, 10] 4.4 [6, 10] 14.2

[7, 1] 403.5 [7, 1] 288.8 [7, 1] 2.38 [7, 1] 3.14

[7, 2] 299.9 [7, 2] 270.9 [7, 2] 2.1 [7, 2] 4.22

[7, 3] 272.3 [7, 3] 266.9 [7, 3] 2.52 [7, 3] 5.9

[7, 4] 280.5 [7, 4] 270.5 [7, 4] 2.82 [7, 4] 7.3

[7, 5] 270.2 [7, 5] 262.5 [7, 5] 3.2 [7, 5] 8.86

[7, 6] 262.3 [7, 6] 259 [7, 6] 3.46 [7, 6] 10.12

[7, 7] 269.7 [7, 7] 252.6 [7, 7] 3.76 [7, 7] 11.92

[7, 8] 266.9 [7, 8] 255.8 [7, 8] 4.16 [7, 8] 13.58

[7, 9] 259.2 [7, 9] 253.2 [7, 9] 4.78 [7, 9] 15.14

[7, 10] 261.4 [7, 10] 253.4 [7, 10] 4.74 [7, 10] 16.48

[8, 1] 379.5 [8, 1] 283.1 [8, 1] 2.2 [8, 1] 3.14

[8, 2] 285.4 [8, 2] 268.4 [8, 2] 2.52 [8, 2] 5

[8, 3] 279.4 [8, 3] 261.5 [8, 3] 2.52 [8, 3] 6.36

Symmetry 2024, 16, 593 44 of 46

Table A3. Cont.

SBTMi

Bernard-hermant-nHRXNv2qeDE-unsplash.jpg Peppers.tiff

cic1 cic3 cic1 cic3

h,v sub avg time ms h,v sub avg time ms h,v sub avg time ms h,v sub avg time ms

[8, 4] 280.9 [8, 4] 259.1 [8, 4] 2.72 [8, 4] 8.24

[8, 5] 266.1 [8, 5] 257.9 [8, 5] 3.46 [8, 5] 9.84

[8, 6] 267.5 [8, 6] 256.9 [8, 6] 3.78 [8, 6] 11.68

[8, 7] 269.3 [8, 7] 258.2 [8, 7] 4.18 [8, 7] 13.62

[8, 8] 266.5 [8, 8] 259.2 [8, 8] 4.4 [8, 8] 15.24

[8, 9] 266.1 [8, 9] 257.3 [8, 9] 5.12 [8, 9] 17.12

[8, 10] 260.1 [8, 10] 265.7 [8, 10] 5.68 [8, 10] 18.6

[9, 1] 363.3 [9, 1] 286.5 [9, 1] 2.18 [9, 1] 3.22

[9, 2] 270.8 [9, 2] 272.7 [9, 2] 2.6 [9, 2] 5.32

[9, 3] 281.4 [9, 3] 262.1 [9, 3] 2.52 [9, 3] 7

[9, 4] 267.1 [9, 4] 260.6 [9, 4] 3.14 [9, 4] 8.86

[9, 5] 260.4 [9, 5] 259.2 [9, 5] 3.54 [9, 5] 11.06

[9, 6] 265.7 [9, 6] 258.6 [9, 6] 4.4 [9, 6] 12.92

[9, 7] 260.5 [9, 7] 257 [9, 7] 4.5 [9, 7] 14.9

[9, 8] 258.8 [9, 8] 264.3 [9, 8] 5.34 [9, 8] 17.04

[9, 9] 256.3 [9, 9] 258.2 [9, 9] 5.78 [9, 9] 18.98

[9, 10] 260.6 [9, 10] 258 [9, 10] 6.3 [9, 10] 21.18

[10, 1] 342.8 [10, 1] 282.6 [10, 1] 2.5 [10, 1] 3.22

[10, 2] 259.4 [10, 2] 263.9 [10, 2] 2.3 [10, 2] 5.64

[10, 3] 279.5 [10, 3] 257.2 [10, 3] 2.92 [10, 3] 7.62

[10, 4] 261 [10, 4] 252.6 [10, 4] 3.36 [10, 4] 9.8

[10, 5] 271.6 [10, 5] 249.5 [10, 5] 3.54 [10, 5] 12

[10, 6] 264.4 [10, 6] 250.7 [10, 6] 4.72 [10, 6] 14.26

[10, 7] 268.7 [10, 7] 251.6 [10, 7] 4.82 [10, 7] 16.64

[10, 8] 261.2 [10, 8] 252 [10, 8] 6.02 [10, 8] 18.84

[10, 9] 268.3 [10, 9] 255.7 [10, 9] 6.06 [10, 9] 21.02

[10, 10] 259.2 [10, 10] 253.2 [10, 10] 6.98 [10, 10] 23.14

min time is 256.3 min time is 249.5 min time is 2.1 min time is 2.58

References
1. Zia, U.; McCartney, M.; Scotney, B.; Martinez, J.; AbuTair, M.; Memon, J.; Sajjad, A. Survey on image encryption techniques using

chaotic maps in spatial, transform and spatiotemporal domains. Int. J. Inf. Secur. 2022, 21, 917–935. [CrossRef]
2. Shah, P.; Ayoade, J. An Empricial Study of Brute Force Attack on Wordpress Website. In Proceedings of the 2023 5th International

Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 23–25 January 2023; pp. 659–662.
3. Hurley, N.; Cheng, Z.; Zhang, M. Statistical attack detection. In Proceedings of the Third ACM Conference on Recommender

Systems, New York, NY, USA, 23–25 October 2009; pp. 149–156.
4. Pal, D.; Ali, M.; Das, A.; Roy Chowdhury, D. A cluster-based practical key recovery attack on reduced-round AES using

impossible-differential cryptanalysis. J. Supercomput. 2023, 79, 6252–6289. [CrossRef]
5. Attaullah Shah, T.; Jamal, S. An improved chaotic cryptosystem for image encryption and digital watermarking. Wirel. Pers.

Commun. 2020, 110, 1429–1442. [CrossRef]

http://doi.org/10.1007/s10207-022-00588-5
http://dx.doi.org/10.1007/s11227-022-04872-y
http://dx.doi.org/10.1007/s11277-019-06793-1

Symmetry 2024, 16, 593 45 of 46

6. Zhang, X.; Hu, Y. Multiple-image encryption algorithm based on the 3D scrambling model and dynamic DNA coding. Opt. Laser
Technol. 2021, 141, 107073. [CrossRef]

7. Zhang, X.; Hu, Y. An overview of digital audio steganography. IETE Tech. Rev. 2020, 37, 632–650.
8. Bhowmik, S.; Acharyya, S. Image cryptography: The genetic algorithm approach. In Proceedings of the 2011 IEEE International

Conference on Computer Science and Automation Engineering, Shanghai, China, 10–12 June 2011; Volume 2, pp. 223–227.
9. Wang, X.; Su, Y.; Liu, C.; Li, J.; Li, S.; Cai, Z.; Wan, W. Security enhancement of image encryption method based on Fresnel

diffraction with chaotic phase. Opt. Commun. 2022, 506, 127544. [CrossRef]
10. Chen, Y.; Xie, S.; Zhang, J. A hybrid domain image encryption algorithm based on improved henon map. Entropy 2022, 24, 287.

[CrossRef]
11. Zhou, W.; Wang, X.; Wang, M.; Li, D. A new combination chaotic system and its application in a new Bit-level image encryption

scheme. Opt. Lasers Eng. 2022, 149, 106782. [CrossRef]
12. Lai, Q.; Zhang, H.; Kuate, P.; Xu, G.; Zhao, X. Analysis and implementation of no-equilibrium chaotic system with application in

image encryption. Appl. Intell. 2022, 52, 11448–11471. [CrossRef]
13. Matthews, R. On the derivation of a “chaotic” encryption algorithm. Cryptologia 1989, 13, 29–42. [CrossRef]
14. Bin Faheem, Z.; Ali, A.; Khan, M.A.; Ul-Haq, M.; Ahmad, W. Highly dispersive substitution box (S-box) design using chaos.

ETRI J. 2020, 42, 619–632. [CrossRef]
15. Niu, Y.; Zhou, Z.; Zhang, X. An image encryption approach based on chaotic maps and genetic operations. Multimed. Tools Appl.

2020, 79, 25613–25633. [CrossRef]
16. Hosny, K.M.; Kamal, S.T.; Darwish, M.M. Novel encryption for color images using fractional-order hyperchaotic system.

J. Ambient Intell. Humaniz. Comput. 2022, 13, 973–988. [CrossRef] [PubMed]
17. Patel, S.; Thanikaiselvan, V.; Pelusi, D.; Nagaraj, B.; Arunkumar, R.; Amirtharajan, R. Colour image encryption based on

customized neural network and DNA encoding. Neural Comput. Appl. 2021, 33, 14533–14550. [CrossRef]
18. Zhou, Y.; Bao, L.; Chen, C.P. A new 1D chaotic system for image encryption. Signal Process. 2014, 97, 1172–1182. [CrossRef]
19. Chen, J.; Horng, S. Novel SCAN-CA-based image security system using SCAN and 2-D von Neumann cellular automata. Signal

Process. Image Commun. 2010, 25, 413–426. [CrossRef]
20. Maniccam, S.; Bourbakis, G. Lossless image compression and encryption using SCAN. Pattern Recognit. 2001, 34, 1229–1245.

[CrossRef]
21. Shyu, S. Image encryption by multiple random grids. Pattern Recognit. 2009, 42, 1582–1596. [CrossRef]
22. Chen, T.; Li, K. Multi-image encryption by circular random grids. Inf. Sci. 2012, 189, 55–265. [CrossRef]
23. Li, L.; Abd El-Latif, A.; Niu, X. Elliptic curve ElGamal based homomorphic image encryption scheme for sharing secret images.

Signal Process. 2012, 92, 1069–1078. [CrossRef]
24. Zhou, Y.; Panetta, K.; Agaian, S.; Chen, C.P. (n, k, p)-Gray code for image systems. IEEE Trans. Cybern. 2013, 43, 515–529.

[CrossRef]
25. Liao, X.; Lai, S.; Zhou, Q. A novel image encryption algorithm based on self-adaptive wave transmission. Signal Process. 2010,

90, 2714–2722. [CrossRef]
26. Chen, T.; Wu, C. Compression-unimpaired batch-image encryption combining vector quantization and index compression. Inf.

Sci. 2010, 180, 1690–1701. [CrossRef]
27. Bhatnagar, G.; Wu, Q.; Raman, B. A new fractional random wavelet transform for fingerprint security. IEEE Trans. Syst. Man

Cybern. Part A Syst. Humans 2011, 42, 262–275. [CrossRef]
28. ur Rehman, A.; Liao, X.; Ashraf, R.; Abdullah, S.; Wang, H. A color image encryption technique using exclusive-OR with DNA

complementary rules based on chaos theory and SHA-2. Optik 2018, 159, 348–367. [CrossRef]
29. Seyedzadeh, M.; Mirzakuchaki, S. A fast color image encryption algorithm based on coupled two-dimensional piecewise chaotic

map. Signal Process. 2012, 92, 1202–1215. [CrossRef]
30. Tong, J.; Zhang, M.; Wang, Z.; Liu, Y.; Xu, H.; Ma, J. A fast encryption algorithm of color image based on four-dimensional chaotic

system. J. Vis. Commun. Image Represent. 2015, 33, 219–234. [CrossRef]
31. Li, Y.; Wang, C.; Chen, H. A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level

permutation. Opt. Lasers Eng. 2017, 90, 238–246. [CrossRef]
32. Abd El-Latif, A.; Li, L.; Wang, N.; Han, Q.; Niu, X. A new approach to chaotic image encryption based on quantum chaotic

system, exploiting color spaces. Signal Process. 2013, 93, 2986–3000. [CrossRef]
33. Liu, H.; Kadir, A.; Niu, Y. Chaos-based color image block encryption scheme using S-box. AEU-Int. J. Electron. Commun. 2014,

68, 676–686. [CrossRef]
34. Mazloom, S.; Eftekhari-Moghadam, A. Color image encryption based on coupled nonlinear chaotic map. Chaos Solitons Fractals

2009, 42, 1745–1754. [CrossRef]
35. Kadir, A.; Aili, M.; Sattar, M. Color image encryption scheme using coupled hyper chaotic system with multiple impulse injections.

Optik 2017, 129, 231–238. [CrossRef]
36. Al-Daraiseh, A.; Sanjalawe, Y.; Al-E’mari, S.; Fraihat, S.; Bany Taha, M.; Al-Muhammed, M. Cryptographic Grade Chaotic

Random Number Generator Based on Tent-Map. J. Sens. Actuator Netw. 2023, 12, 73. [CrossRef]
37. Daoui, A.; Yamni, M.; Chelloug, S.; Wani, M.; El-Latif, A. Efficient image encryption scheme using novel 1D multiparametric

dynamical tent map and parallel computing. Mathematics 2023, 7, 1589. [CrossRef]

http://dx.doi.org/10.1016/j.optlastec.2021.107073
http://dx.doi.org/10.1016/j.optcom.2021.127544
http://dx.doi.org/10.3390/e24020287
http://dx.doi.org/10.1016/j.optlaseng.2021.106782
http://dx.doi.org/10.1007/s10489-021-03071-1
http://dx.doi.org/10.1080/0161-118991863745
http://dx.doi.org/10.4218/etrij.2019-0138
http://dx.doi.org/10.1007/s11042-020-09237-2
http://dx.doi.org/10.1007/s12652-021-03675-y
http://www.ncbi.nlm.nih.gov/pubmed/35018197
http://dx.doi.org/10.1007/s00521-021-06096-2
http://dx.doi.org/10.1016/j.sigpro.2013.10.034
http://dx.doi.org/10.1016/j.image.2010.03.002
http://dx.doi.org/10.1016/S0031-3203(00)00062-5
http://dx.doi.org/10.1016/j.patcog.2008.08.023
http://dx.doi.org/10.1016/j.ins.2011.11.026
http://dx.doi.org/10.1016/j.sigpro.2011.10.020
http://dx.doi.org/10.1109/TSMCB.2012.2210706
http://dx.doi.org/10.1016/j.sigpro.2010.03.022
http://dx.doi.org/10.1016/j.ins.2009.12.021
http://dx.doi.org/10.1109/TSMCA.2011.2147307
http://dx.doi.org/10.1016/j.ijleo.2018.01.064
http://dx.doi.org/10.1016/j.sigpro.2011.11.004
http://dx.doi.org/10.1016/j.jvcir.2015.09.014
http://dx.doi.org/10.1016/j.optlaseng.2016.10.020
http://dx.doi.org/10.1016/j.sigpro.2013.03.031
http://dx.doi.org/10.1016/j.aeue.2014.02.002
http://dx.doi.org/10.1016/j.chaos.2009.03.084
http://dx.doi.org/10.1016/j.ijleo.2016.10.036
http://dx.doi.org/10.3390/jsan12050073
http://dx.doi.org/10.3390/math11071589

Symmetry 2024, 16, 593 46 of 46

38. Choi, J.; Seok, S.; Seo, H.; Kim, H. A fast ARX model-based image encryption scheme. Multimed. Tools Appl. 2016, 75, 14685–14706.
[CrossRef]

39. Li, C.; Luo, G.; Li, C. A parallel image encryption algorithm based on chaotic Duffing oscillators. Multimed. Tools Appl. 2018,
77, 19193–19208. [CrossRef]

40. Yuan, H.; Liu, Y.; Lin, T.; Hu, T.; Gong, L.H. A new parallel image cryptosystem based on 5D hyper-chaotic system. Signal Process.
Image Commun. 2017, 52, 87–96. [CrossRef]

41. You, L.; Yang, E.; Wang, G. A novel parallel image encryption algorithm based on hybrid chaotic maps with OpenCL implemen-
tation. Soft Comput. 2020, 24, 12413–12427. [CrossRef]

42. He, Y.; Zhang, Y.; He, X.; Wang, X. A new image encryption algorithm based on the OF-LSTMS and chaotic sequences. Sci. Rep.
2021, 11, 6398. [CrossRef]

43. Wang, X.; Su, Y. Color image encryption based on chaotic compressed sensing and two-dimensional fractional Fourier transform.
Sci. Rep. 2020, 10, 18556. [CrossRef]

44. Lee, W.; Phan, R.; Yap, W.; Goi, B. SPRING: A novel parallel chaos-based image encryption scheme. Nonlinear Dyn. 2018,
92, 575–593. [CrossRef]

45. Luo, Y.; Zhou, R.; Liu, J.; Cao, Y.; Ding, X. A parallel image encryption algorithm based on the piecewise linear chaotic map and
hyper-chaotic map. Nonlinear Dyn. 2018, 93, 1165–1181. [CrossRef]

46. Wang, X.; Feng, L.; Zhao, H. Fast image encryption algorithm based on parallel computing system. Inf. Sci. 2019, 486, 340–358.
[CrossRef]

47. Wang, X.; Zhao, H. Fast image encryption algorithm based on parallel permutation-and-diffusion strategy. Multimed. Tools Appl.
2020, 79, 19005–19024. [CrossRef]

48. Nkandeu, Y.; Mboupda Pone, R.; Tiedeu, A. Image encryption algorithm based on synchronized parallel diffusion and new
combinations of 1D discrete maps. Sens. Imaging 2020, 21, 55. [CrossRef]

49. Zhu, S.; Deng, X.; Zhang, W.; Zhu, C. Image encryption scheme based on newly designed chaotic map and parallel DNA coding.
Mathematics 2023, 11, 231. [CrossRef]

50. Mozaffari, S. Parallel image encryption with bitplane decomposition and genetic algorithm. Multimed. Tools Appl. 2018,
77, 25799–25819. [CrossRef]

51. Zhang, Y. Statistical test criteria for sensitivity indexes of image cryptosystems. Inf. Sci. 2021, 550, 313–328. [CrossRef]
52. Chaudhary, N.; Shahi, T.; Neupane, A. Secure image encryption using chaotic, hybrid chaotic and block cipher approach.

J. Imaging 2022, 8, 167. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11042-016-3274-9
http://dx.doi.org/10.1007/s11042-017-5391-5
http://dx.doi.org/10.1016/j.image.2017.01.002
http://dx.doi.org/10.1007/s00500-020-04683-4
http://dx.doi.org/10.1038/s41598-021-85377-1
http://dx.doi.org/10.1038/s41598-020-75562-z
http://dx.doi.org/10.1007/s11071-018-4076-6
http://dx.doi.org/10.1007/s11071-018-4251-9
http://dx.doi.org/10.1016/j.ins.2019.02.049
http://dx.doi.org/10.1007/s11042-020-08810-z
http://dx.doi.org/10.1007/s11220-020-00318-y
http://dx.doi.org/10.3390/math11010231
http://dx.doi.org/10.1007/s11042-018-5817-8
http://dx.doi.org/10.1016/j.ins.2020.10.026
http://dx.doi.org/10.3390/jimaging8060167

	Introduction
	Related Works
	Proposed Technique
	Image Encryption Methods and Ciphers
	SBTM and SBTMPi
	Image Decryption Process
	Analytical Discussions

	Implementation and Verification
	Key Space Analysis
	Statistical Analysis
	Histogram Analysis
	Correlation Analysis
	Information Entropy
	Sensitivity Analysis
	X2 Test
	Digest ES Sensitivity
	SBTM vs. SBTMPi-Based Ciphers
	CIC1 vs. CIC3
	Comparisons
	Time Complexity and Average Time
	Exploring the Performance and Attributes of Proposed Ciphers

	Conclusions
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	GICD
	CIC1D
	CIC3D
	Example

	Appendix E
	Appendix F
	References

