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Abstract: A modified Nambu–Jona-Lasinio Model with lattice structure is very instructive. It shows
several similar problems and their solutions as the Lattice QCD. We study the limits of the large box
size, small cell size and realistic pion mass. In particular, we study the relation of the discrete (bound
state) solutions to the physical scattering states, for example the pion–pion scattering.
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1. Introduction

Nambu and Jona-Lasinio formulated, in 1961, a conceptually very interesting model [1,2],
designed to describe the spontaneous chiral symmetry breaking, the formation of massive
constituent quarks and the behaviour of pion as a pseudo-Goldstone boson. At that time,
the model was formulated in terms of nucleons interacting with a chirally invariant contact
interaction. Later, the model was successfully reformulated in terms of interacting quarks.
The Nambu–Jona-Lasinio Lagrangian is usually written in terms of relativistically covariant
quark fields and it contains the quark kinetic energy, a “bare mass” term explicitly breaking
the chiral symmetry, and a quadratic chirally invariant contact interaction:

L = ψ̄ (i γµ∂µ − m)ψ + G [(ψ̄ψ)2 + (ψ̄ i γ5τi ψ)2] (1)

Here, τ is the isospin operator for the case of two quark flavours. For large enough
coupling G, the lowest energy state, the vacuum, contains a nonzero vacuum condensate of
quark–antiquark pairs ⟨ψ̄ψ⟩, which acts as a constituent mass M = m + ⟨ψ̄ψ⟩. Without the
bare mass term, the first excited state would be a zero-frequency Goldstone mode. Therefore,
the bare mass term is essential, since it changes the Goldstone mode into a nonzero pseudo-
Goldstone mode and the pion acquires a small but nonzero mass. However, it does not
noticeably influence the chiral condensate and the constituent mass.

For our purposes, it is more illustrative to use the first quantization and work with a
finite number of quarks in the Fermi and Dirac levels, following the ideas of da Providencia
(Equation (3.1), written for one flavour) [3]:

H =
N

∑
i=1

γ5(i)⃗σ(i) · ∇i − G ∑
i ̸=j

δ(x⃗i − x⃗j) [β(i)β(j)− β(i)γ5(i) β(j)γ5(j)] (2)

More recently, electromagnetic and weak decays of scalar and vector mesons have
been calculated in leading orders of Feynman graphs. The one loop order calculation
provided a satisfactory agreement with the data for the mesonic spectrum and for radiative
decays [4]. A renormalized version with the mean field expansion gave a direct link
to the mesonic degrees of freedom [5]. Later, the model has been generalized to three
flavours of quarks replacing the isospin operators with SU(3) operators and introducing
a three-body interaction of the form of the t’Hooft determinant. This extension allowed
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the spectra and radiative decays of more numerous mesons, including strange ones [6].
The description of diquarks [7] and the competition between the chiral condensate and the
diquark condensate [8] are also interesting.

At present, there is very lively activity using the Nambu–Jona-Lasinio model to
study the relation of the Nambu–Jona-Lasinio model to QCD, to chiral models as well
as to phenomenology, for example [9] and many more. The large number of different
applications is a good sign regarding how useful the model is in achieving a qualitative
understanding where the fundamental theory is too difficult.

The purpose of the present study is twofold.

(i) A solvable model is formulated which can support the validity of the popular Hartree–
Fock approximation for massive constituent quarks together with the random phase
approximation (RPA) for pions in the full Nambu–Jona-Lasinio model. It also supports
the meaningfulness of the limit of large numbers of colours.

(ii) Lattice models as well as few-body models with a finite Hilbert space do not provide
a continuum description of the two-body decay channel. Instead, the diagonalization
of the Hamiltonian yields a discrete spectrum which hides a lot of information about
the relevant continuum which one is trying to extract. As an example, approximate
methods for π − π scattering at low energy, as well as via the σ meson resonance,
are studied. It is shown how the discrete eigenvalue spectrum can provide some
information on scattering using the first order Born approximation, in analogy to
the Luscher formula used in Lattice QCD for the same dilemma of how to extract
scattering from a discrete spectrum.

A good lesson can be learned from a truncated Nambu–Jona-Lasinio model (NJL), “the
quasispin model”, in which quarks are enclosed in a periodic box V and have a momentum
cut-off Λ, where b =

3√6π2/Λ is a parameter analogous to the size of the lattice cell in
Lattice QCD.

In Section 2, the formulation and some salient features of the quasispin model are
recapitulated [10–14]. In Section 3, the lessons offered by the model are discussed. Finally
(Section 4), the width of the sigma meson is estimated using an analytic extrapolation.

2. The Two-Level Quasispin Model

The model is characterized by a finite number N of quarks occupying a finite number
N of states in the Dirac sea and the same number of states in the valence space. This allows
us to use the first quantization and an explicit wavefunction.

The following simplifications are made:

(i) Periodic box of volume V ;
(ii) A sharp three-momentum cut-off Λ;
(iii) An average kinetic energy for all momentum states | p⃗i| → P = 3

4 Λ ;
(iv) Restriction to one flavour of quarks n f = 1;
(v) Truncation of interaction.

(while, in the NJL model, the interaction conserves the sum of the momenta of both quarks,
it is assumed that each quark conserves its momentum and only switches between the
Dirac level and Fermi level).

The finite number of discrete momentum states is then N = nhncn f np, where nh, nc, n f

and np = VΛ3/6π2 are the number of quark helicities, colours, flavours and momen-
tum states.

The model Hamiltonian can then be written as

H =
N

∑
k=1

(
γ5(k)h(k)P + m0β(k)

)
+

− g
2

( N

∑
k=1

β(k)
N

∑
l=1

β(l) +
N

∑
k=1

iβ(k)γ5(k)
N

∑
l=1

iβ(l)γ5(l)
)

. (3)
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where γ5 and β are Dirac matrices, and h = σ⃗ · p⃗/p is helicity.
There are three model parameters: m0 = 4.58 MeV is the bare quark mass, P = 3

4 Λ
with Λ = 648 MeV is the average momentum and g = 4G/V , where G = 40.6 MeV is the
interaction strength in the original (continuum) NJL. These parameters have been fitted to
the experimental or phenomenological values of the pion mass mπ = 136 MeV, constituent
quark mass M = 335 MeV and quark condensate Q = 2503 MeV3 [13]. The values of the
model parameters turn out to be very close to the popular values of full NJL [15,16].

It is usually overlooked that the following operators obey (quasi)spin commutation
relations jx = 1

2 β, jy = 1
2 iβγ5, jz = 1

2 γ5. The (quasi)spin commutation relations are also
obeyed by separate sums over quarks with right and left helicity, as well as by the total
sum over all quarks (α = x, y, z).

Rα =
N

∑
k=1

1 + h(k)
2

jα(k) , Lα =
N

∑
k=1

1 − h(k)
2

jα(k) , Jα = Rα + Lα =
N

∑
k=1

jα(k) .

The model Hamiltonian can then be rewritten as

H = 2P(Rz − Lz) + 2m0 Jx − 2g(J2
x + J2

y). (4)

The Hamiltonian commutes with R2 and L2 but not with Rz and Lz. Nevertheless, it is
convenient to work on the basis of | R, L, Rz, Lz ⟩. The Hamiltonian matrix elements can be
easily calculated using the angular momentum algebra. For example,

R̂z| R, L, Rz, Lz ⟩ = R| R, L, Rz, Lz ⟩ ,
R̂x| R, L, Rz, Lz ⟩ = 1

2

√
(R − Rz)(R + Rz + 1)| R, L, Rz + 1, Lz ⟩

+ 1
2

√
(R + Rz)(R − Rz + 1)| R, L, Rz − 1, Lz ⟩, etc.

By diagonalization of the Hamiltonian matrix, one obtains the energy spectrum of the
system (Table 1).

Table 1. The spectrum of the quasispin model with N = 144 and N = 192, and the ground state
quantum numbers R = L = N/4. All energies are in MeV.

n Parity E−E0 ∆E V̄ E−E0 ∆E V̄
N = 144 N = 144 N = 144 N = 192 N = 192 N = 192

8 + 771 4 −11.3 861 59 −8.3

7 − 767 121 −8.8 802 93 −7.3

6 + 646 66 −11.4 709 98 −7.3

6 + 634 (−12.2) 655 (−10.9)

5 − 580 98 −10.0 611 108 −7.2

4 + 482 114 −10.5 503 115 −7.1

3 − 378 117 −10.1 388 122 −7.1

2 + 261 125 −10.3 266 129 −7.1

1 − 136 136 137 137

0 + 0 0

The salient features are as follows:

1. In the large N limit, the exact results of the quasispin model tend, in fact, to the
Hartree–Fock and RPA values, which is a popular approximation for full NJL.

2. The spectrum of the “ground state band” (Table 1) is almost equidistant and can be
interpreted as multipion states. The energy deficit can be assumed to be due to an
attractive average pion–pion interaction: E − E0 = nmπ + 1

2 n(n − 1)V̄.
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3. This average potential is, in fact, proportional to the density of each pion, V̄ ∝ 1/V ∝
1/N, which supports such an interpretation.

4. The idea of an average pion–pion potential allows us to calculate the pion–pion scatter-
ing length a in the first order Born approximation ( equivalent to the so-called Lüscher

formula which is frequently used in the literature [17–19]) amπ = m2
π

4π

∫
V (⃗r)d3r =

mπ
4π V̄V = −0.077, which is qualitatively consistent with the two-flavour experimental
analysis of Lesniak, amπ = −0.034 or −0.044 [20].

5. The parity of multipion states alternates. There are, however, intruders which do not
follow the alternation. In Table 1, they are written in boldface and the lowest can be
interpreted as the σ meson (now called a(500)). The sigma meson is not a six-pion state
but an intruder at the position around six pions; it has an overlap with a decaying
two-pion state. Also, the states around n = 7 may be perturbed by admixtures of
σ + π.

3. Some Lessons for Lattice-like Models

Studying the salient features of the two-level quasispin model, one can learn a
few lessons.

One obtains a ground-state band of almost equidistant discrete states with alternating
0+ and 0−, which suggest multipion states. It is expected that, in other lattice-like models,
such as the Lattice QCD, the energy deficit with respect to equidistant values is also due to
an attractive average pion–pion interaction.

Even if we have only discrete states, we can mimic scattering states by using the
effective pion–pion interaction to calculate scattering amplitudes. Resonances such as σ
meson can be recognized from irregularities of the discrete spectrum (the “intruders”).

In the simple model, the results depend on the product N = nhncn f np and not on
individual factors (the number of helicities, colours, flavours and momentum states). It is
equivalent to have a large number of colours and poor resolution (small np) or vice versa.
Alternatively, one obtains the same limit N → ∞ whether one takes the large Nc limit or
a large box V . This fact helps us to appreciate the meaning of the large Nc limit, which
suggests a good Hartree–Fock approximation and suppression of off-diagonal terms of full
NJL Hamiltonian.

For the chosen model parameters and for N = N = 192, the “size of the box” is
B = 3

√
V =

3√
π2N/Λ = 3.7 fm. The size of the “lattice cell” is b = B/ 3

√
N/nhncn f =

B/321/3 = 1.2 fm. Then, B is only about three times larger than b; nevertheless, the model
works well. The explanation is that, in one dimension with the same np, B would be
32 times larger than b, which is nice. Since the Hamiltonian is not very sensitive to the
number of dimensions, the momenta p(i) act only as “house numbers” and there are no
spacial correlations; the quality of the three-dimensional solution is equally good. This is a
general feature of Nambu–Jona-Lasinio models.

The convergence and the quality of the results in the quasispin model seem very good
for N = 194 but not so good for N = 144, indicating the critical number of particles and
the corresponding B/b ratio.

4. The Width of the Sigma Meson

In the spectrum in Table 1, one can clearly distinguish the presence of the sigma meson
by noticing the doubling of the positive parity states at 634 and 646 MeV for N = 144
(655 and 709 MeV for N = 192). Moreover, the states at 646 MeV (655 MeV), indicated in
boldface, have strong one-body transition matrix elements from the ground state.

For its width, we are trying to obtain the complex pole. For that purpose, we explore
the method of analytic continuation from the bound state [21–23]. For this purpose, we
vary the bare quark mass m from the region where the σ meson would be bound (Eσ < E2π)
down to the physical value of m → m0 (where Eσ >> E2π) [11]. The method consists of
the following steps:
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• Determine the threshold value mth and calculate ϵ = Eσ − E2π as a function of m for
m > mth.

• Introduce a variable x =
√

m − mth; calculate k(x) = i
√
−ϵ in the bound state region.

• Fit k(x) by a polynomial k(x) = i(c0 + c1x + c2x2 + . . . + c2Mx2M) (Figure 1).

• Construct a Padé approximant: k(x) = i a0+a1x+...+aMxM

1+b1x+...+bMxM (Figure 1).

• Analytically continue k(x) to the region m < mth (i.e., to imaginary x) where k(x)
becomes complex.

• Determine the position and the width of the resonance as follows: Eres = Re [k2(m →
m0)] , Γ = −2 Im [k2(m → m0)] (Figures 2 and 3).

Figure 1. The fit of k(x) with quadratic (lower middle) and quartic polynomial (upper middle) and
with Padé approximants of order 1 (below) and 2 (above).

Figure 2. The resonance energy of the σ meson as a function of the pion mass–extrapolation using
Padé approximants of order 1 (below) and 2 (above).

One can notice that the results for Eres and Γ in Table 2 deviate strongly for first-
and second-order Padé approximants. This is due to the large stretch for the analytic
continuation, so that convergence at higher orders cannot be expected. Nevertheless, it
is rewarding that the physical values for Eres and Γ lie somewhere in the middle between
both curves. Intentionally, the energy and width of the σ meson are plotted as a function
of the corresponding pion mass rather than as a function of the model parameter m. This
is reminiscent of the extrapolation of pion mass from about 500 Mev towards its physical
value in typical lattice calculations.
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Figure 3. The width Γ of the σ meson as a function of the pion mass–extrapolation using Padé
approximants of order 1 (below) and 2 (above).

Table 2. The resonance energy Eres and the width Γ of the σ meson as a function of the pion
mass–extrapolation using Padé approximants, in [ MeV].

Pion Mass 136 180 254 355 433 499

Eres(order 1) 779 840 914 959 964 959
Eres(order 2) 538 613 724 853 925 959

Γ(order 1) 240 220 178 100 36 0
Γ(order 2) 940 818 576 242 64 0

5. Conclusions

The two-level “quasispin model” has been proposed as a solvable approximation
of the full Nambu–Jona-Lasinio model. It supports the Hartree–Fock approximation for
massive constituent quarks, together with the random phase approximation for pions. It
also gives a meaning to the limit of a large number of colours, which acts, similarly, as a
large number of participating spatial states (large ratio of box size to cell size).

The discrete spectrum of excited states can be interpreted as multipion states and can
serve to derive the pion scattering length using the first-order Born approximation. The
intruder state between the multipion states can be interpreted as the sigma meson. Its
width can be estimated using analytical continuation from bound states to resonant states
(with complex energy) by varying the model parameter corresponding to the (too large)
pion mass. This is analogous to Lattice QCD, where the pion mass is also extrapolated
towards the physical value.

In the present article, only two applications have been shown: the low energy pion–
pion scattering and the widths of the sigma resonance. The two-level “quasispin model”,
however, may offer many more applications in the future. Examples are mesonic spectra
other than scalars and pseudoscalars, as well as baryonic spectra, and also the equation of
state. Work is in progress.

I would like to encourage readers to use this simple model in preliminary studies in
order to obtain a qualitative understanding of the results of any lattice-like system with
discrete energy spectra.
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Conflicts of Interest: The author declares no conflict of interest.



Symmetry 2024, 16, 607 7 of 7

References
1. Nambu, Y.; Jona-Lasinio, G. Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. I. Phys. Rev.

1961, 122, 345–358. [CrossRef]
2. Nambu, Y.; Jona-Lasinio, G. Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. II. Phys. Rev.

1961, 124, 246–254. [CrossRef]
3. da Providencia, J.; Ruivo, M.C.; de Sousa, C.A. Time-dependent Hartree-Fock formalism and the excitations of the Dirac sea in

the Nambu-Jona-Lasinio model. Phys. Rev. D 1987, 36, 1882. [CrossRef] [PubMed]
4. Bernard, V.; Blin, A.H.; Hiller, B.; Meissner, U.-G.; Ruivo, M.C. Strong and radiative meson decays in a generalized Nambu-Jona-

Lasinio model. Phys. Lett. B 1993, 305, 163–167. [CrossRef]
5. Mota, A.L.; Nemes, M.C.; Hiller, B.; Walliser, H. Meson properties in a renormalizable version of the NJL model. Nucl. Phys. 1999,

A652, 73–87. [CrossRef]
6. Osipov, A.A.; Hiller, B.; Blin, A.H.; da Providencia, J. Effects of eight-quark interactions on the hadronic vacuum and mass spectra

of light mesons. Ann. Phys. 2007, 322, 2021–2054. [CrossRef]
7. Hellstern, G.; Alkofer, R.; Reinhardt, H. Diquark confinement in an extended NJL model. Nucl. Phys. 1997, A625, 697–712.

[CrossRef]
8. Yuan, W.; Chao, J.; Li, A. Diquark and chiral condensates in a self-consistent NJL-type model. Phys. Rev. D 2023, 108, 043008.

[CrossRef]
9. Arbuzov, B.A.; Volkov, M.K.; Zaitsev, I.V. NJL model derived from QCD. Int. J. Mod. Phys. 2006, A21, 5721–5742. [CrossRef]
10. Rosina, M.; Oblak, B.T. The two-level Nambu–Jona-Lasino model. Bled Work. Phys. 2006, 7, 92.
11. Rosina, M.; Oblak, B.T. Sigma meson in a two-level Nambu–Jona-Lasino model. Bled Work. Phys. 2007, 8, 66.
12. Rosina, M.; Oblak, B.T. Immitating continuum in lattice models. Bled Work. Phys. 2008, 9, 98.
13. Rosina, M.; Oblak, B.T. Pion–Pion Interaction in a Soluble Two-Level Nambu–Jona-Lasinio Model. Few-Body Syst. 2010, 47,

117–123. [CrossRef]
14. Rosina, M. Resonances in the Nambu–Jona-Lasinio model. Bled Work. Phys. 2015, 16, 91.
15. Fiolhais, M.; da Providência, J.; Rosina, M.; Sousa, C.A. Soliton formation in σ models. Phys. Rev. C 1997, 56, 3311. [CrossRef]
16. Buballa, M. NJL-model analysis of dense quark matter. Phys. Rep. 2005, 407, 205. [CrossRef]
17. Lüscher, M. Volume dependence of the energy spectrum in massive quantum field theories. 1. stable particle states. Commun.

Math. Phys. 1986, 104, 177. [CrossRef]
18. Lüscher, M. Volume dependence of the energy spectrum in massive quantum field theories. 2. scattering states. Commun. Math.

Phys. 1986, 105, 153. [CrossRef]
19. Lüscher, M. Two particle states on a torus and their relation to the scattering matrix. Nucl. Phys. 1991, B354, 531. [CrossRef]
20. Kaminski, R.; Lesniak, L.; Loiseau, B. Amplitudes Fitted to Experimental Data and to Roy’s Equations. Int. J. Mod. Phys. 2005,

A20, 693. [CrossRef]
21. Krasnopolsky, V.M.; Kukulin, V.I. Theory of resonance states based on analytical continuation in the coupling constant. Phys. Lett.

1978, 69A, 251. [CrossRef]
22. Krasnopolsky, V.M.; Kukulin, V.I. A new method to describe the stripping to unbound states and other reactions with unstable

particles. Phys. Lett. 1980, 96B, 4–6. [CrossRef]
23. Tanaka, N.; Suzuki, Y.; Varga, K.; Lovas, R.G. Unbound states by analytic continuation in the coupling constant. Phys. Rev. 1999,

C59, 1391. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1103/PhysRev.122.345
http://dx.doi.org/10.1103/PhysRev.124.246
http://dx.doi.org/10.1103/PhysRevD.36.1882
http://www.ncbi.nlm.nih.gov/pubmed/9958374
http://dx.doi.org/10.1016/0370-2693(93)91122-4
http://dx.doi.org/10.1016/S0375-9474(99)00147-5
http://dx.doi.org/10.1016/j.aop.2006.08.004
http://dx.doi.org/10.1016/S0375-9474(97)00412-0
http://dx.doi.org/10.1103/PhysRevD.108.043008
http://dx.doi.org/10.1142/S0217751X06033830
http://dx.doi.org/10.1007/s00601-009-0074-z
http://dx.doi.org/10.1103/PhysRevC.56.3311
http://dx.doi.org/10.1016/j.physrep.2004.11.004
http://dx.doi.org/10.1007/BF01211589
http://dx.doi.org/10.1007/BF01211097
http://dx.doi.org/10.1016/0550-3213(91)90366-6
http://dx.doi.org/10.1142/S0217751X05022184
http://dx.doi.org/10.1016/0375-9601(78)90177-9
http://dx.doi.org/10.1016/0370-2693(80)90198-7
http://dx.doi.org/10.1103/PhysRevC.59.1391

	Introduction
	The Two-Level Quasispin Model
	Some Lessons for Lattice-like Models
	The Width of the Sigma Meson
	Conclusions
	References

