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Abstract: The number of failures serves as a critical indicator that dynamically impacts the reliability
of self-announcing failure products, making it highly practical to incorporate the failure count into
reliability management throughout the entire product life cycle. This paper investigates compre-
hensive methodologies for effectively managing the reliability of self-announcing failure products
throughout both the warranty and post-warranty stages, taking into account factors such as the
failure count, mission cycles, and limited time duration. Three renewable warranty strategies are
introduced alongside proposed models for post-warranty replacements. By analyzing variables
like the failure number, mission cycles, and time constraints, these proposed warranties provide
practical frameworks for efficient reliability management during the warranty stage. Additionally, the
introduced warranties utilize cost and time metrics to extract valuable insights that inform decision
making and enable effective reliability management during the warranty stage. Moreover, this study
establishes cost and time metrics for key post-warranty replacements, facilitating the development
of individual cost rates and model applications in other post-warranty scenarios. Analyses of the
renewable free-repair–replacement warranties demonstrate that establishing an appropriate number
of failures as the replacement threshold can effectively reduce warranty-servicing costs and extend
the coverage duration.

Keywords: failure number; mission cycles; post-warranty replacement; renewable free-repair–
replacement warranty

1. Introduction

Warranty strategies and post-warranty maintenance models are two types of indispens-
able tools to manage the life-cycle reliability of products. Manufacturers design warranty
strategies and utilize them to effectively manage the warranty-stage reliability. Consumers
develop post-warranty maintenance models and employ them to effectively manage relia-
bility beyond the warranty period. Due to their crucial roles in managing product life-cycle
reliability through symmetrical actions, both warranty strategies and post-warranty main-
tenance models have been extensively researched from various perspectives.

Through an extensive analysis of the existing literature, researchers have designed
warranty strategies and formulated post-warranty maintenance models to efficiently man-
age the life-cycle reliability of two distinct product categories. The first type of product is
known as a self-announcing failure product, where failure is self-declared by the loss of one
or more functionalities. For instance, when a voltage is applied, and the electromotor fails to
start, it indicates a loss of functionality, categorizing the electromotor as a self-announcing
failure product. The second type of product is referred to as a degradation-based failure
product, where failure is initiated when the degradation level falls below or exceeds a
failure threshold. For instance, as the wireless network coverage degrades due to usage, the
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corresponding router will fail when the coverage falls below a specified threshold (failure
threshold). This categorizes the router as a degradation-based failure product.

The failure processes of self-announcing failure products are often represented us-
ing one or more lifetime-based distribution functions, depending on the specific failure
mechanism. For example, Zhang and Xie [1] employed a Weibull distribution to model
lifetime data as random variables and examined parameter estimation methods for the
upper truncated Weibull distribution. Similarly, Ducros and Pamphile [2] utilized a Weibull
mixture model to represent the lifetime data of a two-component mixture and proposed a
Bayesian bootstrap method for parameter estimation. The failure processes of degradation-
based failure products are characterized as one or more stochastic degradation processes.
For example, Song and Cui [3], Wang et al. [4], Ye and Xie [5], Qiu and Cui [6], and Van
et al. [7] modeled the failure processes of degradation-based failure products as a Gamma
process; Zhang et al. [8], Zhou et al. [9], Ye et al. [10], Mukhopadhyay et al. [11], and
Lu et al. [12] modeled the failure processes of degradation-based failure products as a
Markov/Wiener process; and Guo et al. [13] and Wang et al. [14] modeled the failure
processes of degradation-based failure products as an Inverse Gaussian process.

Three warranty strategies, which are based on maintenance cases, have been designed
to manage the warranty-stage reliability of self-announcing failure products. One warranty
strategy is the free repair (i.e., minimal repair) warranty (FRW). In this strategy, minimal
repairs are performed without affecting the product’s failure rate, and all costs associated
with failure removal are borne by the manufacturers (see Chen et al. [15]; Ye et al. [16]; and
Qiao et al. [17]). Another warranty strategy is the preventive maintenance warranty (PMW),
wherein preventive maintenance (PM) is performed in the form of periodic or nonperiodic
time/usage intervals to improve warranty-stage reliability and enhance availability (see
Wang et al. [18] and Su et al. [19]). Under this strategy, when a product experiences its first
failure, it is replaced with a new, identical product that is sold under the same warranty
strategy or a different one with a nonrenewable warranty region (see Liu et al. [20]; Wang
et al. [21]; Rao [22]; and Wang et al. [23]). For degradation-based failure products, both RWs
have been designed to manage their reliability. For example, using a stochastic degradation
process to model the failure processes of degradation-failure products, Shang et al. [24]
proposed a RW for managing the warranty-stage reliability of degradation-failure products;
likewise, Zhang et al. [25] introduced and modeled a condition-based nonrenewable RW.

Numerous post-warranty maintenance models have been developed based on mainte-
nance cases to manage the reliability of self-announcing failure products after the warranty
period, which can be categorized into the following categories: One prominent type
of model is the replacement model, wherein age replacements, periodic replacements,
and block replacements have been used to manage the post-warranty reliability of self-
announcing failure products (see Liu et al. [26] and Park and Pham [27]). Another type
of model is the preventive maintenance (PM) model, which utilizes either periodic or
non-periodic maintenance to manage the post-warranty reliability of self-announcing fail-
ure products (see Park et al. [28]). The combination model, as a third type, integrates
both the PM and replacement models to manage the post-warranty reliability of self-
announcing failure products (see Shang et al. [29]). Post-warranty maintenance models
for degradation-based failure products are also predominantly in the form of combination
models, combining condition-based replacement and PM strategies to manage their reli-
ability after the warranty period. For example, Shang et al. [24] proposed a combination
model, integrating condition-based replacement and PM for managing the post-warranty
reliability of degradation-failure products.

From the perspectives of strategy/model applications, both warranty strategies and
post-warranty maintenance models for managing the life-cycle reliability of degradation-
failure products rely on a range of digital technologies, such as big data, cloud computing,
artificial intelligence, the Internet of Things (IoT), blockchain, and 5G technologies. This is
because digital technologies enable the monitoring and logical processing of degradation
data. Furthermore, digital technologies enable the precise monitoring and recording of
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mission cycles and failure information for self-announcing failure products. For instance,
digital technologies enable the monitoring and transfer of mission cycles and failure infor-
mation of new-type charging piles to equipment ledgers through a management system.
Similarly, the integration of digital technologies into the management system of new-type e-
bikes allows for the monitoring and recording of the mission cycles and failure information
specific to these e-bikes.

The failure number of self-announcing failure products is a crucial measure for assess-
ing changes in reliability. Specifically, the number of failures significantly impacts both the
maintenance cost and the duration of servicing during the warranty and post-warranty
stages. Although Liu and Wang [30] have used the failure number as the warranty term,
there are three core focuses that have not been explored: 1⃝ the failure number has not been
used as the replacement threshold for the renewable free-replacement warranty (RFRW),
which belongs to the RW type mentioned above; 2⃝ both the failure number and mission
cycles have not been incorporated into the terms of post-warranty maintenance models;
and 3⃝ the impact of using the failure number as the replacement threshold for RFRWs in
managing the warranty-stage reliability of self-announcing failure products, considering
mission cycles, has not been investigated.

This study focuses on self-announcing failure products and presents three renewable
warranties from the manufacturers’ points of view to effectively manage the reliability of
these products during the warranty stage. The first renewable warranty involves a limited
failure number that serves as the replacement threshold within the warranty period, which
is named a renewable free-repair–replacement warranty (RFRRW). The second renewable
warranty, referred to as a two-dimensional, renewable free-repair–replacement warranty
first (2DRFRRWF), incorporates two restrictions: the warranty period and limited mission
cycles. It still utilizes the limited failure number as the replacement threshold within the
warranty coverage, and the warranty coverage is limited by the condition ‘whichever
occurs first’. The third renewable warranty, named the two-dimensional, renewable free-
repair–replacement warranty last (2DRFRRWL), is introduced by modifying the condition
‘whichever occurs first’ to ‘whichever occurs last’. These three warranties are formulated
considering both cost and time measures, aiming to provide valuable insights for effectively
managing the warranty stage reliability of self-announcing failure products subject to
mission cycles.

In the context of using the boundaries of the 2DRFRRWF region as symmetrical
points to divide the life cycle into warranty and post-warranty stages, two post-warranty
replacement models are proposed and developed from a consumer perspective to effectively
manage the reliability during the post-warranty stage, called post-warranty reliability. The
first post-warranty replacement model is proposed and modeled by incorporating the
failure number, mission cycle number, and planned time into the post-warranty stage.
Because these three parameters are considered as decision variables and ‘whichever occurs
first’ can restrict the replacement coverage, this replacement model is referred to as trivariate
random replacement first (TRRF). By setting the values of decision variables, two variations
of TRRF, i.e., bivariate random replacement first (BRRF) and bivariate random discrete
replacement first (BRDRF), are presented. The second post-warranty replacement model is
obtained by changing ‘whichever occurs first’ to ‘whichever occurs last’, which is named a
trivariate random replacement last (TRRL). Similarly, two variations of TRRL, i.e., bivariate
random replacement last (BRRL) and bivariate random discrete replacement last (BRDRL),
are presented by setting values of decision variables. Utilizing all the presented warranty
strategies and selected proposed post-warranty replacement models as representatives, a
numerical analysis is conducted to extract valuable insights.

The novel aspects of this paper are summarized as follows: (a) the RFRRW is modeled
to explore the impact of a limited failure number on the warranty coverage and to identify
its benefits; (b) the 2DRFRRWF and 2DRFRRWL, are designed and modeled, while also
uncovering their advantages in using a limited failure number as the replacement threshold
during warranty coverage; (c) the TRRF, TRRL, BRDRF, and BRDRL are defined and
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modeled to effectively manage the post-warranty reliability of self-announcing failure
products subject to mission cycles, which is a topic that has received little attention in
the existing literature; and (d) the solutions proposed in this paper not only facilitate the
advancement of warranty theory but also represent a novel exploration of warranty models
amidst the backdrop of digital transformation.

The paper’s structure is organized as follows: Section 2 shows the designs and models
of three renewable warranties by incorporating some of the limited failure number, limited
mission cycles, and warranty period or all into the classic RFRW. In Section 3, two trivariate
replacement models are designed and modeled to manage the post-warranty reliability,
and some of their variants are presented by setting parameter values. Section 4 shows the
analyzed numerically representative models. Section 5 concludes the paper.

2. The Design and Modeling of Renewable Warranties

The paper relies on the following commonly used assumptions: the self-announcing
failure product, such as an automatically guided vehicle and logistics robot, carries goods at
cycles, called mission cycles, throughout the whole paper. The mission cycles Yi (i = 1, 2, . . .)
are random variables following a memoryless identical distribution function G(y), where
y is a realization of Yi. Let F(x) = 1 − exp

(
−
∫ x

0 r(u)du
)

be the distribution function of
the arrival time X of the first failure, where r(u) = α(u)β with α (α > 0) and β (β > 0)
is the failure rate function. In particular, the products mentioned hereinafter are referred
to as self-announcing failure products, and vice versa, and the repair and replacement
are instantaneous.

2.1. Design and Modeling of Warranty A

Denoted m by a limited non-negative integer and denoted w by a non-negative con-
stant, the first warranty includes the following terms:

• If the mth failure occurs before the warranty period w, then the failed product is replaced as a
new identical product sold under the present warranty, which is terminated when the mth fail-
ure does not occur until the warranty period w;

• Minimal repairs are used to remove all failures before replacement, and manufacturers com-
pletely absorb the costs of the repair and replacement.

Obviously, this warranty can be divided into the following core aspects: the warranty
is renewable; the repair and replacement are free to consumers; limited repairs, i.e., m − 1
repairs, are considered; and the mth failure is set as the replacement threshold. In view
of these, this warranty is called a renewable free-repair–replacement warranty (RFRRW).
Such a RFRRW is explicitly displayed in Figure 1.
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Let Tm be the arrival time of the mth failure, which can be computed by summing
interval times between failures; then, the distribution and reliability functions of Tm can

be modeled as Fm(t) = Pr{Tm ≤ t} = 1 −
m−1
∑

k=1
Qk(t) and Fm(t) =

m−1
∑

k=1
Qk(t), respectively,
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where Qk(t) is the probability that k failures occur exactly in the interval [0, t] and satisfies

Qk(t) =
(∫ t

0 r(u)du
)k

exp(−
∫ t

0 r(u)du)/k!. The replacement is triggered when the failed
product has undergone m − 1 failures, which have been removed by means of minimal
repairs. Let cm and cr be the unit repair cost and unit replacement cost, respectively.
Because these two costs are borne by the manufacturer, the total cost caused by the unit
replacement is given by (m − 1)cm + cr. In addition, for the product that goes through the
RFRRW during the warranty period w, the mean value of the failure number is calculated

as
m−1
∑

k=0
kQk(w). Obviously, the replacement process caused by the RFRRW conforms to

the characteristics of the geometric distribution. By using the method to calculate the
expectation of geometric variables, the warranty-servicing cost WCA caused by the RFRRW
can be obtained as

WCA =
∞

∑
i=1

(Fm(w))i−1Fm(w)×
(
(i − 1)((m − 1)cm + cr) + cm

m−1

∑
k=0

kQk(w)

)
=

Fm(w)((m − 1)cm + cr)

Fm(w)
+ cm

m−1

∑
k=0

kQk(w). (1)

Let TA
i be the arrival time of the mth failure of the ith product that is replaced before

the warranty period w; then, the warranty-servicing time WSA caused by the RFRRW can
be modeled as

WSA =
∞

∑
j=1

(Fm(w))j−1Fm(w)×
(

j−1

∑
i=0

TA
i + w

)
=

Fm(w)

Fm(w)
× E[TA

i ] + w =
∫ w

0
Fm(x)dx/Fm(w), (2)

where E[TA
i ] =

∫ w
0 xdFm(x)/Fm(w).

Because lim
m→∞

Fm(w)((m − 1)cm + cr)/Fm(w) = 0 (whose proof has been provided in

Appendix A) and lim
m→∞

m−1
∑

k=0
kQk(w) =

∫ w
0 r(u)du, m → ∞ can rewrite WCA as

lim
m→∞

WCA = cm

∫ w

0
r(u)du. (3)

When m → ∞ , the mth failure is not set as the replacement threshold, and the manu-
facturers absorb the costs of removing all failures before w. The characteristics mentioned
align with the criteria of the classical FRW (CFRW), as described by Chen et al. [15] and Ye
et al. [16]. Therefore, m → ∞ can reduce the RFRRW to the CFRW with a servicing cost
given by lim

m→∞
WCA.

Likewise, the warranty-servicing time caused by the CFRW can be obtained as

lim
m→∞

WSA = w. (4)

Obviously, m → 1 makes WCA, which is rewritten as

lim
m→1

WCA = F(w)cr/F(w). (5)

The first failure rather than the mth failure is set as the replacement threshold when
m = 1. Therefore, m = 1 can reduce the RFRRW to the classic RFRW (CRFRW) (see Liu
et al. [20]), whose servicing cost is given by lim

m→1
WCA.

Similarly, the warranty-servicing time caused by the CRFRW can be given by

lim
m→1

WSA =
∫ w

0
F(x)dx/F(w). (6)

One of the differences between the RFRRW and CRFRW is that the mth failure is
set as the replacement threshold for the RFRRW, and inversely, the first failure is set
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as the replacement threshold for the CRFRW. When the repair cost cm is smaller, the
warranty-servicing cost WCA caused by the RFRRW is less than the warranty-servicing
cost lim

m→1
WCA caused by the CRFRW. However, when the repair cost cm is greater, the

above result does not necessarily hold. Exploring the relationships among cm, m, and
WCA is a practical need. In view of this, Proposition 1 is obtained as follows, wherein

σ(m) = Fm(w)
m−1
∑

k=0
kQk(w)− Fm(w)(m − 1).

Proposition 1. The relationships among cm, m, and WCA are summarized as follows:

• if cm
cr

= Fm(w)
σ(m)

, then the warranty-servicing cost WCA caused by the RFRRW has a minimum
value at m, satisfying such an equation;

• if cm
cr

> Fm(w)
σ(m)

, then the warranty-servicing cost WCA caused by the RFRRW increases, with
respect to m, from the minimum value to the warranty-servicing cost lim

m→1
WCA caused by the

CFRW, wherein m satisfies such an inequation;
• if cm

cr
< Fm(w)

σ(m)
, then the warranty-servicing cost WCA caused by the RFRRW decreases,

with respect to m, from the warranty-servicing cost lim
m→1

WCA caused by the CRFRW to the

minimum value, where m satisfies such an inequation.

The proof of Proposition 1 is provided in Appendix B.
This proposition implies that the minimum value or monotonicity of the warranty-

servicing cost WCA caused by the RFRRW is dependent on the relationships among m, cr,
and when other parameters are fixed.

Proposition 2. The warranty-servicing time WSA caused by the RFRRW decreases, with respect
to m, from the warranty-servicing time lim

m→1
WSA caused by the CRFRW to the warranty-servicing

time lim
m→∞

WSA caused by the CFRW.

The proof of Proposition 2 is provided in Appendix C.
This proposition implies that the value of the function WSA, with respect to m, has

maximum and minimum boundaries, which are
∫ w

0 F(x)dx/F(w) and w, respectively.
By combining Propositions 1 and 2, the following results can be obtained: 1⃝ com-

pared with the CRFW, when m satisfying cm/cr = Fm(w)/σ(m) is designed as a re-
placement threshold, the RFRRW can realize the objectives of reducing the cost (i.e., the
warranty-servicing cost, similarly hereinafter) and lengthening period (i.e., the warranty-
servicing time, similarly hereinafter); and 2⃝ compared with the CRFRW, when m satisfying
cm/cr = Fm(w)/σ(m) is designed as a replacement threshold, the RFRRW can realize the
objective of reducing the cost but cannot realize the objective of lengthening period.

2.2. Design and Modeling of Warranty B

Denoting a limited non-negative integer by n and using the parameters defined above,
the second warranty includes the following terms:

• If the mth failure occurs before the end of the nth mission cycle or the warranty period w,
whichever occurs first, then the failed product is replaced as a new identical product sold under
the present warranty, which is terminated when the mth failure does not occur until the end of
the nth mission cycle or the warranty period w, whichever occurs first;

• Minimal repair removes all failures before replacement, and manufacturers absorb all costs of
the repair and replacement, which are the same as the second term of the RFRRW.

Obviously, the core aspects of such a warranty include the following: the warranty is
renewable, the repair and replacement are free to consumers, and the mth failure is used as
the replacement threshold; these are the same as the core aspects of the RFRRW; ‘whichever
occurs first’ is used, and the end of the nth mission cycle and the warranty period w become
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two warranty limitations, which are different from the terms of the RFRRW. In view of
these, such a warranty is called a two-dimensional, renewable free-repair–replacement
warranty first (2DRFRRWF).

The 2DRFRRWF requires that if the mth failure occurs before the end of the nth mission
cycle or the warranty period w (whichever occurs first), then the replacement is triggered; if
the mth failure does not occur until the end of the nth mission cycle or the warranty period
w (whichever occurs first), then such a product goes through this warranty at the end of
the nth mission cycle or the warranty period w. The probability Pf1 that the former case
occurs is given by

Pf1 = Pr{Tm < Min(w, Sn)} =
∫ w

0
G(n)

(x)dFm(x). (7)

The latter case includes two subcases: the product goes through the 2DRFRRWF during
the warranty period w, whose occurrence probability p fa can be given by

p fa = Pr{w < Sn, w < Tm} = G(n)
(w)Fm(w); and the product goes through the 2DR-

FRRWF at the end of the nth mission cycle, whose occurrence probability p fb
can be given

by p fb
= Pr{w > Sn, Tm > Sn} =

∫ w
0 Fm(s)dG(n)(s). By summing up both, the probability

Pf2 that the latter case occurs is obtained as

Pf2 = p fa + p fb
= 1 −

∫ w

0
G(n)

(s)dFm(s). (8)

Obviously, Pf1 + Pf2 = 1.
The case of the product going through the 2DRFRRWF can be classified into two

subcases: (1) the product goes through the 2DRFRRWF during the warranty period w, and
(2) the product goes through the 2DRFRRWF at the end of the nth mission cycle. The total

repair cost caused by the first subcase is cm
m−1
∑

k=0
kQk(w), and the total repair cost caused

by the second subcase is cm
m−1
∑

k=0
kQk(Sn). The occurrence probability of the first subcase is

expressed as G(n)
(w), and the occurrence probability of the second subcase is expressed as

G(n)(w). By means of these two probabilities, the total repair cost TRCB for the product
that goes through the 2DRFRRWF can be given by

TRCB = cm

(
G(n)

(w)×
m−1

∑
k=0

kQk(w) +
m−1

∑
k=0

∫ w

0
kQk

(
s)dG(n)(s)

)
= cm

∫ w

0
G(n)

(s)d

(
m−1

∑
k=0

kQk(s)

)
. (9)

Similar to obtaining Equation (1), the warranty-servicing cost WCB caused by the
2DRFRRWF can be obtained as

WCB =
∞
∑

j=1

(
Pf1

)j−1
Pf2 × ((j − 1)((m − 1)cm + cr) + TRCB) =

Pf1
×((m−1)cm+cr)

Pf2
+ TRCB

=
((m−1)cm+cr)

∫ w
0 G(n)

(x)dFm(x)

1−
∫ w

0 G(n)
(s)dFm(s)

+ cm
∫ w

0 G(n)
(s)d

(
m−1
∑

k=0
kQk(s)

)
.

(10)

The working time of the product in the first case is w, and the working time of the prod-
uct in the second case is Sn. The expected value E[Sn] of Sn is given by
E[Sn] =

∫ w
0 sFm(s)dG(n)(s)/

∫ w
0 Fm(s)dG(n)(s). By using the expectation formula, the

warranty-servicing time WSB caused by the 2DRFRRWF can be modeled as

WSB = E

[
∞
∑

j=1

(
Pf1

)j−1
p fa ×

(
j−1
∑

i=0
TB

i + w

)
+

∞
∑

j=1

(
Pf1

)j−1
p fb

×
(

j−1
∑

i=0
TB

i + Sn

)]
=

Pf1
Pf2

× E
[
TB

i
]
+

p fa
Pf2

× w +
p fb
Pf2

× E[Sn]

=
∫ w

0 G(n)
(s)Fm(s)ds

1−
∫ w

0 G(n)
(s)dFm(s)

.

(11)
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where TB
i is the arrival time of the mth failure of the ith product that is replaced before the

warranty period w or the end of the nth mission cycle, and the expected value E
[
TB

i
]

of TB
i

is given by E
[
TB

i
]
=
∫ w

0 xG(n)
(x)dFm(x)/

∫ w
0 G(n)

(x)dFm(x).

Because lim
n→∞

G(n)
(s) = 1, n → ∞ makes WCB, which is rewritten as

lim
n→∞

WCB = Fm(w)((m − 1)cm + cr)/Fm(w) + cm

m−1

∑
k=0

kQk(w). (12)

When n → ∞ , the end of the nth mission cycle never occurs. This means that the
number of dimensions is reduced when n → ∞ . Therefore, n → ∞ reduces the 2DRFRRWF
to the RFRRW, whose servicing cost is given by lim

n→∞
WCB, which is the same as Equation (1).

Likewise, the warranty-servicing time caused by the RFRRW is obtained as

lim
n→∞

WSB =
∫ w

0
Fm(s)ds/Fm(w), (13)

which is the same as Equation (2).

Because lim
m→∞

∫ w
0 G(n)

(x)dFm(x) × ((m − 1)cm + cr)/
(

1 −
∫ w

0 G(n)
(s)dFm(s)

)
= 0

(whose proof is similar to the proof in Appendix A) and lim
m→∞

m−1
∑

k=0
kQk(s) =

∫ s
0 r(u)du,

m → ∞ can rewrite WCB as

lim
m→∞

WCB = cm

∫ w

0
G(n)

(s)r(s)ds. (14)

When m → ∞ , the mth failure is not set as the replacement threshold, and the manu-
facturers absorb the costs of removing all failures before the warranty period w or the end
of the nth mission cycle, whichever occurs first. These characteristics accord with the terms
of two-dimensional free-repair warranty first (2DFRWF) (see Shang et al. [31]). Therefore,
m → ∞ reduces the 2DRFRRWF to the 2DFRWF, whose servicing cost is given by lim

m→∞
WSB.

Similarly, the warranty-servicing time caused by the 2DFRWF can be obtained as

lim
m→∞

WSB =
∫ w

0
G(n)

(s)ds. (15)

Obviously, m → 1 makes WCB, which is rewritten as

lim
m→1

WCB = cr

∫ w

0
G(n)

(x)dFm(x)/
(

1 −
∫ w

0
G(n)

(s)dFm(s)
)

. (16)

When m = 1, the first failure rather than the mth failure is set as the replacement
threshold, and the manufacturers absorb the unit replacement cost of unit failure that
occurs before the warranty period w or the end of the nth mission cycle, whichever occurs
first. These characteristics accord with the terms of the two-dimensional, renewable free-
replacement warranty first (2DRFRWF) (see Shang et al. [31]). Therefore, m = 1 can reduce
the 2DRFRRWF to the 2DRFRWF, whose servicing cost is given by lim

m→1
WCB.

Similarly, the warranty-servicing time caused by the 2DRFRWF can be given by

lim
m→1

WSB =
∫ w

0
G(n)

(s)F(s)ds/
(

1 −
∫ w

0
G(n)

(s)dF(s)
)

. (17)

Similar to the RFRRW, the warranty-servicing cost WCB of the 2DRFRRWF depends on
cm and m. Therefore, exploring the relationships among cm, m, and WCB is necessary, and their
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relationships are provided by Proposition 3, wherein ς(m) =
∫ w

0 G(n)
(s)d

(
m−1
∑

k=0
kQk(s)

)
×(

1 −
∫ w

0 G(n)
(x)dFm(x)

)
− (m − 1)

∫ w
0 G(n)

(s)dFm(s).

Proposition 3. The relationships among cm, m, and WCB are summarized as follows:

• if cm
cr

=
∫ w

0 G(n)
(x)dFm(x)

ς(m)
, then the warranty-servicing cost WCB caused by the 2DRFRRWF

has a minimum value at m, satisfying such an equation;

• if cm
cr

>
∫ w

0 G(n)
(x)dFm(x)

ς(m)
, then the warranty-servicing cost WCB caused by the 2DRFR-

RWF increases, with respect to m, from the minimum value to the warranty-servicing
cost lim

m→∞
WCb caused by the 2DFRWF, wherein m satisfies such an inequation;

• if cm
cr

<
∫ w

0 G(n)
(x)dFm(x)

ς(m)
, then the warranty-servicing cost WCB caused by the 2DRFR-

RWF decreases, with respect to m, from the warranty-servicing cost lim
m→1

WCB caused by the

2DRFRWF to the minimum value, wherein m satisfies such an inequation.

The proof of Proposition 3 is similar to the proof of Proposition 1.

Proposition 4. The warranty-servicing time WSB caused by the 2DRFRRWF decreases, with
respect to m, from the warranty-servicing time lim

m→1
WSB caused by the 2DRFRWF to the warranty-

servicing time lim
m→∞

WSB caused by the 2DFRWF.

The proof of Proposition 4 is similar to the proof of Proposition 2.
By combining Proposition 3 and Proposition 4, some valuable results can be obtained:

1⃝ compared with the 2DFRWF, when m satisfying cm/cr =
∫ w

0 G(n)
(x)dFm(x)/ς(m) is

designed as a replacement threshold, the 2DRFRRWF can realize the objectives of reducing
the cost and lengthening period; 2⃝ compared with the 2DRFRWF, when m satisfying

cm/cr =
∫ w

0 G(n)
(x)dFm(x)/ς(m) is designed as a replacement threshold, the 2DRFRRWF

can realize the objective of reducing the cost while not realizing the objective of lengthen-
ing period.

2.3. Design and Modeling of Warranty C

When the product reliability and warranty limitations are given, and all types of
costs are shouldered completely by the manufacturers, the consumers/users are more
inclined to buy products sold under a warranty with a broader coverage area. In other
words, for the given parameter situations, when the manufacturers shoulder all types of
costs, an increased warranty coverage can boost the sales volume. These signals indicate
that designing warranties with a greater area of warranty coverage to enhance the sales
volume of products is a feasible marketing strategy. In this subsection, to extend the
warranty coverage, the third warranty is designed through an alternative means of ordering
warranty limitations.

In the maintenance scheduling, the method of ‘whichever occurs last’ is an alternative
approach to determine the order of maintenance limitations. In view of this, by revising
‘whichever occurs first’ to ‘whichever occurs last’, the third warranty can be defined
as follows:

• If the mth failure occurs before the end of the nth mission cycle or the warranty period w,
whichever occurs last, then the failed product is replaced as a new identical product sold under
the present warranty, which is terminated when the mth failure does not occur until the end of
the nth mission cycle or the warranty period w, whichever occurs last;

• Minimal repairs remove all failures before replacement, and manufacturers completely absorb
the costs of the repair and replacement, which are the same as the second terms of the RFRRW
and 2DRFRRWF.
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‘Whichever occurs first’ rather than ‘whichever occurs first’ is used to order war-
ranty limitations; hence, this warranty is called a two-dimensional, renewable free-repair–
replacement warranty last (2DRFRRWL).

If the mth failure occurs before the end of the nth mission cycle or the warranty period
w (whichever occurs last), then the replacement is triggered, which is named case a; if the
mth failure does not occur until the end of the nth mission cycle or the warranty period w
(whichever occurs last), then the product goes through such a warranty at the end of the
nth mission cycle or the warranty period w (whichever occurs last), which is named case b.
The probability Pl1 that case a occurs is given by

Pl1 = Pr{Tm < Max(w, Sn)} = Fm(w) +
∫ ∞

w
G(n)

(s)dFm(s). (18)

The occurrence probability Pl2 of case b can be given by

Pl2 = Pr{Tm > Max(Sn, w)} = Fm(w)−
∫ ∞

w
G(n)

(s)dFm(s). (19)

Clearly, Pl1 + Pl2 = 1.
When the product goes through the 2DRFRRWL during the warranty period w, the

total repair cost is cm
m−1
∑

k=0
kQk(w); when the product goes through the 2DRFRRWL at the end

of the nth mission cycle, the total repair cost is cm
m−1
∑

k=0
kQk(Sn). The occurrence probability

that the product goes through the 2DRFRRWL during the warranty period w is given by

G(n)
(w), and the probability that the product goes through the 2DRFRRWL at the end of

the nth mission cycle is given by G(n)(w). By means of these two probabilities, the total
repair cost TRCC for the product that goes through the 2DRFRRWL can be given by

TRCC = cm

(
m−1

∑
k=0

∫ ∞

w
kQk

(
s)dG(n)(s) + G(n)(w)×

m−1

∑
k=0

kQk(w)

)
= cm

(
m−1

∑
k=0

kQk(w) +
∫ ∞

w
G(n)

(s)d

(
m−1

∑
k=0

kQk(s)

))
. (20)

Similar to obtaining Equation (1), the warranty-servicing cost WCC resulting from the
2DRFRRWL can be obtained as

WCC =
∞
∑

j=1

(
Pl1
)j−1Pl2 × ((j − 1)((m − 1)cm + cr) + TRCC) =

Pl1
×((m−1)cm+cr)

Pl2
+ TRCC

=

(
Fm(w)+

∫ ∞
w G(n)

(s)dFm(s)
)
×((m−1)cm+cr)

Fm(w)−
∫ ∞

w G(n)
(s)dFm(s)

+ cm

(
m−1
∑

k=0
kQk(w) +

∫ ∞
w G(n)

(s)d
(

m−1
∑

k=0
kQk(s)

))
.

(21)

Clearly, the inequation
∫ w

0 G(n)
(x)dFm(x) < Fm(w) +

∫ ∞
w G(n)

(s)dFm(s) holds on, the

inequation 1 −
∫ w

0 G(n)
(s)dFm(s) ≥ Fm(w)−

∫ ∞
w G(n)

(s)dFm(s) holds on, and the inequa-

tion
m−1
∑

k=0
kQk(w) +

∫ ∞
w G(n)

(s)d
(

m−1
∑

k=0
kQk(s)

)
>
∫ w

0 G(n)
(s)d

(
m−1
∑

k=0
kQk(s)

)
does as well.

Therefore, the warranty-servicing cost WCB caused by the 2DRFRRWF is less than the
warranty-servicing cost WCC caused by the 2DRFRRWL, i.e.,

WCB < WCC =


((m−1)cm+cr)

∫ w
0 G(n)

(x)dFm(x)

1−
∫ w

0 G(n)
(s)dFm(s)

+cm
∫ w

0 G(n)
(s)d

(
m−1
∑

k=0
kQk(s)

)
 <


(

Fm(w)+
∫ ∞

w G(n)
(s)dFm(s)

)
×((m−1)cm+cr)

Fm(w)−
∫ ∞

w G(n)
(s)dFm(s)

+cm

(
m−1
∑

k=0
kQk(w) +

∫ ∞
w G(n)

(s)d
(

m−1
∑

k=0
kQk(s)

))
, (22)

which implies that compared with ‘whichever occurs first’, ‘whichever occurs last’ enhances
the warranty-servicing cost.
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For the product going through the 2DRFRRWL during the warranty period w, its work-
ing time is w. For the product going through the 2DRFRRWL at the end of the nth mission
cycle, its working time is Sn, with an expected value of
E[Sn] =

∫ ∞
w sFm(s)dG(n)(s)/

∫ ∞
w Fm(s)dG(n)(s). Let TC

i be the arrival time of the mth
failure of the ith product that is replaced before the warranty period w or the end of the
nth mission cycle, whichever occurs last, and the expected value E

[
TC

i
]

of TC
i is given

by E
[
TC

i
]
=
(∫ w

0 sdFm(s) +
∫ ∞

w sG(n)
(s)dFm(s)

)
/
(

Fm(w) +
∫ ∞

w G(n)
(s)dFm(s)

)
. By using

the expectation formula, the warranty-servicing time WSC caused by the 2DRFRRWL can
be modeled as

WSC = E

[
∞
∑

j=1

(
Pl1
)j−1 pla ×

(
j−1
∑

i=0
TC

i + w

)
+

∞
∑

j=1

(
Pl1
)j−1 plb ×

(
j−1
∑

i=0
TC

i + Sn

)]
=

Pl1
×E[TC

i ]+pla×w+plb
×E[Sn ]

Pl2

=
∫ w

0 Fm(x)dx+
∫ ∞

w G(n)
(x)Fm(x)dx

Fm(w)−
∫ ∞

w G(n)
(s)dFm(s)

,

(23)

where pla = G(n)(w)Fm(w) and plb =
∫ ∞

w Fm(s)dG(n)(s).

It is clear for the inequality
∫ w

0 G(n)
(s)Fm(s)ds <

∫ w
0 Fm(x)dx +

∫ ∞
w G(n)

(x)Fm(x)dx
to hold on. By means of the second inequality in the text before Equation (22), obviously
the warranty-servicing time WSC caused by the 2DRFRRWL is greater than the warranty-
servicing time WSB caused by the 2DRFRRWF, i.e.,

WSC > WSB =

∫ w
0 G(n)

(s)Fm(s)ds

1 −
∫ w

0 G(n)
(s)dFm(s)

>

∫ w
0 Fm(x)dx +

∫ ∞
w G(n)

(x)Fm(x)dx

Fm(w)−
∫ ∞

w G(n)
(s)dFm(s)

. (24)

Such an inequality suggests that the use of ‘whichever occurs last’ rather than ‘whichever
occurs first’ can prolong the period of warranty coverage. Thus, manufacturers can boost
their sales volume by using ‘whichever occurs last’ to broaden the scope of warranty
coverage when the product reliability and warranty limitations are given and all types of
costs are shouldered completely by the manufacturers.

Because lim
n→0

G(n)
(s) = 0, n → 0 makes WCC, which is rewritten as

lim
n→0

WCC = Fm(w)((m − 1)cm + cr)/Fm(w) + cm

m−1

∑
k=0

kQk(w). (25)

When n → 0 the end of the nth mission cycle never occurs. This signals that the num-
ber of dimensions is reduced when n → 0 . Therefore, n → ∞ can reduce the 2DRFRRWL
to the RFRRW, whose servicing cost is given by lim

n→0
WCC, which is the same as Equation (1).

Likewise, n → 0 can reduce the warranty-servicing time caused by the 2DRFRRWL to the
warranty-servicing time caused by the RFRRW, i.e.,

lim
n→0

WSC =
∫ w

0
Fm(s)ds/Fm(w), (26)

which is the same as Equation (2).

Because lim
m→1

m−1
∑

k=0
kQk(w) = 0, m → 1 can rewrite WCC as

lim
m→1

WCC =

(
F(w) +

∫ ∞

w
G(n)

(s)dF(s)
)

cr/
(

F(w)−
∫ ∞

w
G(n)

(s)dF(s)
)

. (27)

When m → 1 , the first failure is set as the replacement threshold, and the manu-
facturers absorb the costs of removing all failures before the warranty period w or the
end of the nth mission cycle, whichever occurs last. These characteristics accord with
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the terms of the two-dimensional, renewable free-replacement warranty last (2DRFRWL).
Therefore, m → 1 can reduce the 2DRFRRWL to the 2DRFRWL, whose servicing cost is
given by lim

m→1
WCC. Similarly, the warranty-servicing time caused by the 2DRFRWL can be

obtained as

lim
m→1

WSC =

(∫ w

0
F(x)dx +

∫ ∞

w
G(n)

(x)F(x)dx
)

/
(

F(w)−
∫ ∞

w
G(n)

(s)dF(s)
)

. (28)

Because lim
m→∞

(
Fm(w)+

∫∞
w G(n)

(s)dFm(s)
)
× ((m−1)cm + cr)/

(
Fm(w)−

∫∞
w G(n)

(s)dFm(s)
)
=

0 (whose proof is similar to the proof in Appendix A), m → ∞ makes WCC, which is
rewritten as

lim
m→∞

WCC = cm

(∫ w

0
r(s)ds +

∫ ∞

w
G(n)

(s)r(s)ds
)

. (29)

When m → ∞ , the replacement triggered by the mth failure is removed, and the
manufacturers absorb the cost of removing the unit failure before warranty period w or
the end of the nth mission cycle, whichever occurs last. These characteristics accord with
the terms of two-dimensional free-repair warranty last (2DFRWL) (see Shang et al. [31]).
Therefore, m → ∞ can reduce the 2DRFRRWL to the 2DFRWL, whose servicing cost is
given by lim

m→∞
WCC.

Similarly, the warranty-servicing time caused by the 2DFRWL can be given by

lim
m→∞

WSC = w +
∫ ∞

w
G(n)

(x)dx. (30)

Similar to the RFRRW and 2DRFRRWF, the warranty-servicing cost WCC caused by
the 2DRFRRWL is dependent on cm and m. Therefore, exploring the relationships among
cm, m, and WCC is valuable, and their relationships are provided in Proposition 5, wherein

π(m) =

(
Fm(w)−

∫ ∞

w
G(n)

(s)dFm(s)
)(m−1

∑
k=0

kQk(w) +
∫ ∞

w
G(n)

(s)d

(
m−1

∑
k=0

kQk(s)

))
−
(

Fm(w) +
∫ ∞

w
G(n)

(s)dFm(s)
)
(m − 1)

Proposition 5. The relationships among cm, m, and WCC are summarized as follows:

• if cm
cr

=
Fm(w)+

∫ ∞
w G(n)

(s)dFm(s)
π(m)

, then the warranty-servicing cost WCC caused by the 2DRFR-
RWL has a minimum value at m, satisfying such an inequation;

• if cm
cr

>
Fm(w)+

∫ ∞
w G(n)

(s)dFm(s)
π(m)

, then the warranty-servicing cost WCC caused by the 2DR-
FRRWL increases, with respect to m, from the minimum value to the warranty-servicing
cost lim

m→∞
WCC caused by the 2DFRWL, wherein m satisfies such an inequation;

• if cm
cr

<
Fm(w)+

∫ ∞
w G(n)

(s)dFm(s)
π(m)

, then the warranty-servicing cost WCC caused by the 2DRFR-
RWL decreases, with respect to the warranty-servicing cost lim

m→1
WSCcaused by the 2DRFRWL,

to the minimum value, wherein m satisfies such an inequation.

The proof of Proposition 5 is similar to the proof of Proposition 1.

Proposition 6. The warranty-servicing time WSC caused by the 2DRFRRWL decreases, with
respect to m, from the warranty-servicing time lim

m→1
WSC caused by the 2DRFRWL to the warranty-

servicing time lim
m→∞

WSC caused by the 2DFRWL.

The proof of Proposition 6 is similar to the proof of Proposition 2.
By combining Proposition 5 and Proposition 6, some valuable results can be obtained:

1⃝ compared with the 2DFRWL, when m satisfying cm/cr =
(

Fm(w)+
∫∞

w G(n)
(s)dFm(s)

)
/π(m)
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is designed as a replacement threshold, the 2DRFRRWL can realize the objectives of reduc-
ing the cost and lengthening period; 2⃝ compared with the 2DRFRWL, when m satisfying

cm/cr =
(

Fm(w) +
∫ ∞

w G(n)
(s)dFm(s)

)
/π(m) is designed as a replacement threshold, the

2DRFRRWL can realize the objective of reducing the cost while not realizing the objective
of lengthening period.

3. The Design and Modeling of Post-Warranty Replacements

In practical reliability management, the life cycle can be divided into two distinct
phases: the warranty stage and the post-warranty stage, where the boundaries of the
warranty region are symmetrical points with respect to both. While the aforementioned
warranties effectively manage reliability during the warranty stage, it is imperative for
users to address reliability management during the post-warranty stage as well. From a
symmetrical perspective, implementing post-warranty maintenance models serves as an
effective measure to manage reliability in this phase. In other words, both warranties and
post-warranty maintenance models play a crucial role in managing the life-cycle reliability
through symmetrical actions.

In view of these, this section aims to design and model post-warranty replacements
for managing the reliability during the post-warranty stage, assuming the utilization of
the 2DRFRRWF (referred to as warranty B) to manage the warranty-stage reliability. To
conveniently model post-warranty replacements, the random replacement first/last will
be presented first, which are together integrated with the limited number of failures, the
limited number of mission cycles, and a planned time; then, some variants of the random
replacement first/last will be presented by setting parameter values.

3.1. The Design and Modeling of Post-Warranty Replacement First Models

Let the decision variables M and N be two non-negative integers; let the decision
variable T be a planned time; then, the term of post-warranty replacement first includes
the following terms:

• The product going through the 2DRFRRWF is replaced on the Mth failure occurrence, the end
of the Nth mission cycle, or the planned time T, whichever occurs first;

• Minimal repairs remove all failures before a replacement.

Notes: 1⃝ Each of the three replacement limitations, i.e., the Mth failure, the end of
the Nth mission cycle and the planned time T, can trigger the replacement of the product
through the 2DRFRWF; 2⃝ ‘whichever occurs first’ is used. In view of this, such a post-
warranty replacement model is named a trivariate random replacement first (TRRF).

To facilitate the modeling of the TRRF, we define the replacement cycle as the duration
between the purchase of a new product under the 2DRFRWF and the subsequent replace-
ment of that product in the form of the TRRF by consumers or users. Wang et al. [32], Wang
et al. [33], and Chen et al. [34] used the cost rate as an objective function. Another objective
function is the availability function, which has been used by Qiu et al. [35]; Qiu et al. [36];
Qiu et al. [37]; Qiu and Cui [38]; Qiu et al. [39]; Qiu et al. [40]; Qiu and Cui [41]; Qiu and
Cui [42]; and Qiu et al. [43]. The third objective function in the availability function is the
total cost, which has been used in Zhao et al. [44]; Yang et al. [45]; and Peng et al. [46]. Here,
the cost rate is used to model the CBRMF.

Minimal repairs do not change the failure rate function, and the failure rate func-
tion is dependent on the working time or past age. Therefore, when the product goes
through the 2DRFRRWF during the warranty period w, the failure rate function of such
a product can be modeled as r(w + u). Let TM be the arrival time of the Mth failure
of the product going through the 2DRFRRWF during the warranty period w; let Pj(t|w)
be the probability that j failures occur exactly in the interval [w, t], where Pj(t|w) =(∫ t

0 r(w + u)du
)j

exp(−
∫ t

0 r(w + u)du)/j!. Then, the distribution and reliability functions
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of TM can be modeled as FM(t|w) =
M−1
∑

j=1
Pj(t|w) and FM(t|w) =

M−1
∑

j=1
Pj(t|w). Denoting

Q f1 by the probability that the product going through the 2DRFRRWF during the warranty
period w is replaced at the Mth failure, then q f1 is given by

q f1 = Pr{TM < Min(T, SN)} =
∫ T

0
G(N)

(t)dFM(t|w). (31)

The probability q f2 that the product going through the 2DRFRRWF during the war-
ranty period w is replaced at the end of the Nth mission cycle is given by

q f2 = Pr{SN < Min(TM, T)} =
∫ T

0
FM(s|w)dG(N)(s). (32)

Let q f3 be the probability that the product going through the 2DRFRRWF during the
warranty period w is replaced at the planned time T; then, the probability q f3 is given by

q f3 = Pr{T < Min(TM, SN)} = FM(T|w)G(N)
(T). (33)

Obviously, q f1 + q f2 + q f3 = 1.
For the product going through the 2DRFRRWF during the warranty period w, when it

is replaced at the Mth failure, the number of minimal repairs is M − 1; when it is replaced
at the end of the Nth mission cycle, the number of minimal repairs is less than M − 1;
and when it is replaced at the planned time T, the number of minimal repairs is less than
M − 1. By means of q f j

(j = 1, 2, 3), the total cost TC f1(M, N, T) caused by the TRRF can be
modeled as

TC f1(M, N, T) =
(

cm + c f

)(
(M − 1)

∫ T
0 G(N)

(t)dFM(t|w) +
M−1
∑

j=0

∫ T
0 jPj

(
s|w)dG(N)(s) + G(N)

(T)
M−1
∑

j=0
jPj(T|w)

)
+ cr

=
(

cm + c f

)∫ T
0 G(N)

(t)d

(
(M − 1)FM(t|w) +

M−1
∑

j=0
jPj(t|w)

)
+ cr,

(34)

where c f is the unit failure cost not including the repair cost, and cr is the cost of unit
replacement at any of the Mth failures, the end of the Nth mission cycle, or the planned
time T.

When the product goes through the 2DRFRRWF at the end of the nth mission cy-
cle, the failure rate function of such a product can be modeled as r(Sn + u). Let Pj(t|Sn)
be the probability that j failures occur exactly in the interval [Sn, t], where Pj(t|Sn) =(∫ t

0 r(Sn + u)du
)j

exp(−
∫ t

0 r(Sn + u)du)/j!; then, the related distribution function FM(t|Sn) =

1−
M−1
∑
j=0

Pj(t|Sn). Similar to obtaining Equation (34), for the product going through the 2DR-

RFRWF at the end of the nth mission cycle, the total cost TC f2(M, N, T|Sn) caused by the
TRRF can be obtained as

TC f2(M, N, T|Sn) =
(

cm + c f

)∫ T

0
G(N)

(t)d

(
(M − 1)FM(t|Sn) +

M−1

∑
j=0

jPj(t|Sn)

)
+ cr. (35)

Because the probabilities of the product going through the 2DRRFRWF at the end of

the nth mission cycle and the warranty period w have been given by G(n)(w) and G(n)
(w),

the total cost TC f (M, N, T) caused by the TRRF is given by
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TC f (M, N, T) =
∫ w

0 TC f2(M, N, T|s)dG(n)(s) + G(n)
(w)× TC f1(M, N, T)

=
(

cm + c f

)

∫ w

0 G(n)
(s)d

(∫ T
0 G(N)

(t)d

(
(M − 1)FM(t|s) +

M−1
∑

j=0
jPj(t|s)

))

+
∫ T

0 G(N)
(t)d

(
(M − 1)FM(t) +

M−1
∑

j=0
jPj(t)

)
+ cr,

(36)

where FM(t|0) = FM(t) and Pj(t|0) = Pj(t).
For the product going through the 2DRFRRWF during the warranty period w, the

total time TTf1(M, N, T) caused by the TRRF can be modeled as

TTf1(M, N, T) =
∫ T

0
xG(N)

(x)dFM(x|w) +
∫ T

0
sFM(s|w)dG(N)(s) + FM(T|w)G(N)

(T)× T =
∫ T

0
G(N)

(t)FM(t|w)dt. (37)

For the first product that goes through the 2DRFRRWF at the end of the nth mission
cycle, the total time TTf2(M, N, T|Sn) caused by the TRRF can be obtained by replacing w
in TTf1(M, N, T) as Sn, and the obtained TTf2(M, N, T|Sn) is given by

TTf2(M, N, T|Sn) =
∫ T

0
G(N)

(t)FM(t|Sn)dt. (38)

Similar to obtaining Equation (36), the total time TTf (M, N, T) caused by the TRRF is
given by

TTf (M, N, T) =
∫ w

0
G(n)

(s)d
(∫ T

0
G(N)

(t)FM(t|s)dt
)
+
∫ T

0
G(N)

(t)FM(t)dt, (39)

where FM(t|0) = FM(t).
Using algebraic operations, the average cost rate CR f (M, N, T) can be given by

CR f (M, N, T) =

TFB +
(

cm + c f

)

∫ w

0 G(n)
(s)d

(∫ T
0 G(N)

(t)d

(
(M − 1)FM(t|s) +

M−1
∑

j=0
jPj(t|s)

))

+
∫ T

0 G(N)
(t)d

(
(M − 1)FM(t) +

M−1
∑

j=0
jPj(t)

)
+ cr

WSB +
∫ w

0 G(n)
(s)d

(∫ T
0 G(N)

(t)FM(t|s)dt
)
+
∫ T

0 G(N)
(t)FM(t)dt

, (40)

where TFB represents the expectation value of the total failure cost and can be obtained by
replacing cm and cr in WCB as c f .

When M → ∞ , the average cost rate CR f (M, N, T) is simplified as

lim
M→∞

CR f (M, N, T) = CR f (∞, N, T) =
TFB +

(
cm + c f

)(∫ w
0 G(n)

(s)d
(∫ T

0 G(N)
(t)r(s + t)dt

)
+
∫ T

0 G(N)
(t)r(t)dt

)
+ cr

WSB +
∫ T

0 G(N)
(s)ds

. (41)

The replacement limitation M in the TRRF will not be reached when M → ∞ . There-
fore, M → ∞ simplifies the TRRF to a bivariate random replacement first (BRRF), whose
cost rate is given by Equation (41).

When M → ∞ and N → ∞ , the average cost rate CR f (M, N, T) is simplified as

lim
M → ∞
N → ∞

CR f (M, N, T) =
TFB +

(
cm + c f

)(∫ w
0 G(n)

(s)d
(∫ T

0 r(s + t)dt
)
+
∫ T

0 r(t)dt
)
+ cr

WSB + T
. (42)
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The replacement limitations M and N in the TRRF will not be reached when M → ∞
and N → ∞ . Therefore, M → ∞ and N → ∞ simplify the TRRF as a univariate replace-
ment (UR), whose cost rate is given by Equation (42).

When T → ∞ , the average cost rate CR f (M, N, T) is simplified as

lim
T→∞

CR f (M, N, T) =

TFB +
(

cm + c f

)

∫ w

0 G(n)
(s)d

(∫ ∞
0 G(N)

(t)d

(
(M − 1)FM(t|s) +

M−1
∑

j=0
jPj(t|s)

))

+
∫ ∞

0 G(N)
(t)d

(
(M − 1)FM(t) +

M−1
∑

j=0
jPj(t)

)
+ cr

WSB +
∫ w

0 G(n)
(s)d

(∫ ∞
0 G(N)

(t)FM(t|s)dt
)
+
∫ ∞

0 G(N)
(t)FM(t)dt

. (43)

The replacement limitation T in the TRRF will never be reached when T → ∞ . There-
fore, T → ∞ simplifies the TRRF to a bivariate random discrete replacement first (BRDRF),
whose cost rate is given by Equation (43).

3.2. The Design and Modeling of Post-Warranty Replacement Last Models

By revising ‘whichever occurs first’ to ‘whichever occurs last’, the TRRF can be rewrit-
ten as follows:

• If the product going through the 2DRFRRWF is replaced on the Mth failure occurrence, the
end of the Nth mission cycle, or the planned time T, whichever occurs last;

• Minimal repairs remove all failures before a replacement.

Notes: Because ‘whichever occurs first’ rather than ‘whichever occurs first’ is used to
order replacement limitations, this post-warranty replacement model is called a trivariate
random replacement last (TRRL).

The probability ql1 that the product going through the 2DRFRRWL during the warranty
period w is replaced at the Mth failure is given by

ql1 = Pr{TM > Max(T, SN)} = FM(T|w)−
∫ ∞

T
G(N)

(x)dFM(x|w). (44)

The probability ql2 that the product going through the 2DRFRRWL during the warranty
period w is replaced at the end of the Nth mission cycle is given by

ql2 = Pr{SN > Max(TM, T)} = G(N)
(T)−

∫ ∞

T
FM(s|w)dG(N)(s). (45)

The probability ql3 that the product going through the 2DRFRRWL during warranty
period w is replaced at a planned time T is given by

ql3 = Pr{T > Max(TM, SN)} = FM(T|w)G(N)(T). (46)

Obviously, ql1 + ql2 + ql3 = 1.
For the product going through the 2DRFRRWL during the warranty period w, the

total cost TCl1(M, N, T) caused by the TRRL can be modeled as

TCl1(M, N, T) =
(

cm + c f

)(
(M − 1)

∫ ∞
T G(N)(x)dFM(x|w) +

∫ ∞
T

∞
∑

j=M
jPj(s|w)dG(N)(s) + G(N)(T)

∞
∑

j=M
jPj(T|w)

)
+ cr

=
(

cm + c f

)∫ ∞
T G(N)(t)d

(
(M − 1)FM(t|w)−

∞
∑

j=M
jPj(t|w)

)
+ cr.

(47)

For the product going through the 2DRFRRWL at the end of the nth mission cy-
cle, the total cost TCl2(M, N, T|Sn) caused by the TRRL can be obtained by replacing
FM(t|w) and Pj(t|w) in TCl1(M, N, T) as FM(t|Sn) and Pj(t|Sn), respectively, and the ob-
tained TCl2(M, N, T|Sn) is given by
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TCl2(M, N, T|Sn) =
(

cm + c f

)∫ ∞

T
G(N)(t)d

(
(M − 1)FM(t|Sn)−

∞

∑
j=M

jPj(t|Sn)

)
+ cr. (48)

The probabilities of the product going through the 2DRFRRWL at the end of the nth

mission cycle or the warranty period w are G(n)(w) and G(n)
(w), and therefore, the total

cost TCl(M, N, T) caused by the TRRL is given by

TCl(M, N, T) =
∫ w

0 TCl2(T, N, M|s)dG(n)(s) + G(n)
(w)× TCl1(T, N, M)

=
(

cm + c f

)

∫ w

0 G(n)
(s)d

(∫ ∞
T G(N)(t)d

(
(M − 1)FM(t|s)−

∞
∑

j=M
jPj(t|s)

))

+
∫ ∞

T G(N)(t)d

(
(M − 1)FM(t)−

∞
∑

j=M
jPj(t)

)
+ cr.

(49)

For the first product going through the 2DRFRRWL during the warranty period w, the
total time TTl1(M, N, T) caused by the TRRL can be modeled as

TTl1 (M, N, T) =
∫ ∞

T xdFM(x|w)−
∫ ∞

T xG(N)
(x)dFM(x|w) +

∫ ∞
T sdG(N)(s)−

∫ ∞
T FM(s|w)dG(N)(s) + FM(T|w)G(N)(T)× T

= T +
∫ ∞

T FM(t|w)dt +
∫ ∞

T G(N)
(t)FM(t|w)dt.

(50)

For the product going through the 2DRFRRWF at the end of the nth mission cycle,
the total time TTl2(M, N, T|Sn) caused by the TRRL can be obtained by replacing FM(t|w)
and FM(t|w) in TTl1(M, N, T) as FM(t|Sn) and FM(t|Sn), respectively, and the obtained
TTl2(M, N, T|Sn) is given by

TTl2(M, N, T|Sn) = T +
∫ ∞

T
FM(t|Sn)dt +

∫ ∞

T
G(N)

(t)FM(t|Sn)dt. (51)

Similar to obtaining Equation (36), the total time TTl(M, N, T) caused by the TRRL is
given by

TTl(M, N, T) = T +
∫ w

0
G(n)

(s)d
(∫ ∞

T
FM(t|s)dt +

∫ ∞

T
G(N)

(t)FM(t|s)dt
)
+
∫ ∞

T
FM(t)dt +

∫ ∞

T
G(N)

(t)FM(t)dt. (52)

Using algebraic operations, the average cost rate CRl(M, N, T) can be given by

CRl(M, N, T) =

TFB +
(

cm + c f

)

∫ w

0 G(n)
(s)d

(∫ ∞
T G(N)(t)d

(
(M − 1)FM(t|s)−

∞
∑

j=M
jPj(t|s)

))

+
∫ ∞

T G(N)(t)d

(
(M − 1)FM(t)−

∞
∑

j=M
jPj(t)

)
+ cr

WSB + T +
∫ w

0 G(n)
(s)d

(∫ ∞
T FM(t|s)dt +

∫ ∞
T G(N)

(t)FM(t|s)dt
)
+
∫ ∞

T FM(t)dt +
∫ ∞

T G(N)
(t)FM(t)dt

. (53)

When M → 0 , the average cost rate CRl(M, N, T) is simplified as

lim
M→0

CRl(M, N, T) =
TFB +

(
cm + c f

)(∫ w
0 G(n)

(s)d
(∫ T

0 r(s + t)dt +
∫ ∞

T G(N)
(t)r(s + t)dt

)
+
∫ T

0 r(t)dt +
∫ ∞

T G(N)
(t)r(t)dt

)
+ cr

WSB + T +
∫ ∞

T G(N)
(t)dt

. (54)

The replacement limitation M in the TRRL is ignored when M → 0 . Therefore, M → 0
simplifies the TRRL as a bivariate random replacement last (BRRL), whose cost rate is given
by Equation (54).

When M → 0 and N → 0 , the average cost rate CRl(M, N, T) is simplified as
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lim
M → 0
N → 0

CRl(M, N, T) =
TFB +

(
cm + c f

)(∫ w
0 G(n)

(s)d
(∫ T

0 r(s + t)dt
)
+
∫ T

0 r(t)dt
)
+ cr

WSB + T
. (55)

The replacement limitations M and N in the TRRL will never be reached when M → 0
and N → 0 . Therefore, M → 0 and N → 0 simplify the TRRL as a univariate replacement
(UR), whose cost rate is given by Equation (55).

When T → 0 , the average cost rate CRl(M, N, T) is simplified as

lim
T→0

CRl(M, N, T) =

TFB +
(

cm + c f

)

∫ w

0 G(n)
(s)d

(∫ ∞
0 G(N)(t)d

(
(M − 1)FM(t|s)−

∞
∑

j=M
jPj(t|s)

))

+
∫ ∞

0 G(N)(t)d

(
(M − 1)FM(t)−

∞
∑

j=M
jPj(t)

)
+ cr

WSB +
∫ w

0 G(n)
(s)d

(∫ ∞
0 FM(t|s)ds +

∫ ∞
0 G(N)

(t)FM(t|s)dt
)
+
∫ ∞

0 FM(t)dt +
∫ ∞

0 G(N)
(t)FM(t)dt

. (56)

The replacement limitation T in the TRRL is removed when T → 0 . Therefore, T → 0
simplifies the TRRL as a bivariate random discrete replacement last (BRDRL), whose cost
rate is given by Equation (56).

4. Numerical Experiments

Digital technology-based management systems have facilitated the acquisition of
mission cycles and failure data for self-announcing failure products that are subject to
monitored mission cycles. For example, novel models of automated guided vehicles and
logistics robots that transport goods on a cyclical basis can be monitored in this way. These
products are activated and deactivated before and after use, respectively, with the time
between activation and deactivation representing a mission cycle. In light of these factors,
we employ an automated guided vehicle as a case study and assume that all mission cycles
conform to an independent and identically distributed memoryless distribution function
given by G(y) = 1 − exp(−λy), where λ > 0.

Based on practical experience, the failure frequencies of self-announcing failure prod-
ucts are increasing with respect to the working time or history page. This signals that the
related failure rate functions are increasing functions with respect to the working time or
history page. Therefore, the parameter β in the failure rate function r(u) = α(u)β must be
greater than or equal to 1 to ensure increases in the failure rate functions, i.e., β ≥ 1, and
the exact value of β will be assigned wherever used.

Three renewable warranty strategies, three replacement first models, and three re-
placement last models have been proposed in the above sections. In this section, the three
renewable warranty strategies presented in Section 2 and the BRRF and BRRL presented in
Section 3 will be used to perform numerical analyses for mining hidden insights, and other
models can be similarly analyzed from the numerical perspective, which will no longer be
provided hereinafter. Some commonly used parameters are set as α = 0.5 and c f = 0.1.

4.1. Sensitivity Analysis of the Renewable Warranty Strategies
4.1.1. Sensitivity Analysis of the RFRRW

Using β = 1, λ = 3, and cr = 10, the plot in Figure 2 explores the influences of m
and w on the warranty-servicing cost WCA of the RFRRW and the relationships among the
warranty-servicing costs of the RFRRW and the CFRW.
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Figure 2 shows that when w is given, the increase in m reduces the warranty-servicing
cost WCA of the RFRRW to a constant, which is the warranty-servicing cost lim

m→∞
WCA of the

CFRW (see Equation (3)); for a given m, the increase in w increases the warranty-servicing
cost WCA of the RFRRW.

Obviously, the increasing change and the minimum value in Proposition 1 do not
appear in Figure 2. To illustrate the increasing change and the minimum value, the β = 1,
w = 3, λ = 3, and cr = 15 are plotted in Figure 3. Figure 3 shows that the minimum
value exists, and the increasing change exists as well. These verify some of the terms in
Proposition 1. β = 1, w = 1, λ = 3, and cr = 15 are plotted in Figure 4. As shown in
Figure 4, when cm is given, the increase in m makes the warranty-servicing cost WCA of
the RFRRW increase to a constant, which belongs to the increasing change in Proposition 1.
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4.1.2. Sensitivity Analysis of the 2DRFRRWF

Using β = 1, cm = 0.1, m = 2, λ = 3, and cr = 10, Table 1 explores the influences of n
and w on the warranty-servicing cost WCB of the 2DRFRRWF and the relationships between
the warranty-servicing costs of the 2DRFRRWF and CRFRRW. Table 1 shows that when
w is given, the increase in n makes the warranty-servicing cost WCB of the 2DRFRRWF
decrease to a constant, which is the warranty-servicing cost lim

n→∞
WCB of the RFRRW (see

Equation (12)); w increases the warranty-servicing cost WCB of the 2DRFRRWF, which is
similar to Figure 2.

Table 1. The influences of n and w on the cost.

Parameters n = 9 n = 10 n = 11 n = 12 n = 13 n = 14 n = 15

w = 0.9 0.7044 0.7048 0.7049 0.7049 0.7049 0.7049 0.7049
w = 1.1 1.4529 1.4557 1.4565 1.4567 1.4568 1.4568 1.4568
w = 1.3 2.6589 2.6731 2.6780 2.6796 2.6801 2.6802 2.6802

To explore how m and cm influence the warranty-servicing cost WCB of the 2DRFRRWF,
β = 1, n = 3, λ = 3, w = 2, and cr = 10 are plotted in Figure 5. Figure 5 shows that
when cm is smaller, the warranty-servicing cost WCB of the 2DRFRRWF decreases to a
constant; when cm is greater, the warranty-servicing cost WCB of the 2DRFRRWF decreases
to a minimum value and then increases to a constant, which is the warranty-servicing cost
lim

m→∞
WSB of the 2DFRWF. These verify some of the terms in Proposition 3.
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4.1.3. Sensitivity Analysis of the 2DRFRRWL

To explore how k and m influence the warranty-servicing cost WCC of the 2DRFRRWL,
β = 1, n = 2, λ = 3, cm = 0.1, and cr = 10 are plotted in Figure 6. Figure 6 shows that when
w is given, the increase of m makes the warranty-servicing cost WCC of the 2DRFRRWL
increase to a constant, which is the warranty-servicing cost lim

n→0
WCC of the RFRRW (see

Equation (25)); when m is given, the increase in w makes the warranty-servicing cost WCC
of the 2DRFRRWL increase, which is similar to Figure 2 and Table 1.
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To explore how cm and m influence the warranty-servicing cost WCC of the 2DRFR-
RWL, β = 1, n = 2, λ = 2, w = 1, and cr = 10 are plotted in Figure 7.
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Figure 7 shows that when cm is smaller, the increase in m makes the warranty-servicing
cost WCC of the 2DRFRRWL decrease to a constant, which is the warranty-servicing
cost lim

m→∞
WCC of the 2DFRWL (see Equation (29)); when cm is greater, the warranty-

servicing cost WCC of the 2DRFRRWL decreases to a minimum value and then increases to
a constant, which is the warranty-servicing cost lim

m→∞
WCC of the 2DFRWL. These results

verify Proposition 5.

4.2. Sensitivity Analysis of the Post-Warranty Replacement Models
4.2.1. Sensitivity Analysis of the Replacement First Model

To verify that the optimal BRRF exists, n = m = 3, λ = 2, cm = 0.1, w = 2, and β = 3
are plotted in Figure 8. As shown in Figure 8, the optimal number N∗ of mission cycles and
the optimal planned time T∗ exist, and thus, the optimal BRRF exists uniquely.
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To explore the influences of n and m on the optimal BRRF, Table 2 has been provided
using λ = 2, cm = 0.1, cr = 10, w = 2, and β = 3.

Table 2. The influences of n and m on the optimal BRRF.

Parameter
n = 1 n = 2 n = 3

N* T* CRf(∞,N*,T*) N* T* CRf(∞,N*,T*) N* T* CRf(∞,N*,T*)

m = 1 15 3.1854 4.1185 13 2.6039 3.8755 10 1.8593 3.1362
m = 2 15 3.1864 4.1206 14 2.6518 3.9781 11 2.0359 3.4831
m = 3 16 3.1874 4.1229 15 2.6769 4.0326 13 2.1368 3.6896
m = 4 18 3.1885 4.1254 15 2.6950 4.0719 14 2.2093 3.8418

As shown in Table 2, 1⃝ for a given n, the optimal average cost rate CR f (∞, N∗, T∗)
increases with respect to m, and the optimal number N∗ of mission cycles is non-decreasing;
2⃝ for a given m, the optimal average cost rate CR f (∞, N∗, T∗) decreases with respect to

n, and the optimal number N∗ of mission cycles is non-decreasing. The former implies
that the increase in m can enhance the optimal average cost rate CR f (∞, N∗, T∗) and that
the optimal planned time T∗ can be lengthened; the latter implies that the increase in n
can reduce the optimal average cost rate CR f (∞, N∗, T∗) and shorten the optimal planned
time T∗. These results indicate that consumers obtain either longer durations of warranty
coverage or a longer duration of replacement coverage, but not both simultaneously.

4.2.2. Sensitivity Analysis of the Replacement Last Model

To verify whether the optimal BRRL exists, n = 2, m = 3, λ = 2, cm = 0.1, w = 2, and
β = 3 are plotted in Figure 9. As shown in Figure 9, the optimal number N∗ of mission
cycles and the optimal planned time T∗ exist, and thus, the optimal BRRL exists uniquely.

To explore the influences of n and m on the optimal BRRL, Table 3 has been provided
using w = β = 2, λ = 2, cm = 0.1, k = 2, and cr = 10. As shown in Table 3, 1⃝ for a
given n, the optimal average cost rate CRl(0, N∗, T∗) increases with respect to m, and the
optimal number N∗ of mission cycles is also non-decreasing, which are the same as the
changes in Table 2; 2⃝ for a given m, the optimal average cost rate CRl(0, N∗, T∗) decreases
with respect to n, and the optimal number N∗ of mission cycles is also non-decreasing,
which are the same as the changes in Table 2. The former implies that the increase in m can
enhance the optimal average cost rate CRl(0, N∗, T∗) and lengthen the optimal planned
time T∗; the latter implies that the increase in n can reduce the optimal average cost rate
CRl(0, N∗, T∗) but cannot lengthen the optimal planned time T∗. These results signal
that the consumer only obtains either longer durations of warranty coverage or a longer
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duration of replacement coverage and cannot obtain both simultaneously, which is similar
to the insights in Table 2.
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Table 3. The influences of n and m on the optimal BRRL.

Parameter
n = 1 n = 2 n = 3

N* T* CRl(0,N*,T*) N* T* CRl(0,N*,T*) N* T* CRl(0,N*,T*)

m = 1 6 3.2950 4.3637 5 2.7018 4.0868 3 1.8985 3.2114
m = 2 6 3.2958 4.3656 5 2.7457 4.1834 4 2.1184 3.6515
m = 3 6 3.2968 4.3678 5 2.7688 4.2346 4 2.2120 3.8474
m = 4 6 3.2978 4.3701 5 2.7854 4.2717 4 2.2794 3.9919

4.3. Performance Analysis of the Presented Strategies/Models
4.3.1. Performance Analysis of Renewable Warranty Strategies

An ideal regulation for comparing the effectiveness of different warranty strategies
would be that changes in the warranty-servicing cost and time are inversely proportional.
However, according to Equations (22) and (24), the warranty-servicing cost and time uni-
formly increase, making it challenging to conduct an analytical comparison of performances
using these strategies. The warranty-servicing time and cost are measured in different
units, so it is necessary to convert both measurements to the same unit in order to compare
the proposed solutions. By standardizing the measurements to a common unit, Shang
et al. [47] have proposed a comparative methodology for evaluating the performances of
the 2DRFRRWF and 2DRFRRWL from a manufacturer’s perspective. The cost measures,
denoted as CWC f and CWCl , are associated with the 2DRFRRWF and 2DRFRRWL, respec-
tively, when the time measures (i.e., comparison cycles) are equal. Taking inspiration from
these approaches, Table 4 has been provided to assess the effectiveness of the warranty
strategies, wherein w = 2, n = 3, β = 2, λ = 2, cm = 0.1, and cr = 10.

Table 4. Performance comparison of 2DRFRRWF and 2DRFRRWL.

Parameter
Measures of the 2DRFRRWF Measures of the 2DRFRRWL Cost Measures

Comparison
WSf WCf WSl WCl CWCf CWCl

m = 3 1.7351 4.2966 1.5935 10.1524 6.8466 17.6154 CWC f < CWCl
m = 4 1.5806 2.5456 0.5139 8.1515 1.3082 12.8843 CWC f < CWCl
m = 5 1.4737 1.4810 0.2224 6.1044 0.3294 8.9961 CWC f < CWCl

Table 4 shows that when the time measures are equal, the cost measure related to the
2DRFRRWF is less than the cost measure related to the 2DRFRRWL, i.e., CWC f < CWCl .
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Such an inequation signals that from the perspective of manufacturers, the 2DRFRRWF
is superior to the 2DRFRRWL, because the manufacturers can absorb less warranty-
servicing costs.

This result is obtained when the requirement to enhance the sales volume of products
is ignored. If the objective is to boost the sales volume, then it is advisable to compare the
time measures instead of the cost measures, because consumers tend to prefer warranties
with longer servicing times or a greater coverage area. According to the comparison
method presented by Shang et al. [47], when the cost measures are equal, the time measures
related to the 2DRFRRWF and 2DRFRRWL are CWCl and CWC f , respectively. According
to Table 4, it is obvious that the 2DRFRRWL is superior to the 2DRFRRWF. This comparison
is performed from the viewpoints of consumers/users.

By extending the comparison method, the performances among the RFRRW, 2DRFR-
RWF, and 2DRFRRWL are numerically compared as well, which is no longer presented here.

4.3.2. Performance Analysis of Replacement Models

The performances of the BRRF and BRRL can be numerically compared by standard-
izing the measurements to a common unit, similar to comparing the performances of the
2DRFRRWF and 2DRFRRWL.

The cost measures, denoted as CTTf and CTTl , are associated with the BRRF and
BRRL, respectively, assuming equal time measures. In the scenario where both time
measures are equal, Table 5 presents a comparative analysis of the performances between
BRRF and BRRL, where w = 1, n = 3, β = 2, λ = 2, cm = 0.1, and cr = 10.

Table 5. Performance comparison of the BRRF and BRRL.

Parameter
Measures of the BRRF Measures of the BRRL Cost Measures

Comparison
TTf(∞,N*,T*) TCf(∞,N*,T*) TTl(0,N*,T*) TCl(0,N*,T*) CTTf CTTl

m = 2 3.7059 14.8729 4.1796 17.4849 62.1628 64.7973 CTTf < CTTl
m = 3 3.6829 14.9647 4.1458 17.5558 62.0407 64.6563 CTTf < CTTl
m = 4 3.6792 14.9795 4.1218 17.6071 61.7425 64.7800 CTTf < CTTl

As shown in Table 5, the cost measure related to the BRRF is less than the cost measure
related to the BRRL, i.e., CTTf < CTTl . This inequation signals that the BRRF is superior
to the BRRL.

5. Conclusions

The number of failures is one of the factors affecting the dynamical changes in the
reliability of self-announcing failure products subject to mission cycles. In view of this,
this paper presents three renewable warranty strategies considering the failure number
for managing the warranty-stage reliability of self-announcing failure products subject to
mission cycles. The first renewable warranty strategy is proposed using the warranty period
as a unique warranty limitation and the limited failure number as the replacement threshold
during warranty coverage, which is named a renewable free-repair–replacement warranty
(RFRRW). In the case of using a limited failure number as the replacement threshold,
the second renewable warranty strategy is proposed using limited mission cycles and
the warranty period as two warranty limitations, which is named a two-dimensional,
renewable free-repair–replacement warranty first (2DRFRRWF), because ‘whichever occurs
first’ is used to restrict the warranty region formed by limited mission cycles and the
warranty period. By revising ‘whichever occurs first’ to ‘whichever occurs last’, the third
renewable warranty strategy is presented, which is called a two-dimensional, renewable
free-repair–replacement warranty (2DRFRRWL). All presented renewable warranties are
modeled from the viewpoints of cost and time measures, and respective insights that guide
decision making are obtained by means of cost and time measures. A numerical analysis
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of these three strategies was performed to verify the analytical insights and explore how
other parameters affect them.

The life cycle of self-announcing failure products subject to mission cycles can be
divided into warranty and post-warranty stages using the boundaries of the 2DRFRRWF
region as symmetrical points. In this scenario, two post-warranty replacements considering
the failure number are defined and modeled to manage the post-warranty reliability of
self-announcing failure products subject to mission cycles, which are named the trivariate
random replacement first (TRRF) and the trivariate random replacement last (TRRL), be-
cause three decision variables are considered, and ‘whichever occurs first and last’ is used
to restrict respective replacement regions. By setting the parameter values of decision vari-
ables, some of the variants of both are presented, such as a bivariate random replacement
first (BRRF), a bivariate random discrete replacement first (BRDRF), a bivariate random
replacement last (BRRL), and a bivariate random discrete replacement last (BRDRL). Taking
some post-warranty replacements as representatives, a numerical analysis is performed to
verify the existence of optimal models and explore how other parameters affect them.

By employing a numerical analysis, valuable insights have been derived, encompass-
ing a wide range of findings and discoveries:

• The renewable warranties introduced in this study offer advantages over the respective
free-repair warranty (FRW) by reducing the warranty-servicing cost and extending
the duration of the warranty coverage;

• Manufacturers tend to prefer the 2DRFRRWF, as it leads to reduced costs associated
with warranty services. Conversely, consumers are more inclined towards favoring
the 2DRFRRWL due to its extended duration for warranty servicing;

• The consumers are given the choice to opt for either an extended warranty coverage
duration or a longer duration of replacement coverage; however, they cannot avail
both simultaneously.

In this paper, three renewable warranties considering the failure number are proposed
and modeled to manage the warranty-stage reliability of self-announcing failure products
subject to mission cycles. Among them, the last two strategies will trigger warranty
unfairness, because multidimensional warranty strategies can produce different warranty-
servicing times. Although some works have studied methods to remove the unfairness of
the warranty of multidimensional warranty strategies, the related authors have confined
their focus to removing the unfairness of the warranty at the warranty-expiring stage and
ignored removing the unfairness of the warranty at the warranty-opening stage or in the
warranty process. Therefore, researching methods to remove warranty unfairness during
these two stages is a future topic.
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Appendix A

Obviously, Fm(w)cm/
(
Fm(w)/m

)
≤ Fm(w)((m−1)cm + cr)/Fm(w)≤ Fm(w)cr/

(
Fm(w)/m

)
.

Using lim
m→∞

Fm(w)/
(

Fm(w)/m
)
= 0, it is obvious for lim

m→∞
Fm(w)((m − 1)cm + cr)/Fm(w) =

0 to hold.

Appendix B. The Proof of Proposition 1

Obviously, Fm(w)((m − 1)cm + cr)/Fm(w) decreases with respect to m, whose mini-

mum and maximum values are 0 and F(w)cr/F(w), respectively;
m−1
∑

k=0
kQk(w) is increasing

with respect to m, whose minimum and maximum values are 0 and
∫ w

0 r(u)du, respectively.
These characteristics signal that the curves of the function Fm(w)((m − 1)cm + cr)/Fm(w),

with respect to m, and the function
m−1
∑

k=0
kQk(w), with respect to m, intersect. The intersection

points of both, satisfying Fm(w)((m − 1)cm + cr)/Fm(w) = cm
m−1
∑

k=0
kQk(w), can make the

function Fm(w)((m − 1)cm + cr)/Fm(w) + cm
m−1
∑

k=0
kQk(w), with respect to m, reach its mini-

mum value. On the right side of the intersection point, the function Fm(w)((m − 1)cm + cr)/

Fm(w) + cm
m−1
∑

k=0
kQk(w) is increasing with respect to m, satisfying Fm(w)((m − 1)cm + cr)/

Fm(w) < cm
m−1
∑

k=0
kQk(w); on the left side of the intersection point, the function Fm(w)

((m − 1)cm + cr)/Fm(w) + cm
m−1
∑

k=0
kQk(w) is decreasing with respect to m, satisfying Fm(w)

((m − 1)cm + cr)/Fm(w) > cm
m−1
∑

k=0
kQk(w). Let σ(m) = Fm(w)

m−1
∑

k=0
kQk(w)− Fm(w)(m− 1);

then, by means of operations, three mathematical relationships can be obtained: cm/cr =
Fm(w)/σ(m), cm/cr > Fm(w)/σ(m), and cm/cr < Fm(w)/σ(m).

Appendix C. The Proof of Proposition 2

Because
∫ w

0 Fm(x)dx and Fm(w) are increasing with respect to m, by means of the
monotonicity rule of the compound function, the function

∫ w
0 Fm(x)dx/Fm(w) is de-

creasing with respect to m, and its maximum and minimum values are
∫ w

0 F(x)dx/F(w)
and w, respectively.
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