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Abstract: Southwestern Guizhou, China, is famous for hosting clusters of Carlin-type Au, Sb, and
Hg-Tl deposits. These deposits are thought to be the products of a low-temperature hydrothermal
metallogenic event. Calcite and fluorite are common and widespread gangue minerals in Au and
Sb deposits, respectively. Ore-related calcite commonly coexists with stibnite, realgar, and orpiment
at the periphery of high-grade orebodies in Au deposits, while ore-related fluorite is generally
intergrown with stibnite in Sb deposits. In this study, ore-related calcite and fluorite samples from
representative Au (Zimudang) and Sb (Dachang) deposits, respectively, were separated, and the rare
earth element (REE) concentrations, Sm/Nd isotope ratios, and Sm–Nd isochron ages were analyzed.
This study aims to determine the formation ages of the calcite and fluorite and to constrain the age
of low-temperature metallogenic event in Southwestern Guizhou. The calcite and fluorite samples
contain relatively high total concentrations of REEs (8.21–22.5 µg/g for calcite, 21.7–36.6 µg/g for
fluorite), exhibit variable Sm/Nd ratios (0.51–1.01 for calcite, 0.35–0.49 for fluorite), and yield Sm–Nd
isochron ages of 148.4 ± 4.8 and 141 ± 20 Ma, respectively. These ages are consistent with the age
range constrained by the low-temperature thermochronology of zircon (132–160 Ma), crosscutting
relationships of stratigraphy or intrusions (96–160 Ma), and previous dating results (135–150 Ma) in
Southwestern Guizhou. Collectively, the ages obtained in this study add new evidence to previous
geochronology studies, such that the low-temperature hydrothermal mineralization in Southwestern
Guizhou can be constrained to 135–150 Ma, corresponding to the Yanshanian orogeny, which was
associated with a weak extensional tectonic environment.

Keywords: geochronology; mineralization; Zimudang; Dachang; Southwestern Guizhou

1. Introduction

The Youjiang basin hosts clusters of Carlin-type Au, Sb, and Hg-Tl deposits (Figure 1)
[1–8], such that it is the second largest low-temperature Carlin-type Au mineralized area in
the world, after Nevada, USA [9–13]. The Au and Sb deposits in the Youjiang Basin are
primarily located within Southwestern Guizhou and account for more than 70% of the
deposits and endowments.

Accurate geochronology is a crucial tool for understanding the genesis of ore deposits.
Direct dating of Au and Sb deposits in Southwestern Guizhou has been problematic owing
to a lack of suitable minerals for radiometric dating. Many studies have reported ages
for Au and Sb deposits in Southwestern Guizhou, but the true ages remain controversial
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because the results span a large age interval, i.e., 235–195 [14,15], 135–150 [16–20], and
83–106 Ma [21,22]. This uncertainty hampers our understanding of the genesis of Au and
Sb deposits and their relation to the geotectonic evolution of Southwestern Guizhou.
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Figure 1. (a) Schematic tectonic map of China showing the location of the Youjiang Basin. (b) Geologic
map of the Youjiang Basin showing the locations of the Carlin-type Au, Sb, and Hg-Tl deposits.

Sm and Nd have similar chemical properties, and the 143Nd daughter, which decays
from the parent 147Sm, is easily preserved in a mineral lattice. Sm–Nd isotope systemat-
ics are liable to be kept closed and are partially capable of resisting weathering and/or
alteration [23]. The Sm–Nd isochron method is an effective tool for dating hydrothermal Ca-
bearing minerals and has been used in various hydrothermal deposits for geochronology
studies (e.g., calcite [18,19,24–26], scheelite [27–29], fluorite [30–32], and tourmaline [27,28]).

Fluorite and calcite are widespread Ca-bearing minerals in Au and Sb deposits in
Southwestern Guizhou, respectively. They usually have higher rare earth element (REE)
concentrations and relatively variable Sm/Nd ratios, which are favorable for Sm–Nd
isotope dating [18–20,33]. Ore-related calcite is generally intergrown with realgar and
orpiment at Au deposits and is thought to be the product of decarbonatization (carbonate
dissolution) of host rocks, providing Fe2+ to form Au-bearing pyrite [18,19,33]. Calcite
deposited from decarbonatization reflects the age of Au mineralization [18,19]. Ore-related
stibnite is symbiotic and coeval with fluorite crystallization, such that fluorite Sm–Nd
dating can represent the age of Sb mineralization [20].

In this paper, we report the REE patterns, Sm/Nd isotope ratios, and Sm–Nd isochron
ages of ore-related calcite and fluorite from representative Au (Zimudang) and Sb (Dan-
gchang) deposits in Southwestern Guizhou, respectively. We aim to explore the temporal
relationships of Au and Sb mineralization and constrain the age of low-temperature metal-
logenic events in Southwestern Guizhou.

2. Geological Setting

The Youjiang Basin is located at the southwestern margin of the Yangtze Craton
(Figure 1a). This region is commonly referred to as the “Dian-Qian Gui” Golden Triangle
Region (Figure 1b) [14]. The basin overlays a Lower Paleozoic basement, which evolved
from a rift basin (Early Devonian to Late Devonian) to a passive continental margin (Early
Carboniferous to Early Triassic) and then a foreland basin (Middle Triassic) [34]. The
Youjiang Basin was then uplifted by the Indosinian orogeny at the end of the Late Triassic
and, subsequently, folded by the Yanshanian orogeny after the Early Jurassic [35,36].



Minerals 2021, 11, 100 3 of 13

Southwestern Guizhou (Figure 2), situated north of the Youjiang Basin (Figure 1b),
contains several super-large or large Au (e.g., Shuiyindong, Lannigou, Zimudang, and
Getang) and Sb (e.g., Qinglong and Dachang) deposits. These deposits are thought to
have formed during a low-temperature hydrothermal metallogenic event [1,5,17,37], where
the Au and Sb orebodies were primarily controlled by short-axis anticlines (domes) and
associated fracture zones (Figure 2). The majority of the exposed strata in this region are
Devonian to Triassic, with the Triassic system being distributed most widely, which was
followed by the Permian, while the Devonian and Carboniferous are sporadically exposed
at some cores of anticlines or domes. The magmatic rocks mainly include the Emeishan
flood basalts and alkaline ultrabasic pipes and dikes. An unconformity (SBT) between
the Middle and Upper Permian, consisting of altered breccia [38], is thought to be the
structural conduit that fed ore fluids into the cores of the anticlines (domes) [39]. The
Au and Sb mineralization occurs primarily in the SBT and the Upper Permian to Lower
Triassic systems.
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Figure 2. Geological map of Southwestern Guizhou showing the distributions of major Carlin-type
Au, Sb, Hg, and Hg-Tl deposits.

The Zimudang large Au deposit, with a total Au reserve of over 72 tons [17], is
located west of the Huijiabao anticline. The Au orebodies tend to be found in silicified
brecciated argillite and limestone of the SBT and in bioclastic limestone, siltstones, and
claystone of the Upper Permian and Lower Triassic (Figure 3a,b). Hydrothermal alterations
include silicification, decarbonatization, sulfidation, dolomitization, and argillization. Ore
minerals consist primarily of arsenian pyrite and arsenopyrite, with small amounts of
orpiment, realgar, stibnite, and cinnabar. Gangue minerals include calcite, quartz, and
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fluorite. The stibnite, realgar, and orpiment commonly coexist with the ore-related calcite
vein (Figure 4a,b).
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Figure 3. Geologic plan and cross-section of the Zimudang Au deposit (a,b) and Dachang Sb deposit (c,d). Abbreviations:
Fm = Formation.

The Dachang large Sb deposit contains a proven and inferred Sb resource of approx-
imately 30 ten thousand tons [5]. The Sb orebodies are generally found within silicified
brecciated basalt, basaltic volcanic tuff, and limestone of the SBT (Figure 3c,d). Hydrother-
mal alterations are similar to the Au deposits in the region, including silicification, decar-
bonatization, sulfidation, argillization, fluoritization, and minor baritization. Stibnite is the
dominant ore mineral, and fluorite and quartz are the major gangue minerals. Quartz and
fluorite are generally in assemblage with stibnite (Figure 4c,d).
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3. Samples and Analytic Methods

A total of five calcite and five fluorite samples were collected from the Zimudang Au
and Dachang Sb deposits, respectively. The calcite samples are intergrown with realgar
and orpiment in high-grade Au ores (Figure 4a,b), and the fluorite samples coexist with
stibnite and quartz (Figure 4c,d) in high-grade Sb ores. The paragenesis suggests that
the calcite and fluorite are closely related to Au and Sb mineralization, respectively. The
fluorite and calcite samples were crushed into 40 to 60 meshes and then hand-picked under
a binocular microscope, yielding a mineral purity of more than 99%. Finally, the pure
calcite and fluorite separates were finely crushed to 200 mesh in an agate mortar.

The REE contents for calcite and fluorite were analyzed using an ELAN 6000 induc-
tively coupled plasma quadrupole mass spectrometer at the Institute of Geochemistry,
Chinese Academy of Sciences (Guiyang, China). The detailed analytical methods are
described by Qi et al. [40], and the analysis accuracy was better than ±5%. Sm and Nd
concentrations and their isotope ratio measurements were performed using an IsoProbe
Thermal Ionization Mass Spectrometer at the Tianjin Institute of Geology and Mineral
Resources, Chinese Academy of Geological Sciences (Tianjin, China). Detailed analytical
procedures are available in Peng et al. [23], Su et al. [18], and Zhang et al. [41]. The re-
producibility of the isotopic ratios was better than 0.005% (2σ). The precision for the Sm
and Nd content was less than 0.5% of the quoted values (2σ). Sm–Nd isochron ages were
calculated using the Excel add-in ISOPLOT 2.9 (U.S. Geological Survey, Washington, DC,
USA) [42], and the decay constant used in the calculation was λ147Sm = 6.54 × 10−12/year.

4. Results

The REE concentrations and Sm–Nd isotopic compositions of calcite and fluorite
are presented in Tables 1 and 2, respectively. The ΣREE contents of calcite and fluorite
range from 8.21–22.5 and 21.7–36.6 µg/g, showing variable Sm/Nd ratios of 0.51–1.01 and
0.35–0.49, respectively. C1 chondrite-normalized [43] REE patterns of calcite (Figure 5a)
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and fluorite (Figure 5b) exhibit apparent differences, although all samples show middle rare
earth element (MREE) enrichment characteristics. The calcite samples from the Zimudang
Au deposit are characterized by positive Eu anomalies (δEu = 1.24–1.38), whereas the
fluorite samples from the Dachang Sb deposit are characterized by negative Ce anomalies
(δCe = 0.67–0.72).

Table 1. Rare earth element (REE) compositions (µg/g) of the calcite and fluorite samples.

Sample No. La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ΣREE Y δEu δCe

ZMD-03 0.91 2.93 0.55 3.31 1.61 0.76 2.07 0.27 1.33 0.22 0.40 0.04 0.20 0.02 14.6 6.17 1.27 0.99
ZMD-04 0.43 1.60 0.35 2.58 1.52 0.81 2.11 0.29 1.34 0.22 0.42 0.05 0.21 0.03 12.0 7.38 1.38 0.95
ZMD-25 0.51 1.48 0.28 1.78 1.20 0.70 2.22 0.35 1.76 0.28 0.59 0.07 0.34 0.05 11.6 10.6 1.29 0.96
ZMD-26 0.15 0.53 0.14 0.98 1.03 0.59 1.93 0.30 1.45 0.23 0.48 0.06 0.32 0.04 8.21 8.19 1.27 0.82
ZMD-28 0.75 3.05 0.72 4.73 2.53 1.29 3.99 0.59 2.99 0.49 0.86 0.08 0.38 0.04 22.5 15.0 1.24 0.93

DC-02 1.60 2.69 0.65 4.09 1.88 1.14 4.84 1.00 6.35 1.39 3.15 0.34 1.64 0.19 31.0 104 1.10 0.65
DC-06 1.50 2.79 0.61 3.58 1.59 0.76 3.30 0.58 3.41 0.77 1.67 0.18 0.88 0.1 21.7 56.3 1.00 0.72
DC-07 2.13 3.40 0.79 4.64 1.95 0.92 4.29 0.73 4.48 1.01 2.39 0.27 1.33 0.16 28.5 69.6 0.94 0.64
DC-10 3.43 5.99 1.31 7.61 2.61 1.15 4.68 0.76 4.30 0.97 2.17 0.25 1.19 0.16 36.6 80.9 0.99 0.69
DC-15 2.23 3.48 0.77 4.36 1.70 0.79 3.47 0.61 3.61 0.84 2.08 0.22 1.15 0.14 25.5 59.2 0.97 0.65

Table 2. Sm–Nd isotopic compositions of the calcite and fluorite samples.

Sample No. Deposits/Occurrence Sm (µg/g) Nd (µg/g) Sm/Nd 147Sm/144Nd 143Nd/144Nd(2δ) εNd

ZMD-03 1.7307 3.3831 0.51 0.3093 0.512612 ± 8 −2.5
ZMD-04 Zimudang 1.7147 2.7122 0.63 0.3822 0.512699 ± 9 −2.2
ZMD-25 Cal + Rlg + Orp 1.3471 1.9572 0.69 0.4161 0.512734 ± 19 −2.1
ZMD-26 1.1104 1.0996 1.01 0.6105 0.512956 ± 8 −1.3
ZMD-28 2.3163 4.2144 0.55 0.3323 0.512642 ± 7 −2.4

DC-02 1.3930 2.8706 0.49 0.2934 0.512507 ± 8 −4.3
DC-06 Dachang 1.3047 3.1282 0.42 0.2522 0.512468 ± 10 −4.3
DC-07 Fl + Stb 1.5371 3.5324 0.44 0.2631 0.512475 ± 3 −4.4
DC-10 2.0384 5.8439 0.35 0.2109 0.512429 ± 8 −4.3
DC-15 1.1420 2.8716 0.40 0.2404 0.512457 ± 15 −4.3

Abbreviations: Cal = Calcite, Rlg = Realgar, Orp = Orpiment, Fl = Fluorite, Stb = Stilbite.

The calcite samples show 147Sm/144Nd and 143Nd/144Nd values ranging from 0.3093
to 0.6105 and 0.512612 to 0.512956, respectively. The fluorite samples have 147Sm/144Nd
and 143Nd/144Nd values of 0.2109–0.2934 and 0.512429–0.512507, respectively. Calcite
and fluorite all display good linear relationships in the 147Sm/144Nd-143Nd/144Nd di-
agram (Figure 5c,d). Calcite yields an Sm–Nd isochron age of 148.4 ± 4.8 Ma, with a
low mean square of weighted deviates (MSWD) of 0.82 and an initial 143Nd/144Nd ratio
of 0.512362 ± 0.000013 (initial εNd(t) = −2.1). Fluorite yields an Sm–Nd isochron age of
141 ± 20 Ma, with a low MSWD of 0.43 and an initial 143Nd/144Nd ratio of 0.512233 ±
0.000034 (initial εNd(t) = −4.3).
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Figure 5. C1 chondrite-normalized [43] rare earth element (REE) patterns (a,b) and corresponding Sm–Nd isochron ages
(c,d) of the calcite and fluorite.

5. Interpretations and Discussion
5.1. REE Features in Calcite and Fluorite

MREE-enriched patterns of calcite and fluorite are currently not well understood.
MREE-enriched calcite and fluorite also occur in other low-temperature hydrothermal
deposits in Southwestern Guizhou, such as calcite in the Shuiyindong [18] and Banqi [44]
Au deposits, and fluorite in the Qinlong [20] and Banpo [25] Sb deposits. MREE-enriched
patterns were also observed in natural terrestrial waters and acidic leachates by Johan-
nesson et al. [45,46]. Johannesson et al. [45] proposed solid-liquid exchange reactions,
dissolution of MREE-enriched surface Fe-Mn coatings, particulates, secondary mineral
phases, and sulfate complexation as possible mechanisms to develop these MREE-enriched
patterns. The ore-forming fluids for the Au and Sb deposits in Southwestern Guizhou may
be MREE-enriched, and the calcite and fluorite likely inherited the MREE-enriched pattern
of the ore forming fluids from which the calcite and fluorite precipitated [33].

In natural aqueous systems, the occurrence of Eu and Ce anomalies, which are due to
redox reactions, may indicate reducing conditions for the former and oxidizing conditions
for the latter [47]. Fluid inclusion studies of quartz in the Zimudang Au deposit [48]
show that the ore-forming fluids were low temperature (approximately 200–230 ◦C), CO2
and CH4 rich, and reducing. Thermodynamic calculations suggest that, at an elevated
temperature (>200 ◦C) and reducing conditions, Eu2+ should be dominant over Eu3+ [49]
and may preferentially substitute for Ca2+ over trivalent REEs in calcite, leading to the
positive Eu anomalies observed in this study. Negative Ce anomalies have been extensively
investigated in sea and river waters [47]. The Ce anomaly occurs in response to the
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oxidation of Ce3+ to Ce4+ and the precipitation of Ce4+ from solution as CeO2 [50]. Fluid
inclusion studies for fluorite in the Dachang Sb deposit [48] show that a large volume
of meteoric water was involved in the ore-forming fluids at the Sb metallogenic stage,
decreasing the fluid temperature (140–160 ◦C), which may have led to the negative Ce
anomalies in fluorite.

The initial εNd(t) values can also be used to obtain evidence on the source of Nd.
The relative higher initial εNd(t) value (−2.1) for calcite is similar to calcite from the
Shuiyindong Au deposit (−2.0 to −1.1 at 145 Ma; [18,19]), and the lower initial εNd(t)
value (−4.3) for fluorite resembles that from the Qinglong Sb deposit (−3.7 to −5.8 at
145 Ma) [20]. The host rocks of the Au and Sb mineralization in Southwestern Guizhou are
primarily limestone and basaltic volcanic tuff from the Permian. The initial εNd(t) values
of calcite and fluorite in this study are within the range of values for Permian limestone
(−6.3) and basaltic volcanic tuff (+1.5) at 145 Ma [20,51]. Thus, the εNd(t) values of the
calcite and fluorite may have been sourced from mixtures of basaltic volcanic tuff and
bioclastic limestone in the Permian.

5.2. Au and Sb Metallogenic Age in Southwestern Guizhou

The linear relationships shown in Figure 5c,d represent isochrons or mixed lines with
two end-members characterized by significantly different 143Nd/144Nd and 147Sm/144Nd
ratios. In the former, the slopes of the straight lines determine the ages of the fluorite
and calcite. In the latter, the slopes have no meaning. The calcite and fluorite did not
yield linear relationships in the 1/Nd vs. 143Nd/144Nd diagram (Figure 6a) and show a
consistent Y/Ho ratio in the Y/Ho vs. La/Ho diagram (Figure 6b), respectively. Therefore,
the two lines have isochronal significance and can accurately reflect the ages of the calcite
(148.4 ± 4.8 Ma) and fluorite (141 ± 20 Ma).
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Figure 6. Diagrams of 1/Nd vs. 143Nd/144Nd (a) and Y/Ho vs. La/Ho (b) for the calcite and fluorite.

Hydrothermal deposits are the product of a geological thermal event. Fission tracks
and (U–Th)/He ratios are temperature-sensitive radiometric dating techniques. Huang
et al. [35] reported fission track and (U–Th)/He ages of detrital zircons collected from
the Shuiyindong, Taipingdong, Yata, and Getang Au deposits in Southwestern Guizhou.
Two thermal events (i.e., 192–216 and 132–160 Ma) with temperatures higher than the Au
ore-formation temperature (~210 ◦C [9]) were obtained. The Au and Sb metallogenic event
in Southwestern Guizhou occurred at 192–216 and/or 132–160 Ma. Tan et al. [19] also re-
ported two instances of hydrothermal fluorite (200.1 ± 8.6 Ma) and calcite (150.2 ± 2.2 Ma)
minerals at the Shuiyindong Au deposit, corresponding to the Indosinian orogeny and
Yanshanian orogeny, respectively.

The crosscutting relationship of stratigraphy or intrusions is the most reliable method
for constraining the mineralization epoch. The Au and Sb mineralization in Southwest-
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ern Guizhou is primarily located in the Upper Permian to Triassic systems. Wang [52]
described a remnant exposure of Jurassic strata near the Zimudang Au deposit that is
unconformably parallel to and folded with Late Triassic strata (Figure 7b). We note that
many fault-controlled orebodies in the Zimudang Au deposit crosscut the anticline. There-
fore, the Au and Sb mineralization is synchronous with or younger than the folding, and
the Jurassic is the maximum age limit of the Au and Sb mineralization. The parallel un-
conformity (ca. 200 Ma) between the Early Jurassic and Late Triassic strata may represent
the weak remote response of the Indosinian orogeny that transformed the Youjiang Basin
uplift into land. Huang et al. [35] reported that the oldest group of zircon fission tracks
and (U–Th)/He ages (192–216 Ma) may record the cooling age of the pre-ore thermal event
caused by the Indosinian orogeny. In addition, there is another exposure of Late Cretaceous
sedimentary rocks (ca. 100 Ma) north of Guizhou, which is angularly unconformable to
Middle Jurassic rocks (ca. 160 Ma) (Figure 7c) [36]. The angular unconformity resulted
from the Yanshanian orogeny, which initiated the pervasive folding and faulting of Middle
Jurassic and underlying strata and created the present structural appearance of Guizhou
Province. Chen et al. [53] described a 96 Ma unaltered quartz porphyry dike that crosscuts
the orebodies in the Liaotun Au deposit in Guangxi Province, which represents the mini-
mum age limit of Au mineralization in the Youjiang Basin [4,9,54,55]. In summary, these
field surveys indicate that the Au and Sb mineralization in Southwestern Guizhou formed
between the Middle Jurassic (ca. 160 Ma) and Late Cretaceous periods (96 Ma).
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Cretaceous systems. (a) Geographical map of Guizhou showing the locations of the geologic cross sections; (b) Geologic
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Triassic strata; (c) Geologic cross section north of Guizhous showing Late Cretaceous strata is angularly unconformable to
Middle Jurassic rocks.

Over the past few decades, some important progress has been made in dating hy-
drothermal minerals in Au and Sb deposits in Southwest Guizhou. Chen et al. [15] obtained
an 40Ar–39Ar plateau age of 194.6 ± 2 Ma using sericite in quartz veins from the Lannigou
Au deposit. Chen et al. [14] reported ages of 204 ± 19 Ma and 235 ± 33 Ma based on the
Re–Os isotopes of arsenopyrite from the Lannigou and Shuiyindong deposits, respectively.
Sm–Nd isochron ages of 134 ± 3 and 136 ± 3 Ma have been reported for calcite from
the Shuiyindong Au deposit [18]. Tan et al. [19] reported another Sm–Nd isochron age
of 150.2 ± 2.2 Ma of calcite from the Shuiyindong Au deposit. Peng et al. [20] obtained
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Sm–Nd isochron ages of 148 ± 8 and 142 ± 16 Ma from fluorite in the Qinglong Sb deposit.
Chen et al. [16] obtained a weighted-mean secondary ion mass spectrometry Th–Pb age of
141 ± 3 Ma for apatite from the Nibao Au deposit. Zheng et al. [17] dated fluid inclusions
in quartz from the Nibao Au deposit and obtained Rb–Sr isochron ages of 142 ± 3 and
141 ± 2 Ma.

The reported Re–Os isochron ages of the Lannigou and Shuiyindong Au deposits
are likely significantly mixed and older than the Au mineralization. Ore-stage arsenopy-
rite is commonly intergrown with fine-grained diagenetic pyrite and is very difficult to
separate [9,16,19,54]. Additionally, the reported Ar–Ar age spectrum of the sericite is highly
irregular and has no plateau, indicating that this age is not reliable [9]. Excluding the unreli-
able ages of arsenopyrite and sericite, the age range obtained by calcite and fluorite Sm–Nd,
quartz fluid inclusions Rb–Sr, and apatite Th–Pb methods is 135–150 Ma [9,16,17,19,20],
which is consistent with the age interval constrained by low-temperature thermochronology
(132–160 Ma) and the crosscutting relationships of stratigraphy or intrusions (96–160 Ma).
The ages obtained in this study add new evidence to previous geochronology studies and
reveal the regional Au and Sb mineralization age interval of 135–150 Ma corresponding to
the Yanshanian orogeny.

Many studies have proposed magmatic origin models for the Au and Sb mineraliza-
tion in Southwestern Guizhou based on δ34S (ore-related sulfide, approximately −5 to
+5‰ [3,4,56–58], ∆199Hg (mineralized rocks, −0.1 to 0.1‰ [59]) and He isotope data (min-
erals of main ore stage, R/RA ratios ranging from 0.01 to 0.4 [2]). According to a synthesis
of structural, petrological, geochronological, and geochemical studies, South China notably
underwent a tectonic transition from contraction to large-scale extension and experienced
extensive magmatic activity ca. 135–150 Ma as a result of the westward flat-slab subduc-
tion of the Pacific oceanic lithosphere beneath South China [60,61]. Although magmatic
outcrops from 135–150 Ma are absent in Southwestern Guizhou, gravity and magnetic
geophysical investigations indicate the presence of a pluton ~5 km below the surface of the
Huijiabao anticline district [4]. Collectively, the low-temperature hydrothermal Au and
Sb mineralization in Southwestern Guizhou is likely related to the Yanshanian magmatic
activity associated with a weak, extensional, tectonic environment.

6. Conclusions

Calcite and fluorite samples, collected from the Zimudang Au deposit and the Dan-
gchang Sb deposit, respectively, are symbiotic with sulfides of a metallogenic stage
(e.g., realgar, orpiment, and stibnite), and they are thought to be coeval with Au and
Sb mineralization. The ore-related calcite and fluorite yielded Sm–Nd isochron ages of
148.4 ± 4.8 and 141 ± 20 Ma, respectively. These results, combined with regional low-
temperature thermochronology, crosscutting relationships of stratigraphy or intrusions,
and previous dating results, indicate that the Au and Sb deposits in Southwestern Guizhou
most likely formed at 135–150 Ma, corresponding to the Yanshanian orogeny associated
with a weak, extensional, tectonic environment.
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