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Abstract: Analyzing and fusing information layers of exploratory parameters is a crucial stride for
increasing the accuracy of pinpointing mineral potential zones in the reconnaissance stage of mineral
exploration. Remote sensing, geophysical, geochemical, and geology data were analyzed and fused
for identify metallic mineralization in the Kodegan-Basiran region (East Iran). Landsat 7 Enhanced
Thematic Mapper Plus (ETM+), aeromagnetic data, geological data, and geochemical stream sediment
samples were utilized. The study area contains some copper indices and mines. Thus, the main focus
of this study was identifying the zones with high potential for metallic copper mineralization. A two-
stage methodology was implemented in this study: First, extraction of the exploratory parameters
related to metallic mineralization and second is data fusion by the hybrid fuzzy-analytic hierarchy
process (Fuzzy-AHP) method. Hydrothermal alterations and iron oxides in the area were mapped
by applying the optimum index factor (OIF), band ratio (BR), and least squared fit (LS-Fit) to ETM+

data. Intrusive masses were positioned as one of the effective parameters in identifying metallic
mineralization zones using the gradient tensor method to assess aeromagnetic data. In order to
determine the threshold concentration and the location of mineralization anomalies, the K-means
clustering algorithm, vertical geochemical zonality (Vz) index, as well as concentration-area (C-A)
multi fractal and singularity analysis were implemented on the geochemical data. In conclusion,
the potential zones of metallic mineralization in the Kodegan-Basiran region were displayed in a
mineral prospectivity map (MPM) derived from the Fuzzy-AHP decision-making method. Finally, to
validate the prospectivity map of metallic mineralization, a control area was selected and surveyed
by collecting mineralogical, petrological, and stream sediment samples. Field works confirmed the
mineralization of Cu and Fe sulfides, oxides, and hydroxides. The high potential areas identified in
the MPM can be considered as targets for future Cu exploration in the Kodegan-Basiran area.

Keywords: data fusion; zonality; singularity; K-means clustering; multi fractal analysis; mineral
exploration; geochemistry; Iran

1. Introduction

The fusion of information layers with the aim of identifying mineral prospectivity
is of great importance, because many parameters play a role in the formation of mineral
deposits. Therefore, multi-dimensional data can increase accuracy and precision [1–3].
Remote sensing and geological information are two general groups of data that are used
in the identification of mineral prospectivity in the reconnaissance stage [4–8]. Various
methods have been used so far to analyze exploratory data in order to identify mineral
prospectivity on a reconnaissance scale. The information layers related to remote sensing,
geochemistry, geology, and geophysics data are studied by analytical methods and the
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desired exploratory parameters are extracted from them (in the form of maps). Then, based
on a decision-making method, the final prospectivity map is presented [9–11].

The Kodegan-Basiran area, South Khorasan province is selected for reconnaissance
studies of metallic mineralization, which is placed in the metallogenic province of eastern
Iran [12]. The study area is located in the Lut geological block, and the evolution of this
block has been interpreted as an extensional setting (Figure 1A) [13,14]. In terms of mineral
exploration in the Lut block, mineralization of Cu, Pb, Zn, Sb, Hg, and Au have been
reported and documented [15,16]. The Eocene–Oligocene volcanics and subvolcanics of
the Lut block are related to copper–gold mineralization, including porphyry copper–gold
deposits (Khopik, Shadan and Maher Abad), epithermal-type ores (Qaleh Zari, Hired,
Shurab, Sehchangi and Howze Rasi), Au-Ag and Pb-Zn-Sb vein-type deposits (Chupan,
Khur and Rahi), and magmatic-skarn deposits (Sorkh Kuh and Bisheh), as well as many
other sub-economic Tertiary orebodies [15,17–20]. The study area was selected to identify
promising targets of future Cu exploration (larger scales) based on regional geological units
(Figure 1B) and mineral evidence.

The study area has the potential of metallic mineralization Cu, Au, and Fe. The
primary purpose of this research is to investigate airborne geophysics (aeromagnetic data),
geochemistry (stream sediment samples), and remote sensing (alterations), along with
the lithological, data of the region and their integration to identify metallic prospectivity
zones. According to the studies conducted by various researchers in the east of Iran (Sistan
structural zone and Lut block), the studied area is a suitable target for metallic mineral
prospectivity, especially Cu [21–24].

In present research, remote sensing and aeromagnetic data and field data (i.e., stream
sediment samples and host lithology) were used to identify high prospectivity zones of
metallic mineralization. Alterations related to metallic mineralization were identified using
Landsat-7 (ETM+) images. Optimum index factor (OIF) analysis was conducted to separate
geological units. Then, the methods of band ratio (BR) and least squared fit (LS-Fit) were
used to identify hydrothermal and Fe oxides alterations. Intrusive masses in the area
were located by gradient tensor analysis on airborne magnetometric data and considered
as an exploratory parameter in the studies. Subsequently based on 1428 geochemical
stream sediment samples, vertical geochemical zonality (Vz) index was calculated and
geochemical anomaly maps were obtained using the analytical methods of concentration-
area (C-A) multi fractal and singularity. To clarify the concentration relationships among
supra-mineral elements and sub-mineral elements with particular focus on Cu element,
the k-means clustering algorithm was applied on Pb, Zn, Bi, Ag, Cu, and Mo. In the last
step, the information layers were integrated using the fuzzy analytic hierarchy process
(Fuzzy-AHP) decision method. Fuzzy-AHP as a knowledge-based method that provides
intelligent decision based on information layers in the reconnaissance stage [25,26]. The
main objectives of this research were: (1) to analyze remote sensing, geophysical, and
geochemical information layers; (2) to map prospectivity zones of metallic mineralization
based on information layers; (3) to integrate information layers [27] and prepare the final
metallic prospectivity map by the fuzzy-AHP method.
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rocks that penetrated the Eocene volcanic units. In general, igneous geological units in the 
study area include andesite, basalt, dacite, ophiolite and tuff [28,29]. The youngest geo-
logical unit in the study area is the alluvial sediments of the present age, which in some 
areas cover the intrusive masses on the surface. In the eastern and southern parts of the 
area, there is also an extension of the shale unit. The geology of the area includes Creta-
ceous sedimentary and metamorphosed rocks and Eocene volcanic units that have been 

Figure 1. (A) Iran Cu mineralization zones and (B) study area simplified geological map (Combination
of Basiran and Kodegan 1:100.000 geological map) [28,29].

2. Geological Setting

The study area (Figure 1) is located at longitude 59◦–60◦ and latitude 31.30◦–32◦ in
the Sistan structural zone and Lut block in eastern Iran (South Khorasan Province). The
most crucial feature of Lut Block, which separates it from other parts of central Iran, is
the presence of extensive and massive Tertiary magmatic activity [30,31]. The extensive
magmatic activity with unique geochemical characteristics in different parts of the Lut block
has caused it to have the potential to form various types of metallic and non-metallic min-
eralization [28,32,33]. The study area has moderate to acidic intrusive and semi-intrusive
rocks that penetrated the Eocene volcanic units. In general, igneous geological units in
the study area include andesite, basalt, dacite, ophiolite and tuff [28,29]. The youngest
geological unit in the study area is the alluvial sediments of the present age, which in
some areas cover the intrusive masses on the surface. In the eastern and southern parts
of the area, there is also an extension of the shale unit. The geology of the area includes
Cretaceous sedimentary and metamorphosed rocks and Eocene volcanic units that have
been intruded by monzonitic to diorite masses of Eocene to Oligocene age. Due to the
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intrusion of semi-deep units into highly altered volcanic and carbonate rocks in this area,
there is geological potential for metallic mineralization [12,34].

3. Materials and Methods
3.1. Raw Data
3.1.1. Geochemical Sampling

Geochemical sampling of stream sediments in the study area was performed by the
Geological Surveys of Iran (GSI). In this sampling, 1428 stream sediment samples (Figure 2)
with particle sizes of −80 mesh were collected.
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Figure 2. The geochemical sampling network in the study area.

To check the accuracy of the analysis, for every 10–15 geochemical samples, a duplicate
sample (about 10% of the total samples) was analyzed. Hence, 110 samples were selected
randomly in the study area. Figure 3 shows a diagram of the relative error rate for different
elements, where the Au element have a high relative error rate [35]. Finally, the collected
samples were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) in the
GSI laboratory [35].
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3.1.2. Remote Sensing Data Characteristics and Pre-Processing

Two scenes Landsat-7 (ETM+) images of the study area acquired on 15 July 2002 were
used. ETM+ scenes were obtained from the USGS website (http://earthexplorer.usgs.gov).
Corrections made on these images include geometric, topographic, and internal average
relative reflectance (IARR) atmospheric methods.

3.2. Methodology

Figure 4 presents a flowchart of the methods used in this study. At first, information
layers, including (1) remote sensing, (2) geology, (3) geophysics, and (4) geochemistry, were
generated using analyzing methods.
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Subsequently, in the data fusion stage, all information layers were integrated using
the hybrid fuzzy-AHP method [36]. As the final result of the research, a prospectivity map
of metallic mineralization was prepared for the studied area.

3.2.1. Remote Sensing Data

In order to process ETM+ satellite images in the study area, OIF, BR, and LS-Fit were
used. Lithological units were separated by OIF to use in other stages of research such as
airborne magnetometric analysis [37]. Alterations related to clay minerals and Fe oxides
were identified by the BR method [38,39]. Subsequently LS-Fit analysis was conducted on
the satellite image to detect hydrothermal alterations [40]. All the remote sensing methods
that have been used in the research produce maps to identify the exploratory parameters of
metallic mineralization prospectivity in the study area.

3.2.2. Geophysical Data

The gradient tensor method was used to investigate airborne magnetic data of the
study area. The aim of using magnetometric data analysis is to estimate the trend and
situation of igneous masses. Subsequently, in order to find the metallic mineralization

http://earthexplorer.usgs.gov
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prospectivity, the relationship between igneous masses and regional geology was investi-
gated. Among the various methods which use gradient analysis to estimate the situation
of igneous masses, the gradient tensor method uses horizontal gradients and vertical gra-
dients simultaneously (dx, dy and dz). This method can generate more accurate results
in estimating the borderline of magnetic anomalies [24,41]. In this study, a residual mag-
netic map was prepared using gradient tensor method and the igneous masses related to
magnetic anomalies were investigated.

3.2.3. Geochemical Data

(A) Zonality Method

The primary halos of ore deposit are made up of different parts of the ore, including
host rock and main elements of the deposit [42]. Primary geochemical halos of mineral
deposits, which result from the impact of hydrothermal fluids on bedrock, are characterized
by the enrichment or depletion of desired elements. Therefore, these geochemical halos
are valuable guides for mineral prospecting. The vertical geochemical zonality (Vz) index,
which is obtained based on the Supra/Sub mineral elements, are applicable for prospectivity
mapping [43]. Vz index shows the mineralization level and its primary geochemical haloes.
Ziaii (1996) [44] presented a model for identifying the erosional surface of copper porphyry
deposits by three types of Vz indexes (Vz1, Vz2, and Vz3) in Table 1 [44]. The Vz indices
based on sub/supra mineral elements show the mineralization phase and the primary
halos. Ziaii (1996) [44] invented a model to calculate the mineralization phase in triple
Vz [44,45].

Table 1. The types of Vz index for identifying the erosional surface of Cu porphyry deposits (deposits
from iran, Kazakhstan, Armenia and Bulgaria) [44].
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(B) K-means Clustering Method

In order to group the geochemical elements into clusters (based on common character-
istics), the K-means clustering method was used [46]. The center of clusters was used in
the investigations instead of analyzing large numbers of data. The five main steps of the
K-means algorithm are given below [47]:

(1) The number of K is chosen randomly, and all members are divided into K clusters.
(2) The Zj vector is calculated by Formula (1). In the presented equation, Cj is the class

center value.

zj =
∑x∈cj

x

#cj
j = 1 . . . k (1)

(3) Formula (2) is the calculator of the considered clusters.
X: the vector of Cj members; #Cj: The number of Cj members [48].
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(4) Formula (2) calculates the objective function, from which the distance of members
from the centers is determined.

f (C1.C2. · · · .Ck) = ∑k
j−1 ∑X∈Cj

∣∣X− zj
∣∣2 (2)

(5) Finally, the optimal number of clusters (K) is provided according to the minimum
objective function.

Shirazi et al. [49] introduce software to quickly performs the above algorithm [48,50].
The purpose of using the K-means clustering method is to model the concentration changes
of supra-mineral elements and sub-mineral elements versus Cu.

(C) Concentration-Area (C-A) Fractal Method

The principles of Euclid’s geometry are not followed by some rare irregular shapes.
Fractal geometry is the name given to the geometry that describes these phenomena. Fractal
and multi-fractal analysis apply to geochemical and geological investigations. The spatial
distribution and shape of the anomalies can be studied by fractal methods.

Chen et al. [51] presented various methods of using fractal analysis to separate geo-
chemical communities. The concentration of fractal properties is given below: An equation
is presented below for the concentration of materials or fractal properties:

A(≥ν) ∝ ν−α (3)

where A(≥ν) shows the cumulative area surrounded by contour lines (whose related
concentration is greater than or equal to v). The α value is the fractal dimension of
the different amplitudes [52,53]. The purpose of using the C-A fractal method in the
present research was to find the geochemical thresholds of supra-mineral and sub-mineral
elements communities.

(D) Singularity Method

The singularity method determines geochemical anomalies with soft threshold form [54].
This method uses local thresholds and some window-based contrast singularity maps [55,56].
Singularity analysis is suitable for use relying on continuous sampling to define anomalies
where metals in rock deposits have a Pareto tail [57,58]. The singularity of the element is
obtained from the average concentration of C(A) at different A by the Ls-Fit of a straight
line on the log-log sheet. Singularity equations can be found as Equations (4) and (5):

C(A) = cAα/2−1 (4)

log C[A(ri)] = C0+ (α − 2) log (ri) (5)

where C(A) shows the concentration of the A area with size of ri, the C and C0 are constant
values and the α is the relationship exponent. In Equation (4), log (C) Vs. log (ri) is a line
where C0 is y-intercept, and its slope is ∆α = α − 2. The negative slope of line (∆α < 0)
shows the elements enrichment and counter. Therefore, areas with singularity index less
than 2 (α < 2) indicate concentration enrichment [59].

3.2.4. Data Fusion

(A) Hybrid Fuzzy-Analytic Hierarchy Process (Fuzzy-AHP) method

The fuzzy-AHP method was conducted as a knowledge-based method to create an
integrated metallic prospectivity map in the study area. In fact, the fuzzy-AHP is a decision-
making method based on priorities [60–62]. Each of the information layers, including
maps of geology, geochemistry, airborne magnetometry, and remote sensing are weighted.
Subsequently, based on the assigned weights, all the fuzzified layers are integrated. Finally,
the prospectivity map of the metallic mineralization is obtained. In general, the process
used consists of four principles [26,63]: (i) determining the main-criteria and sub-criteria of
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the decision; (ii) calculating the weights of main-criteria and sub-criteria; (iii) fuzzification
stage: all information layers are fuzzified; and (iv) final stage: integration of information
layers based on calculated weights of main-criteria and sub-criteria.

4. Analysis and Results
4.1. Remote Sensing Analysis on ETM+ Satellite Image
4.1.1. Optimum Index Factor (OIF) Analysis

The OIF method was applied to ETM+ image in order to separate geological units.
After applying the OIF on different bands of the ETM+ satellite sensor, the combination
of RGB bands 5-3-1 has the highest optimal index factor. In fact, it can be said that the
histogram of these three selected bands has the lowest correlation and the most information
can be extracted from it [64]. Figure 5 shows the result of the OIF analysis on the ETM+

satellite image. As can be seen, the geological units were separated well, in agreement with
the trust geology of the area.
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was determined by the OIF.

4.1.2. Band Ratio (BR) Analysis

In order to identify iron oxide areas, the band ratio of 3/1 was applied, and to highlight
areas with the most clay minerals the band ratio of 5/7 was used. Finally, the combination
of RGB bands = 5/7, 3/4, 3/1 was prepared in Figure 6 to better highlight Fe oxides (pale
blue) and minerals including hydroxyl (pink).



Minerals 2022, 12, 1629 9 of 23Minerals 2022, 12, x FOR PEER REVIEW 9 of 24 
 

 
Figure 6. The image resulting from the band ratio combination (RGB = 5/7, 3/4, 3/1) on the ETM+ 
satellite sensor. 

4.1.3. Least Squares Fit (LS-Fit) Analysis 
In ETM+ satellite sensor data, band 7 for hydrothermal alterations and band 3 for Fe 

oxides were selected. As a result, to prepare a false color combination (RGB), the inverse 
residue of band 7 (−R7), the residue of band 4 (R4), and the residue of band 3 (R3) were 
used. In Figure 7, pink and blue pixels represent argillic and propylitic alterations, respec-
tively. 

 
Figure 7. The image resulting from the false color combination of −R7, R4 and R3 residues (RGB = 
−R7, R4, R3) using the Ls-Fit method from the ETM+ satellite sensor. 

4.2. Airborne Magnetometric Data Analysis 
As can be seen in the remaining map presented in Figure 8, on the eastern side of the 

area, a sharp dipole can be seen, which is currently covered with alluvium deposits. 

Figure 6. The image resulting from the band ratio combination (RGB = 5/7, 3/4, 3/1) on the ETM+
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4.1.3. Least Squares Fit (LS-Fit) Analysis

In ETM+ satellite sensor data, band 7 for hydrothermal alterations and band 3 for Fe
oxides were selected. As a result, to prepare a false color combination (RGB), the inverse
residue of band 7 (−R7), the residue of band 4 (R4), and the residue of band 3 (R3) were used.
In Figure 7, pink and blue pixels represent argillic and propylitic alterations, respectively.
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4.2. Airborne Magnetometric Data Analysis

As can be seen in the remaining map presented in Figure 8, on the eastern side of the
area, a sharp dipole can be seen, which is currently covered with alluvium deposits.
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Figure 8. The residual map of airborne magnetometric data analyzed by gradient tensor method.

Based on the results of remote sensing, the eastern part of the area has been identified
as Fe oxide areas, so this dipole can be considered in connection with possible Fe min-
eralization. Negative monopoles are evident in the central areas which can be related to
metallic sulfide mineralization according to the distribution of hydrothermal alterations.
In the western part (to the southwest) of the area, another bipolar can be seen. According
to the geological map and the results of the alteration identification, it is related to basalt,
andesite, and dacite masses.

4.3. The Predictor Composition of Cu Mineralization

The descriptive statistical parameters of Cu, Mo, Pb, Zn, Ag, Au, and Bi elements
are presented in Table 2. Ziaii et al. investigated four porphyry copper mines, including
Aktogay (Kazakhstan), Teghut (Armenia), Assarel (Bulgaria), and Sungun (Iran). Based on
this research, the Pb, Zn, and Bi elements are located in the supra-mineral halos and the
elements of Cu, Ag, and Mo are located in the sub-mineral halos [44,65].

Table 2. Descriptive statistical parameters of Cu, Au, Ag, Bi, Mo, Pb and Zn based on 1428 geochemi-
cal stream sediment samples (Raw Data).

Elements Cu Au Ag Bi Mo Pb Zn

Mean (ppm) 38.88 2.53 0.16 0.85 1.27 19.15 107.75
Median (ppm) 38.84 1.10 0.13 0.30 1.15 15.40 98.57
Mode (ppm) 17.30 1.00 0.05 0.30 1.35 17.00 74.00

Std. Deviation (ppm) 69.35 25.10 0.51 4.00 2.26 27.28 44.03
Variance (ppm2) 4809.79 629.84 0.26 15.96 5.10 744.27 1938.20

Skewness 21.15 25.19 21.92 9.18 29.14 13.03 2.78
Kurtosis 500.87 659.82 523.89 95.78 987.58 204.39 21.20

Range (ppm) 1738.28 702.95 13.37 57.03 78.70 520.29 588.89
Minimum (ppm) 0.15 0.30 0.01 0.10 0.30 0.15 0.15
Maximum (ppm) 1738.43 703.25 13.38 57.13 79.00 520.44 589.04

The raw geochemical data were pre-processed in order to use them in the statistical
methods. In the first step, the outlier data were identified by the box-plot method and
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replaced with the values of the highest and lowest data. Moreover, according to the
available raw data, no censored data were reported. In the next step, the data were
evaluated as a lognormal distribution. Therefore, the data were normally distributed by
the logarithmic method.

Hierarchical Clustering Analysis (HCA)

HCA diagrams regarding the elements Ag, Au, Zn, Pb, Mo, Sn, and Cu were estab-
lished. As shown in Figure 9, the direct relationship diagram shows Ag, Cu, and Mo as one
branch and Bi, Zn, Pb, and Au as another branch.
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4.4. K-Means Clustering

The concentration relationship of Cu element with the elements of Au, Ag, Mo, Pb,
Zn, and Bi was investigated using the K-means clustering method. To identify the optimal
number of clusters in the K-mean clustering, the K number was increased from 3 to
10. Figure 10 shows the value of the utility function against the number of clusters for all
elements in the same group as the Cu element. Finally, the behavior of Cu versus mentioned
elements is modeled according to the diagrams below (Figure 10).
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Figure 10. A graph of the utility function S (i) value versus the number of clusters for the Cu versus
Ag, Au, Mo, Pb, Zn and Bi.

Based on Figure 10, the number of five clusters is the optimal number of clusters for
the behavior of copper element compared to Ag, Au, Mo, and Zn elements, with six clusters
for Pb and four clusters for Bi element (Figures 11 and 12).
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4.5. Geochemical Exploration by G(Vz3) Model

The distribution maps of supra-mineral elements (Pb, Zn, Bi) and sub-mineral el-
ements (Cu, Ag, Mo) based on stream sediment samples were prepared, as shown in
Figures 13 and 14, respectively. These distribution maps were prepared using the IDW
interpolation method. In order to standardize the map, logarithmic data were used in the
preparation of the maps.
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In the areas with Cu, Mo, and Ag mineralization, if the supra-mineral elements are
depleted, the probability of erosion of the porphyry reserve is high [44]. For this purpose, a
distribution map of the sub-mineral elements is needed.

4.6. Concentration-Area (C-A) Multifractal Analysis

In order to determine the threshold limit of the geochemical anomalies in the study
area, the C-A multifractal method was used. Figure 15 shows the multifractal diagram
related to the supra-mineral elements map presented in Figure 16.
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Based on Figure 14, the supra-mineral index and fractal dimensions of the model were
obtained, and the threshold limit of the geochemical communities was determined, which
is shown in Table 3.
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Table 3. Geochemical communities of Supra-mineral elements (Pb*Zn*Bi) based on C-A multifractal
analysis.

Geochemical Communities Threshold Limit of Supra-Mineral Elements (Pb*Zn*Bi)

Background Pb*Zn*Bi < 1584
Anomaly 1584 < Pb*Zn*Bi < 14,850

Enrichment Pb*Zn*Bi ≤ 14,850

The map presented in Figure 15 shows the anomalous areas of supra-mineral elements
in the studied area.

In the following, fractal analysis was also applied to the distribution map of the sub-
mineral elements in order to determine the geochemical threshold limits. The results are
presented in Figure 17 and Table 4.

Minerals 2022, 12, x FOR PEER REVIEW 16 of 24 
 

Table 3. Geochemical communities of Supra-mineral elements (Pb*Zn*Bi) based on C-A multifractal 
analysis. 

Threshold Limit of Supra-Mineral Elements 
(Pb*Zn*Bi) Geochemical Communities 

Pb*Zn*Bi  < 1584 Background 
1584  < Pb*Zn*Bi   <14850 Anomaly 

Pb*Zn*Bi     ≥ 14850 Enrichment 

The map presented in Figure 15 shows the anomalous areas of supra-mineral ele-
ments in the studied area. 

 
Figure 16. The prospectivity map of supra-mineral elements based on stream sediment samples. 

In the following, fractal analysis was also applied to the distribution map of the sub-
mineral elements in order to determine the geochemical threshold limits. The results are 
presented in Figure 17 and Table 4. 

 
Figure 17. (A) Multifractal diagram of sub-mineral elements (Log (Ag*Cu*Mo) versus Log (area) for 
stream sediment samples); (B) Histogram of the calculated areas. 
Figure 17. (A) Multifractal diagram of sub-mineral elements (Log (Ag*Cu*Mo) versus Log (area) for
stream sediment samples); (B) Histogram of the calculated areas.

According to the threshold limits of geochemical communities for sub-mineral ele-
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Table 4. Geochemical threshold limits of sub-mineral elements based on C-A multifractal analysis.

Geochemical Communities Threshold Limit of Sub-Mineral Elements (Ag*Cu*Mo)

Background Cu*Mo*Ag < 6.3
Anomaly 6.3 < Cu*Mo*Ag < 31

Enrichment Cu*Mo*Ag ≤ 31

4.7. Singularity Analysis

According to the singularity method applied to the zonality index in the study area,
the singularity map of zonality index is provided in Figure 19.
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The sampling network was weighted in 1 km2 pixels and singularity values greater
than two were considered as metallic prospectivity anomaly.

4.8. Hybrid Fuzzy-Analytic Hierarchy Process (Fuzzy-AHP) Method

The information layers that have been investigated so far regarding metallic prospect-
ing in the area are: (1) geology; (2) geochemistry; (3) alterations; and (4) geophysics. In
fact, the main decision criteria of the fuzzy-AHP method are these layers. The hierarchical
diagram of the criteria and sub-criteria used in the hybrid fuzzy-AHP method is presented
in Figure 20.

Each criterion and sub-criterion considered in the integration process should be
weighted. This weighting is based on expert opinions supported by many metallic studies
in the east of Iran [24,25,36,66–71] as well as the priority table [72,73]. The information
related to the weighting of the main criteria and sub-criteria are shown in Table 5. It should
be noted that the value of CR for all prioritizations was less than 0.1%, which indicates the
appropriateness of the results.



Minerals 2022, 12, 1629 17 of 23

Minerals 2022, 12, x FOR PEER REVIEW 18 of 24 
 

 
Figure 19. Singularity map of zonality index—(Pb*Zn*Bi)/(Cu*Mo*Ag). 

The sampling network was weighted in 1 km2 pixels and singularity values greater 
than two were considered as metallic prospectivity anomaly. 

4.8. Hybrid Fuzzy-Analytic Hierarchy Process (Fuzzy-AHP) Method 
The information layers that have been investigated so far regarding metallic pro-

specting in the area are: (1) geology; (2) geochemistry; (3) alterations; and (4) geophysics. 
In fact, the main decision criteria of the fuzzy-AHP method are these layers. The hierar-
chical diagram of the criteria and sub-criteria used in the hybrid fuzzy-AHP method is 
presented in Figure 20. 

 
Figure 20. Hierarchical diagram of the fuzzy-AHP hybrid method and criteria and sub-criteria con-
sidered in decision making. 

Each criterion and sub-criterion considered in the integration process should be 
weighted. This weighting is based on expert opinions supported by many metallic studies 

Figure 20. Hierarchical diagram of the fuzzy-AHP hybrid method and criteria and sub-criteria
considered in decision making.

Table 5. Paired comparison matrix and the calculated weights of the main-criteria and sub-criteria by
AHP method.

Main-Criteria Weighting

Geology Geochemistry Geophysics Remote Sensing Priority Rank

Geology 1 0.33 2 1 17.90% 2
Geochemistry 3 1 7 3 55.70% 1

Geophysics 0.5 0.14 1 0.5 8.60% 3
Remote Sensing 1 0.33 2 1 17.90% 2

Sub-Criteria Weighting

Andesite Basalt Ophiolite Priority Rank

Geology
Andesite 1 1 6 46.20% 1

Basalt 1 1 6 46.20% 1
Ophiolite 0.17 0.17 1 7.70% 2

Iron Oxide Hydrothermal Priority Rank

Remote Sensing Fe Oxide 1 1 50.00% 1
Hydrothermal 1 1 50.00% 1

At the fuzzification stage, all the information layers should be fuzzified according to
fuzzy logic. The fuzzified layers are presented in Figure 21. Subsequently, these fuzzified
layers are integrated based on calculated weights for all main-criteria and sub-criteria in
the AHP method.

Figure 22 shows the metallic prospectivity map of the study area. As presented in the
final prospectivity map, based on fuzzy logic, low potential areas are indicated with white
to gray color and high potential areas tend to the black color.
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4.9. Fieldwork and Controlled Points

After the completion of analytical calculations and integration of information layers,
some points were checked for validation of final metallic prospectivity map. A small area
in the center of the study area was selected for laboratory studies and confirmation of the
results. In total, six mineralogical samples, three petrological samples and three stream
sediment samples, were collected for further studies. Microscopic mineralogical studies
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confirmed the mineralization of malachite, pyrite, Fe hydroxides, and limonite. Microscopic
images of polished sections prepared from the collected samples are presented in Figure 23.
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Figure 23. Polished sections of mineralogical samples from checked Points. (A) Malachite with Fe
hydroxides in silica gangue; (B) Pyrite and Fe oxides, whose marginal parts have been replaced
by limonite and goethite; (C) Fe hydroxides and malachite formed secondary along the fractures;
(D) Chalcopyrite and Fe hydroxide in joints and fractures; (E) Chalcopyrite, most of which were
replaced by Fe hydroxides due to supergene alteration; (F) Pyrite and chalcopyrite, limonite and
goethite in the margins.

Based on petrographic studies of andesite-basalt samples, it was found that the section
has plagioclase microlites that were completely replaced by argillaceous materials and clay
minerals. Moreover, the basalt sample has clinopyroxene and plagioclase. The images
(4× with natural light) related to the petrological study are presented in Figure 24A–C.
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Figure 24. Petrological sections (4x magnification with natural light-A) and washed stream sediment
samples (Binocular study (20×)). (A) Andesite-basalt, has plagioclase microlites that were com-
pletely replaced by argillaceous materials and clay minerals; (B) Basalt, contains clinopyroxene and
plagioclase needles; (C) Andesite-basalt, containing plagioclase microlites from albite to oligoclase;
(D) Malachite and a tiny amount of chalcopyrite; (E) Magnetite, quartz, calcite, limonite and olivine;
(F) Malachite, quartz and limonite.

The stream sediment samples, whose binocular images are shown in Figure 24D–F,
indicate that Cu oxide (malachite), magnetite, limonite, and chalcopyrite (in small amounts)
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are present in the sediments. Moreover, non-metallic minerals, including quartz, calcite,
and olivine, were identified.

5. Conclusions

The results of the present research provide support for metallic exploration with a
special focus on Cu for reconnaissance stage in the Kodegan-Basiran region. The most
important exploration keys are: (1) andesite, basalt, and ophiolite geological units as
prospectivity host rock; (2) the map of hydrothermal alterations and iron oxides; (3) the
location of intrusive masses based on aeromagnetic anomalies; (4) a geochemical anomalies
map according to Pb, Zn, Bi, Ag, Mo, and Cu concentrations in the stream sediment
samples; and (5) the integrated metallic prospectivity map obtained using the fuzzy-AHP.
The mineralogical, petrological, and stream sediment samples from a control area showed
metallic mineralization of Cu and Fe sulfides, oxides, and hydroxides.

Prospective areas which were introduced in the final integrated map, which can be
targeted for Cu exploration in larger scales. Moreover, the results of this study will reduce
financial and time costs of future exploratory studies. It is suggested that in order to
increase the accuracy of reconnaissance studies, the density of geochemical sampling,
geological and geophysical surveys in the high potential areas should be increased. In this
way, the identified anomalies will be investigated more precisely.
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