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Abstract: This paper describes a solution for the image density classification problem (DCP) using an
entirely distributed system with only local processing of information named cellular automata (CA).
The proposed solution uses two cellular automata’s features, density conserving and translation
of the information stored in the cellular automata’s cells through the lattice, in order to obtain the
solution for the density classification problem. The motivation for choosing a bio-inspired technique
based on CA for solving the DCP is to investigate the principles of self-organizing decentralized
computation and to assess the capabilities of CA to achieve such computation, which is applicable to
many real-world decentralized problems that require a decision to be taken by majority voting, such
as multi-agent holonic systems, collaborative robots, drones’ fleet, image analysis, traffic optimization,
forming and then separating clusters with different values. The entire application is coded using
the C# programming language, and the obtained results and comparisons between different cellular
automata configurations are also discussed in this research.

Keywords: cellular automata; density classification problem; dynamical systems; bio-inspired sys-
tems; majority problem; clustering algorithms

1. Introduction

Initially introduced by Packard, the Density Classification Problem (DCP), also referred
to as the Density Classification Task (DCT), may seem like a straightforward counting
problem [1]. Of course, for an electronic system with a processor, controller, or memory, this
issue is insignificant. On the contrary, DCP is a significant issue for cellular automata (CA)
systems which are characterized by arbitrary size, different neighborhood, any dimension,
and without a central processing unit (decentralized control and massive parallelism),
because they are based solely on local interactions between cells using evolution rules [2].
The DCP requires some form of global coordination, even though cells with a certain
distance between them cannot directly interact. This means that distant cells must somehow
influence each other’s behavior to achieve the desired outcome. As a result, no cell within
the CA can establish immediate global communication, and the macroscopic evolution of
the CA is actually a reflection of the microscopic evolution.

The DCP is therefore of great interest to many researchers as a means of testing and
measuring the computational power of different computing paradigms, including CA.
Although the DCP seems like a simple counting problem, it is surprisingly challenging
for CA to solve. This difficulty stems from the limitations of CA: they lack the memory to
keep track of a running total and the ability to perceive the entire system at once, making
it difficult to accurately assess the relative density of 0 s and 1 s. Due to this challenge,
the DCP enables us to evaluate the computational capabilities of CA, particularly their
ability to achieve complex global behavior based only on applying local evolution rules.
These systems reveal data processing capabilities on a global scale, capabilities that are
not explicitly represented in their elementary cells or in their local cell neighborhood
interconnections [3,4].
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As an example, in the two-state variant of the CA, the objective is to obtain a final CA
configuration in which all the cells are mapped to either 0′s or 1′s. This outcome should
depend on the initial image configuration: if, initially, there were more 0 s, then all cells
should become 0, and vice versa for a majority of 1 s. This process essentially classifies the
binary image string based on the density (frequency) of 0 s and 1 s. If we consider the CA
as an example of a multicellular system consisting of a large number of cells, we could say
that after a predetermined number of generations using different evolution rules to solve
the DCP problem, the CA evolution must have reached a dead end. This means that the
DCP has been resolved, and the system has been able to classify the initial configuration
of the image. Local regions with similar densities cluster and grow over time, ultimately
determining the final configuration of the CA used for classification.

From the research reported in paper [5], it appears that it is not possible to create a
one-dimensional two-state CA that categorizes binary strings based on their densities of
1 s and 0 s. Based on this observation, the research reoriented to the search for imperfect
alternatives that could categorize the initial configuration space.

Unfortunately, finding a CA rule that effectively solves a computational problem such
as the DCP remains a significant hurdle even after the problem has been defined. Three
main approaches could be considered relevant: direct programming—this is labor-intensive
and requires a deep understanding of CA dynamics [6]. Designing rules manually is a
complex process that often leads to trial-and-error experimentation until their behavior
achieves the desired objective; exhaustive search—investigating every possible CA rule
for a specific behavior is computationally infeasible. The large number of candidate rules
(the high cardinality of the rule space) makes this approach unsuitable for intricate tasks;
heuristic search—a workable alternative which involves the use of search and optimization
algorithms, notably emphasizing evolutionary computation techniques [7–11]. These
approaches were the key to the discovery of a significant number of solutions, especially
with the introduction of the symmetry property [12–14], with the introduction of the
conserving property [15,16], asynchronous updating methods [17], and even firing-squad
synchronization that aims to establish an evolution rule whereby all cells within a given
region enter into a special state after an identical number of steps [18] (p. 1035). Another
interesting approach is presented in [19], where symmetry and conserving properties are
achieved using CA with neighborhood dimension r = 4.

Moreover, it was also shown in [20] that a solution to the DCP does indeed exist, with
a different result from the one found by Packard. Additionally, research carried out in
paper [21] showed that a rule addressing the DCP in a one-dimensional CA must fulfill
two clear requirements:

1. Density conserving—the initial density, corresponding to the input configuration of
the system, should be conserved over time.

2. Balanced rule—the rule table should demonstrate a density of 0.5 and maintain
uniformity across the configuration space.

An interesting approach is reported in [22], where a genetic algorithm (GA) evolves a one-
dimensional CA to solve the DCP. This paper introduces a multi-states CA for the first time and
addresses the DCP. Their results obtained suggest a notable similarity between elementary CA
and multi-states ones. Another interesting approach is outlined in [23], wherein a combination
of two elementary rules known as the “traffic rule” (also referred to as rule 184) and the
“majority rule” (also known as rule 232) is employed to tackle the DCP. Their primary finding,
utilizing the preimage counting method for the order parameter, suggests that the DCP can be
effectively addressed by employing this pair of rules 184 and 232.

An interesting method is described in [24–26], showcasing an algorithm capable
of reversing the operations of the CA. This entails identifying a CA rule wherein the
configuration space is neatly partitioned into two separated basins of attraction. One basin
encompasses rules with a density surpassing the critical density, cd, converging towards a
state comprising entirely of 1 s. The other basin comprises all remaining configurations,
converging towards a state consisting solely of 0 s.
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In connection with the relevant CA-based DCP techniques, the main aim of this work
is to solve the DCP using two essential features of the hybrid CA: density conserving and
translation of the information stored in the cells of the CA through the lattice. The fulfilment
of these two conditions, translation of the information across the lattice and density con-
serving, was accomplished using a dynamical system named CA and using a three-stage
algorithm. Firstly, we generate an elementary image of a two-dimensional CA in which
each cell is surrounded by 8 neighbors, similar to digital images. Different combinations of
evolution rules are applied to different cells of the CA, and the problem of cells localized at
the end of the lattice, caused by the fact that there are no other neighbors, was solved by
using null boundary conditions, making the solution more effective. Secondly, in stage 2 of
the algorithm, we investigate the comportment of the nine possible elementary evolution
rules that shift the information in different directions within the CA. We have further
analyzed all combinations of each of the three elementary CA rules and selected only those
combinations of three rules that allow us to shift the information across the lattice in the di-
rection we need in order to create some clusters in the CA. Thirdly, the density classification
decision is made in function of the image dimension, odd or even length. The simulation
results indicate a perfect concordance between the theoretical approach and the practical
results obtained. Furthermore, the proposed DCP solution based on the hybrid CA method
presented here is efficient because it focuses only on a specific set of CA evolution rules,
thus streamlining the design process and making it simpler and more efficient. In contrast
to existing methods, where increasing the radius leads to a potential explosion of the rule
spaces, this approach is characterized by minimizing the number of potential solutions and
thus increasing the performance. This not only facilitates parallelization using instruction
optimization algorithms [27] and through hardware implementation, such as with Field
Programmable Gate Arrays (FPGA) devices, but also enables generalized classification,
dimensional scalability, and maintains architectural simplicity.

The contributions stemming from this research, taking into account also the explana-
tion given in the previous paragraph, can be summarized as follows:

1. An efficient hybrid CA-based solution for DCP that can be used in parallel and
distributed systems and applied to many real-world decentralized problems that
require a decision to be taken by separating clusters with different values is proposed.

2. The technical details and the arguments that illustrate the capability of hybrid CA
to combine the two necessary features, density conserving and translation of the
information stored in the cells across the lattice, in order to obtain the solution to the
DCP are provided.

3. The CA-based method for DCP developed here is a general one and is relatively
simple and efficient for implementation, as it can be scaled to a larger or a smaller
number of cells.

4. Experimental results, showcased across different working scenarios, confirm and offer
relevant insights into how to improve the exploration of the CA search space and also
the ways of creating solutions in the CA context.

The paper is structured as follows. Section 1 provides the main aim of this work and
a short overview of the DCP-relevant related research. Section 2 is focused on the funda-
mentals of the problem statement and the design of the hybrid CA-based algorithm for the
DCP. Here, we describe the solution to the DCP, which is solved using the two-dimensional
hybrid CA structures. Section 3 shows the implementation of the proposed hybrid CA to
solve the DCP. Section 4 of this paper presents, with examples, the experimental results
obtained on the hybrid CA and the image DCP and evaluates the quality of the results
obtained. In Section 5, we assess our approach in comparison to established DCP solving
techniques, highlighting the main key potential benefits. Finally, Section 6 discusses the
conclusions and perspectives of this work.



Symmetry 2024, 16, 599 4 of 17

2. Materials and Methods

In this section, we describe in detail our approach to solving the DCP using an entirely
distributed system with only local processing of information, named CA.

2.1. Fundamentals of the Problem Statement

CA are mathematical models that illustrate physical systems where time and space are
discrete, and connections exist only between adjacent cells forming the automaton [18]. Of
course, theoretically, each cell can assume a vast number of states [28], but the greater the
number of possible states, the more difficult it is to analyze the behavior of the system. In
the proposed decision system, however, each cell comprising the automaton can practically
hold two states: 0 or 1 (corresponding to binary images) [29]. CAs exhibit significant
parallelism as all cells in the automaton can be updated simultaneously within a single
time clock. Interactions among cells are strictly local, occurring within the neighborhood of
cells [4]. The configuration of neighborhoods is determined by both the topology of the
underlying lattice of cells [30] and a specified radius. Common models of neighborhood
interactions include:

1. Von Neumann model, radius r = 1, where, for establishing the next state of a central
cell, three neighboring cells are used in the one-dimensional CA case (Figure 1a) and
five neighboring cells, formed by the central cell and its four adjoining horizontal and
vertical neighbors, in the two-dimensional CA case (Figure 2a).

2. Moore model, radius r = 1, in which three neighboring cells are used in the one-
dimensional CA case and nine neighboring cells, formed by the central cell and
its eight adjoining neighbors, including diagonals, in the two-dimensional CA case
(Figure 2b).

3. Extended Moore model, radius r = 2, in which five neighboring cells are used in the
one-dimensional CA case (Figure 1b) and twenty-five neighboring cells, formed by
the central cell and its twenty-four adjoining neighbors, including diagonals, in the
two-dimensional CA case (Figure 2c).
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The CA evolve at discrete time steps, and the next state of each cell that is part of the
CA depends only on its current state and on the states of its neighbors. As a result, each cell
is based on a storage circuit (for example, a D flip-flop) and a combinational logic circuit
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(CL) that set the evolution functions of the next state of the cell. A general image of a cell
that includes different models of neighborhood interactions is shown in Figure 3.
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The next-state function implemented (see Figure 3), in CL circuit block, which describes
an evolution rule for a cell of CA, can be expressed in the following ways:

1. In the case of one-dimensional CA with radius r = 1:

Ci(t+1) = f[Ci−1(t), Ci(t), Ci+1(t)] (1)

2. In the case of one-dimensional CA with radius r = 2:

Ci(t+1) = f[Ci−2(t), Ci−1(t), Ci(t), Ci+1(t), Ci+2(t)] (2)

3. In the case of two-dimensional CA with radius r = 1 and von Neumann model:

Ci,j(t+1) = f[Ci,j−1(t), Ci−1,j(t), Ci,j(t), Ci,j+1(t), Ci+1,j(t)] (3)

4. In the case of two-dimensional CA with radius r = 1 and Moore model:

Ci,j(t+1) = f[Ci,j−1(t), Ci−1,j(t), Ci,j+1(t), Ci+1,j(t), Ci,j(t), Ci−1,j−1(t), Ci−1,j+1(t), Ci+1,j−1(t), Ci+1,j+1(t)] (4)

5. In the case of two-dimensional CA with radius r = 2 and Extended Moore model:

Ci,j(t+1) = f[Ci,j−1(t), Ci−1,j(t), Ci,j+1(t), Ci+1,j(t),Ci−1,j−1(t), Ci−1,j+1(t), Ci+1,j−1(t), Ci+1,j+1(t),
Ci−2,j−2(t), Ci−1,j−2(t), Ci−2,j−1(t), Ci,j−2(t), Ci,j(t), Ci−2,j(t), Ci−2,j+1(t), Ci−2,j+2(t), Ci−1,j+2(t),

Ci,j+2(t), Ci+1,j−2(t), Ci+1,j+2(t), Ci+2,j−2(t), Ci+2,j−1(t), Ci+2,j(t), Ci+2,j+1(t), Ci+2,j+2(t)]
(5)

In Equations (1)–(5), we assumed that:

• C stands for cell;
• i and j represent the position of a single cell in a two-dimensional lattice of cells;
• t represents the time step;
• Ci(t+1) represents, in the one-dimensional CA, the output state of the central cell at

the time step t+1;
• Ci,j(t+1) represents, in the two-dimensional CA, the output state of the central cell at

the time step t+1;
• f represents the evolution function of the CA.
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It is obvious that, for marginal cells of the CA, for example in the case of the one-
dimensional CA, cells C1 and Cn, the evolution function f presented in Equations (1)–(5)
cannot be applied directly because there are no other neighbors at the end of the lattice. For
this reason, different boundary conditions will be applied there. Some boundary conditions
variants in the case of one-dimensional CA with radius 1 are presented below.

Null boundary conditions refer to a scenario in which the marginal cells of the CA are
linked to logic 0 states: 0 [C1, C2, . . ., Cn−1, Cn] 0.

Periodic boundary conditions entail connecting the extreme cells to each other, creating
a cyclic arrangement: Cn [C1, C2, . . ., Cn−1, Cn] C1.

Fixed boundary conditions involve connecting the marginal cells with preassigned,
unchanging logic 0 or 1 states: 0 [C1, C2, . . ., Cn−1, Cn] 0 OR 0 [C1, C2, . . ., Cn−1, Cn] 1 OR

1 [C1, C2, . . ., Cn−1, Cn] 0 OR 1 [C1, C2, . . ., Cn−1, Cn] 1.

Adiabatic boundary conditions involve replicating the values of boundary cells to
virtually neighboring states: C1 [C1, C2, . . ., Cn−1, Cn] Cn.

Intermediate boundary conditions dictate that the value of the left or right boundary
will match the value of the cell located two positions away in the corresponding direction:
C3 [C1, C2, . . ., Cn−1, Cn] Cn−2.

Reflexive boundary conditions entail setting the value of the left or right boundary to
match the value of the cell one neighbor away in the corresponding direction: C2 [C1, C2,
. . ., Cn−1, Cn] Cn−1.

For instance, in the context of a one-dimensional CA with radius 1 and two possible
states per cell, there are a total of 256 (28) potential rules, each of which can be represented
by a three-variable Boolean function [18,31]. These rules are enumerated according to
Wolfram’s naming convention, ranging from rule number 0 to rule number 255. From this
perspective, an algebraic expression of three evolution rules is presented in Table 1.

Table 1. CA’s rules that determine how the next state of cells will be updated based on the current
state of neighboring cells.

Rules 1 111 110 101 100 011 010 001 000

30 0 0 0 1 1 1 1 0
90 0 1 0 1 1 0 1 0

204 1 1 0 0 1 1 0 0
226 1 1 1 0 0 0 1 0

1 Decimal representation of the rules.

Figure 4 depicts the graphical representation of rule 30.
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The combinational logic expressions for rules 30, 90, 204, and 226 in a CA can be
expressed as follows:

1. Rule 30:

Ci(t+1) = Ci−1(t) XOR (Ci(t) OR Ci+1(t)) (6)

2. Rule 90:

Ci(t+1) = Ci−1(t) XOR Ci+1(t) (7)

3. Rule 204:

Ci(t+1) = Ci(t) (8)

4. Rule 226:

Ci(t+1) = Ci+1(t) XOR (Ci(t) AND (Ci−1(t) XOR Ci+1(t))) (9)

If a CA’s rule employs exclusively XOR logic, it is considered a linear rule and the CA
is referred to as linear. Rules incorporating XNOR logic are denoted as complement rules.
When a CA utilizes a blend of XOR and XNOR rules, it is termed an additive CA. If all the
cells of the CA share the same rule, then the CA is said to be a uniform CA, otherwise, it is
categorized as a hybrid CA.

CA find many different practical engineering applications (watermark and image
encryption, complex logic puzzles, simulation of complex physical phenomena: solitons,
fractals, and chaos; modeling and simulation of population density scenarios and the
behavior of crowds, etc.) [32–36], including the use of CA concepts in solving the DCP, as
demonstrated in this paper.

2.2. The Hybrid CA-Based Algorithm for the Problem of Density Classification

The DCP method introduced here operates on the premise that in this problem the
primary aim is to construct or discover a binary two-dimensional hybrid CA capable of
categorizing the density of 1 s and 0 s within the initial lattice configuration. Under this
approach, if the initial lattice has a higher density of 1 s than 0 s, the CA is expected to
transition towards a final state containing only 1 s after a transition phase. Conversely, if
the initial configuration tends towards a higher density of 0 s, the CA should converge
to a null configuration consisting only of 0 s. So, in such scenarios, the evolution of the
CA predominantly depends on the initial state, and, after applying the evolution rules, the
initial image undergoes a translation across the lattice. It is imperative to ensure that the
density conserving condition is also satisfied during this process. The fulfilment of these
two conditions, translation of the information across the lattice, e.g., towards the bottom
right, and density conserving, can be graphically visualized in Figure 6.
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Figure 6. (a) Original image; (b) One possible result: lattice densely populated with 1 s; (c) Another
possible result: lattice with equal density; (d) Yet another possible result: lattice consisting mainly of 0 s.

In two-dimensional CA with radius r =1 and Moore model, as depicted in Figure 2b
and detailed in Equation (4), the subsequent state of each cell within the CA is determined
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by considering its current state along with the states of the eight cells in its immediate
neighborhood. An example of CA rules conventions and the effect of how the application of
these rules influence the direction of the image content translation is illustrated in Table 2.

Table 2. CA’s rules convention that determines the next state of the central cell and the directions of
shifting of the information.

Left Neighbors of the Central
Cell

Top and Bottom Neighbors of
the Central Cell

Right Neighbors of the
Central Cell

64
Shifting of information

towards the bottom right.

128
Shifting of information

towards the bottom.

256
Shifting of information
towards the bottom left.

32
Shifting of information

towards the right.

1 1

The densities of 0 s and 1 s
remain unchanged, yet no

translation occurs.

2
Shifting of information

towards the left.

16
Shifting of information
towards the top right.

8
Shifting of information

towards the top.

4
Shifting of information

towards the top left.
1 The CA central cell used to investigate the density conserving and shifting of information.

In the table above, the central cell labelled 1 represents the cell under examination,
acting as a variable influenced by itself and eight neighboring variables. Each number
listed in Table 2 denotes the CA’s rule number that defines the dependency of the current
cell solely on a specific neighboring cell. For instance, rule 4 signifies the dependency of
the current cell on its bottom-right neighbor, and so forth.

Figure 7 provides an insight into the dynamic behavior of the evolution rules presented
in Table 2. It shows the effect of applying each evolution rule individually to a small image
(6 × 6 pixels), with only four pixels in state 1.
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the direction indicated by the evolution rule selected. Of course, the degree of change in-
side the CA depends on how many times the evolution rules are applied in succession. In 
this way, the entire CA lattice of cells evolve at discrete time steps, and also different evo-
lution rules could be applied to different cells at the simultaneous time of evolving, thus 
forming a hybrid CA system. Obviously, one problem is that at the end of the lattice, we 
cannot directly apply some of the specified evolution rules (see Figure 7) because there 
are no other neighbors at the end of the lattice. To solve this problem, in the proposed 
hybrid CA-based algorithm, we apply the variant with null boundary conditions at the 
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Figure 7. (a) Initial image of the CA; (b) The effect of the applying of evolution rule 2; (c) The effect of
the applying of evolution rule 4; (d) The effect of the applying of evolution rule 8; (e) The effect of the
applying of evolution rule 16; (f) The effect of the applying of evolution rule 32; (g) The effect of the
applying of evolution rule 64; (h) The effect of the applying of evolution rule 128; (i) The effect of the
applying of evolution rule 256.

As can be seen in Figure 7, all of the 1 s pixels are moved in the inside of the CA in the
direction indicated by the evolution rule selected. Of course, the degree of change inside
the CA depends on how many times the evolution rules are applied in succession. In this
way, the entire CA lattice of cells evolve at discrete time steps, and also different evolution
rules could be applied to different cells at the simultaneous time of evolving, thus forming
a hybrid CA system. Obviously, one problem is that at the end of the lattice, we cannot
directly apply some of the specified evolution rules (see Figure 7) because there are no other
neighbors at the end of the lattice. To solve this problem, in the proposed hybrid CA-based
algorithm, we apply the variant with null boundary conditions at the end of the lattice.

The algorithm presented herein for addressing the DCP can be partitioned into three
stages: a rule-building stage necessary to test and validate the behavior of the evolution
rules presented in Table 2 and Figure 7, a computation stage leading to an intermediate
configuration of the CA lattice, and a decision stage necessary to make a density choice.
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The first part of the algorithm, known as the rule-building stage, is illustrated in
Figure 8.
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Figure 8. Rule-building stage.

In Figure 8, CCADCs stands for “Central Cell and Diagonal Cells”, and the UseRules
(Rule64_Rule1_Rule4) block means that each CA central cell (position (i, j) in the lattice)
has two neighbors on the diagonal. One neighbor is localized at position (i−1, j−1) in
the matrix, and the other is localized at position (i+1, j+1) in the matrix. If we apply the
combination of rules 64, 1, and 4 to all the cells of the CA, using the logic described in
Figure 8, all values of 1 will be translated to the bottom-right direction. If the value of
the cells at the boundary in the direction of translation is zero, in this case the last row or
column of the CA cells, then only rule 64 is applied. Otherwise, the cells remain in their
previous state—this is equivalent to applying rule 1 to the cell. Therefore, rule 1 can be
used for density conserving, and the other two rules, in this case rule 64 and rule 4, can be
used to move the 1′s values to the bottom-right direction in the matrix.

The second part of the algorithm, known as the computational stage, is illustrated in
Figure 9.
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In Figure 9, in the same way, as described in the previous paragraph and in Figure 8,
different combinations of three rules are applied to the CA cells, and the effects to the value
of the cells are as follows:

• UseRules (Rule64_Rule1_Rule4)—can be used to move the 1′s values to the bottom-
right direction in the matrix (see explanations in previous paragraph).

• UseRules (Rule256_Rule1_Rule16)—can be used to move the 1′s values to the bottom-
left direction in the matrix.

• UseRules (Rule16_Rule1_Rule256)—can be used to move the 1′s values to the top-right
direction in the matrix.

• UseRules (Rule128_Rule1_Rule8)—can be used to move the 1′s values to the bottom
direction in the matrix.

• UseRules (Rule32_Rule1_Rule2)—can be used to move the 1′s values to the right
direction in the matrix.

These nine basic CA evolution rules (Rule 1, Rule 2, Rule 4, Rule 8, Rule 16, Rule
32, Rule 64, Rule 128, and Rule 256), and their combinations shown in Figure 8, are used
to accomplish both image translation and density conserving throughout the hybrid CA
evolution.

After implementing, in the first two stages depicted in Figures 8 and 9, suitable
evolution rules on the initial lattice configuration, the hybrid CA generates an intermediate
configuration that includes both 0 s and 1 s. The hybrid CA will then make its classification
decision on the basis of the intermediate density. This last part of the algorithm, referred to
as the decision stage, is depicted in Figure 10.
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As shown in Figure 11a, for a hybrid CA with an odd dimension, there are only two
viable choices: either the pattern is predominantly dense in 0 s or predominantly dense in
1 s. In this scenario, only by examining the value of the middle cell, C[dim+1/2, dim+1/2], can
we decide their densities.
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For an even dimension hybrid CA, Figure 11b, the density classification decision is
made by reading the values of the two cells located in the center of the secondary diagonal
matrix data structure. It is easy to prove that the values of two consecutive cells in the
center of the secondary diagonal matrix can never be 01 after the computational stage of
the DCP algorithm. Based on this observation, the combination of the two cells could be:
00 and in this case the image is dense in 0′s; 10 and in this situation the image has equal
density in 0′s and 1′s; 11 and in this case the image is dense in 1′s.

3. Implementation of the Proposed Hybrid CA Solution

In this section, we present the implementation of the already described algorithm
based on hybrid CA for solving the DCP.

To verify the behavior of the proposed DCP system, two main modules were imple-
mented, the CA rules simulator and the entire hybrid CA used to solve the DCP. Both
modules are coded in the C# programming language available in the Visual Studio Commu-
nity 2022 integrated development environment (IDE), 64-bit version, and run on a laptop of
type ASUS GL552VW with an i7-6700HQ processor (frequency 2.6 GHz) and 16 GB RAM
and using a Windows 10 Pro 64-bit operating system.

First of all, we implement the CA rules simulator algorithm in C# in accordance with
the logic presented in the rule-building stage shown in Figure 8. As an example, the
function named UseRules (Rule64_Rule1_Rule4) implies that rules 64, 1, and 4 are applied
to the two-dimensional CA cells (see explanations in the previous chapter). These rules
can be used to move the 1′s values to the bottom-right direction in the matrix and, in
consequence, the 0′s values will be moved to the top-right direction.

Figure 12 shows the two-dimensional lattice of cells and the variants of applying rules
64, 1, and 4.
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Figure 12. (a) CA with a central cell in state 1 and diagonal cells with values 01 implies the use of
rule 1; (b) CA with a central cell in state 1 and diagonal cells with values 10 implies the use of rule 4;
(c) CA with diagonal cells ABC other than 101 or 110 implies the use of rule 64.

In Figure 12, the asterisk (*) indicates that the cell could be in any state, which could
be either 0 or 1.

The general algorithm used to solve the DCP is given next.
1. Input: Load the hybrid CA with a 2D arbitrary binary image of dimension (dim x dim). The

global configuration of the CA represents the initial image to be processed.
2. Rule controller: use general rules according with Figure 12c and only for boundary cells

in the translation direction of rule B:

If (A=1) then use rule 1 and if (A=0) then use rule B

3. Rule controller: all other cells of the hybrid CA

If (the states of the three neighborhood cells in the translation direction of rule B is 011) then use
rule 1. That means density conserving.
Else if (the states of the three neighborhood cells in the translation direction of rule B is 110) then
use rule C. This means that 0 s will be moved in the translation direction of rule C.
Else (That means the states of the three neighborhood cells in the translation direction of rule B is
110) then use rule B. This means that 1 s will be moved in the translation direction of rule B.
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4. Output: The new matrix data structure representing the new configuration of the cells of
the CA (effectively rendering the new image).

For clarity, as an example, let us consider the implementation of the UseRules method,
specifically Rule64_Rule1_Rule4. We’ve encoded the logic described in the general algo-
rithm presented above and depicted in Figure 12, along with the algorithm illustrated in
Figure 9. The C# source code for function UseRules64_1_4 is as follows:

private void UseRules64_1_4()
{
//C is the matrix data structure used to store the cells of the CA;
//intermed is the intermediate matrix data structure used to store the intermediate

//state of the CA; dim is the dimension of the CA.
for (int i = 1; i < dim−1; i++)
{
// apply one of the rules 64, 1, or 4 depending on the state of the cells
for (int j = 1; j < dim−1; j++)
{
//for the last line or the last column
if (i == dim−2 || j == dim−2)
{
if (C[i, j] == 1) //apply rule 1
intermed[i, j] = C[i, j];
else
//apply rule 64
intermed[i, j] = C[i−1, j−1];
}
else // for all the other cells of the CA
{
if (C[i + 1, j + 1] == 1 && C[i, j] == 1 && C[i−1, j−1] == 0) {
intermed[i, j] = C[i, j]; //apply rule 1
}
else if (C[i + 1, j + 1] == 0 && C[i, j] == 1 && C[i−1, j−1] == 1) {
intermed[i, j] = C[i + 1, j + 1]; //apply rule 4
}
else {
//apply rule 64 for all other combinations
intermed[i, j] = C[i−1, j−1];
}
} } } }
There are several working scenarios between the cells of the CA, but we simulate

the comportment of the CA and select for the final implementation only the variant in
which the two essential features are achieved: density conserving and translation of the
information stored in the cells of the CA through the lattice.

4. Results

In this section, we evaluate the previously described and implemented algorithm based
on hybrid CA for solving the DCP by conducting experiments, gathering and interpreting
the results obtained.

Figure 13 shows the results of applying UseRules (Rule64_Rule1_Rule4) to an image
with a configuration of 6 by 6 cells. The extra border cells are all set to 0—null boundary
conditions.
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Figure 13. (a) Initial configuration (image) of the CA; (b) Configuration of the CA after one evolution
step; (c) Configuration of the CA after three evolution steps; (d) Configuration of the CA after five
evolution steps (Final image state).

As can be seen in Figure 13, when applying rules 64, 1, or 4, as per the previously
outlined algorithm, the initial image undergoes transformation, segregating all occurrences
of 1′s from 0′s and relocating them to the bottom right of the image. At the same time, the
application of the evolution rules does not change the initial density of 1 s and 0 s but only
ensures the translation of the information stored in the lattice. Of course, this is just one
possible example, but we ran numerous tests with different initial states of the image, and
all the results obtained were correct.

In the same way, all the combinations of rules presented in the computational stage—
Figure 9—can be applied. An illustrative example of the application of all the rule combina-
tions described in computational stage is provided in Figure 14.
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(a) (b) 

Figure 14. (a) Initial image of the CA; (b) Image of the CA after an evolution step (computational stage:
UseRules (Rule64_Rule1_Rule4) + UseRules (Rule256_Rule1_Rule16)); (c) The image of the CA after
the second step of evolution (computational stage: UseRules (Rule16_Rule1_Rule256) + UseRules
(Rule128_Rule1_Rule8) + UseRules (Rule32_Rule1_Rule2)); (d) The image of the CA after the third
step of evolution (computational stage: UseRules (Rule256_Rule1_Rule16)) and decision stage.

Figure 14b–d show the output images produced by the two-dimensional CA algorithm
assuming an initial CA of size 10. In Figure 14d, at the decision stage, because the values of
the two cells located in the center of the secondary diagonal matrix data structure are “00”,
the conclusion is that the image is dense in 0′s.

The entire hybrid CA used to solve the DCP uses the logic presented in Figure 9, and
each time the evolution rules are applied, a new image is obtained. Different outputs of the
CA configuration matrix self-explain how the algorithm works.

Figure 15 illustrates a relevant example of a demonstrative task applied to a standard
input CA image.

Consistent with the algorithm described here, which reflects the bottom-right decision
as shown in Figure 16a, the same logic could be applied, this time using the top-right rules,
allowing us to classify the images as shown in Figure 16b. The two algorithms, bottom-right
and top-right, are equivalent and lead to the same conclusion regarding the density of the
original image.
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Figure 16. (a) Final image of the CA with random initial image and decision for the bottom-right
solution; (b) Final image of the CA with the same initial image as in case (a) and decision for the
top-right solution.
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Figure 16a,b show the perfect correlation between the two CA solutions, bottom-right
and top-right, to the DCP.

5. Discussion

In this section, we assess our approach in comparison to established DCP solving
techniques, highlighting the primary key potential benefits as outlined below.

Instead of operating over a complete solution space (as presented, for instance, in
the references [7,8,12,16,19,37]), the method presented here focuses on a limited set of CA
evolution rules (specifically nine rules, detailed in Table 2 and Figure 9) and only six combi-
nations thereof (refer to Figure 9), where optimal solutions are located. Consequently, this
streamlines the design process, making it more straightforward and more efficient. Unlike
some existing methods, where increasing the radius r (see the neighborhood structure of the
CA and the correlation between the size of the CA and the neighborhood dimension) results
in a potential exponential expansion of rule spaces (posing the potential of combinatorial
explosion), our approach excels by minimizing the number of potential solutions, thereby
enhancing performance.

Certainly, examining both individual rules and their combinations enhances our
understanding of the computations performed by CA and deepens our understanding of
the resulting emergent computations.

Above all, the main objective of solving the DCP is to better understand the limits
of the CA. It can be noted that for a square configuration of the CA of size dimxdim, the
presented algorithm can solve the DCP, but for an arbitrary configuration of the CA (or any
other form of image: concave or convex, parallelogram, etc., or even discontinuous images)
of size axb, the problem has to be studied further, because in these scenarios no diagonal
region for taking the decision can be obtained. Therefore, when dealing with any arbitrary
configurations of CA, the algorithm outlined in this paper needs to be adapted. One
approach could involve partitioning the CA lattice into equally sized regions. Subsequently,
the evolution rules can then be selected and applied to these regions to segregate and
differentiate the occurrences of 1′s and 0′s within each region. Following this segregation
process, a classification decision can be made.

6. Conclusions

This paper introduces an approach for the adoption and application of models that
rely solely on local interactions and without a central processing unit, as hybrid CA are,
dedicated to solving the DCP. The hybrid CA proposed model is a general one because
it can be scaled to a larger or a smaller number of cells and is based on the three related
stages named: rule building, computation, and decision.

The findings from this study strongly indicate that exploring CA is highly worthwhile
and offers a promising avenue for future research endeavors. The methodology used to
develop the CA solution for DCP showcased here could, with slight adjustments, prove
useful to tackle other mathematical or physical problems, such as object classification (for
example, in the case of discontinuous images, this solution could be useful to compute the
density of objects on a conveyor belt and then evaluate the density of each configuration
and then detect objects), forming and then separating clusters with different values, two-
dimensional filtering, clustering noise in different images, and so forth. In addition, another
direction is the possibility of creating a fully parallel version of the described hybrid CA
algorithm using reconfigurable hardware (e.g., FPGA devices).
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