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Abstract: Remote sensing data provide significant information about surface geological features, but
they have not been fully investigated as a tool for delineating mineral prospective targets using the
latest advancements in machine learning predictive modeling. In this study, besides available geolog-
ical data (lithology, structure, lineaments), Landsat-8, Sentinel-2, and ASTER multispectral remote
sensing data were processed to produce various predictor maps, which then formed four distinct
datasets (namely Landsat-8, Sentinel-2, ASTER, and Data-integration). Remote sensing enhancement
techniques, including band ratio (BR), principal component analysis (PCA), and minimum noise
fraction (MNF), were applied to produce predictor maps related to hydrothermal alteration zones in
Hamissana area, while geological-based predictor maps were derived from applying spatial analysis
methods. These four datasets were used independently to train a random forest algorithm (RF),
which was then employed to conduct data-driven gold mineral prospectivity modeling (MPM) of
the study area and compare the capability of different datasets. The modeling results revealed that
ASTER and Sentinel-2 datasets achieved very similar accuracy and outperformed Landsat-8 dataset.
Based on the area under the ROC curve (AUC), both datasets had the same prediction accuracy of
0.875. However, ASTER dataset yielded the highest overall classification accuracy of 73%, which is
6% higher than Sentinel-2 and 13% higher than Landsat-8. By using the data-integration concept, the
prediction accuracy increased by about 6% (AUC: 0.938) compared with the ASTER dataset. Hence,
these results suggest that the framework of exploiting remote sensing data is promising and should
be used as an alternative technique for MPM in case of data availability issues.

Keywords: remote sensing; mineral prospectivity mapping; machine learning; random forest; gold
mineralization; Sudan

1. Introduction

The prediction of mineral prospectivity is one of the substantial practices in mineral
exploration, which is used to fulfill the growing demand for mineral resources in industrial
development countries [1,2]. Mineral prospectivity mapping (MPM), also known as mineral
prospectivity modeling, is a multivariable decision-making tool that aims to delimit and
prioritize high-potential zones for exploring a particular type of mineral in unexplored
regions [2–4]. Model-based MPM is a vital but challenging process that essentially attempts
to establish a function for integrating a collection of geological features (input variables)
with the presence of the targeted mineral (output variables) [5]. Establishing this integration
function is carried out by analyzing the spatial relationships between input variable features
and known mineral occurrences through different numerical algorithms [6]. Hence, it is
essential to select a convenient algorithm that is capable to learn the complex relationships
between variables (input/output) to obtain an accurate prediction [7]. In practice, the
most critical procedure in prospectivity modeling is the selection of evidential features
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that represent the spatial representatives of ore-controlling factors, which can be extended
to combine available multi-source exploration datasets such as geological, geophysical,
geochemical, and remote sensing data [8,9]. Based on the ease of implementation and the
availability of data and software tools, prospectivity modeling can be categorized into
two types: (i) knowledge-driven models that depend on expert knowledge to heuristically
estimate the parameters of the models using the given information of mineral deposits in
the given geological setting [10,11]; (ii) data-driven models that depend on the quantitative
measures of the spatial associations between evidential features and targeted deposit
locations to empirically estimate the parameters [6,12–14].

Remote sensing data have been successfully and extensively employed in mineral
exploration since they can detect and delineate geological and structural features that
aid in identifying new areas of mineralization [15–18]. Remotely-sensed images with the
proper spatial and spectral resolution, including multispectral and hyperspectral satellite
imagery allow to identify rocks and minerals based on their spectral signatures in the
visible-near-infrared (VNIR) and the shortwave infrared (SWIR) regions [19–22]. In specific,
multispectral satellite imagery with a high spatial resolution (10–30 m) and coarse spectral
resolution such as Landsat-8, Sentinel-2, and ASTER, have been widely utilized to map and
remotely sense fault/fracture zones and/or hydrothermal alteration zones associated with
ore mineralization [23–28]. Nevertheless, the remote-sensing approach in mineral explo-
ration applications has often been exclusive to classification models and knowledge-driven
regression models. Whereas classification models aim to classify different hydrothermal
alteration zones (argillic, phyllic, and propylitic) or minerals associated with alteration
(e.g., iron-bearing and hydroxyl-bearing minerals) [29–31]. On the other hand, in the GIS-
based knowledge-driven method, each remote sensing predictor layer is assigned a weight
reflecting its importance in the modeling process. Subsequently, producing a map with a
continuous prospectivity score indicates the likelihood of the targeted mineral [15,32].

In recent years, the development of machine learning (ML) and deep learning (DL)
methods have boosted the regression models of mineral prospectivivty, which achieve better
predictive performance than traditional statistical techniques and empirical explorative
models [2,3,33]. Some of the most commonly used supervised learning models include
Random Forest (RF) [4,34], Support Vector Machine (SVM) [35], and Artificial Neural
Network (ANN) [36], which have been efficiently applied for MPM. RF is well known to be
the first choice for data-driven predictive modeling of MPM, considering its accuracy in the
delineation of prospective areas and sensitivity of parameter configuration [7]. Furthermore,
RF performance is very stable in the case of: (i) the sufficiency of the number of known
locations of mineral occurrences [34]; (ii) and the sensitivity of using different training sets
of non-occurrence locations [4]. Another advantage that makes RF a great objective tool for
data assessment is its capability to measure and rank the importance of evidential features
to the training process [37].

Although remote sensing data were utilized in several studies for mapping mineral
potential using supervised learning models, they have not been used as the main core
for the derivation of the evidential features to train ML data-driven predictive models
(e.g., RF, SVM, and ANN). For instance, Mansouri et al. [38] processed ASTER data with
a multivariate regression analysis method to map iron mineral resources in the Sarvian
area, Iran. Moreover, three multispectral data, namely Landsat-7 ETM+, Landsat-8, and
ASTER were utilized by Bolouki et al., [39], to produce several predictor maps (evidential
features), then were fused together to train Naïve Bayes (NB) classifier for producing a map
showing the probability of gold occurrence in Ahar-Arasbaran area, NW Iran. On the other
hand, remote sensing imagery was integrated with other sources of data to train various
ML predictive models. As an example of that, two band ratios (BR) images of Landsat TM
(5/7 and 3/1) were integrated with other predictor variables such as three geochemical
survey maps and a couple of geophysical maps. Rodriguez-Galiano et al., used these two
BRs as an indication for ore-related hydroxyl and iron oxide alteration to train RF model
for gold MPM in Rodalquilar area, Southern Spain [40].
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Considering the global development in GIS and ML fields, data availability is still an
issue for conducting a comprehensive MPM study in third-world countries. Carranza [33]
reported that from 2006 to 2016 about 116 MPM studies were exclusive only to 25 countries
such as Iran, Australia, China, Canada, etc. Whereas countries such as Sudan have almost
no research about ML applications in the mineral exploration field, even though Sudan
is the third largest gold-producing country in Africa and among the 20 countries in the
world gold mine production in 2019 [41]. Therefore, it is worth noting that since the data of
several multispectral satellite sensors are free, a comprehensive study of the capability of
various remote sensing data for training multiple predictive models is needed.

In this study, mineral prospectivity modeling was performed for delineating gold
prospective regions in west Hamissana, northeast Sudan. The present research aims at
investigating the potential of Landsat-8, Sentinel-2, and ASTER for mapping mineral
potential. Specifically, (i) remote sensing datasets were utilized to identify geological
features and hydrothermal alteration zones associated with gold mineralization in the
study area; (ii) spatial analysis methods and remote sensing enhancement techniques
were applied to produce different thematic layers, which were afterward assessed based
on their contribution to the prediction process; (iii) all datasets were also combined into
another dataset to investigate the synergy of various data for developing a comprehensive
scheme of MPM in the study area; and (iv) random forest algorithm was used as a tool of
comprehensive comparison to obtaining the optimal dataset for accurate prediction.

2. Study Area

The study area comprises approximately 1379 km2, which is situated between latitudes
(20◦22′ N and 20◦50′ N) and longitudes (34◦00′ E and 34◦45′ E). It is located in Wadi Edom
to the west of Hamissana, Red Sea State, Sudan (Figure 1). Topographically, the area studied
is in the northern part of the Red Sea hills, which rises almost 2000 m (≈6561 ft) above
sea level. The area is characterized by a dry climate, with very poor vegetation cover. The
highest temperature reaches 46 ◦C in the summer (October–march). The Winter season is
relatively short, from November to February, with an average temperature of around 25 ◦C
in the daytime [42].
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Figure 1. Location of the study area. (a) Sketch map of the main terranes, major suture, and
shear zones of the Arabian-Nubian shield in the Red Sea Hills Region of Sudan (modified after
Bierlein et al. [43]); (b) geological map of the study area (modified after Mohamed et al. [42]).

The geological setting of the Hamissana area forms a part of the Arabian Nubian Shield
(ANS) (Figure 1a). ANS covers the eastern part of Sudan and broad areas of other countries
such as Saudi Arabia, Ethiopia, Eritrea, Yemen, and Egypt [15]. During the Pan-African
tectonic event, the collision and the accretion of Neoproterozoic island arcs to the Nile
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craton formed ANS [44]. The evolution of the shield including the complete orogenic cycle
between 900 and 550 Ma is documented, where the island arcs characterized by basic to acid
metavolcanics, and metasediments of the Proterozoic age are exposed [44,45]. Different
arc assemblages are separated by ophiolitic-decorated suture zone forming five terranes in
Sudan, while subduction-related calc-alkaline I-type granodiorites (older granites) intruded
these assemblages [45,46]. The entire sequence is intruded by post-orogenic alkali A-
type granitoid (younger granites) [44,47]. A NE-SW suture zone named after the study
area forms a transition terrane between Bayuda craton terrane and Gebiet island arc
terrane, called Gabgaba terrane. The main exposed lithological units in the study area
are predominant with metavolcanic, syn-orogenic (older intrusion), and post-orogenic
(younger intrusion) rocks [42]. The metasediments represent the oldest rock unit in the
study area, which has E-W linear trending and is composed of quartzite and marble.
Metavolcanics are generally composed of gray meta-acid volcanic and dark metatrachyte.
Granite and coarse to medium-grained granodiorite, form the older intrusions. Younger
intrusions are non-foliated and consist of porphyritic microgranite, highly sheared and
dark granodiorite, and quartz feldspar porphyry. Several low outcrops of sediments and
superficial deposits are scattered in the region. Structural trends of faults and dykes are
NW-SE, NE-SW, and E-W, while most faults are in the form of strike-slip faults [42].

3. Materials and Methods
3.1. Data and Data-Preprocessing

Mohamed et al. [42] integrated important geological information about the study
area. They established a comprehensive geodatabase containing the updated geological
map, primary faults/fractures map, and locations of gold occurrences. All these geological
datasets were digitized from paper maps of the published study [42]. Intrusion rock units
were extracted separately as shapefile of polygons, while faults with different azimuth
directions were saved as line shapefiles. 25 locations of gold occurrence were carefully
selected from the overall 34 locations that constituted the database, where the minimum
distance between each location corresponds to the grid size of 30m. The preparation of
these geological datasets was carried out using ArcGIS 10.6.1 software.

The satellite remote sensing data employed in this study are Landsat-8, Sentinel-2A,
and ASTER. All three types of multispectral imagery were freely downloaded from the
U.S. Geological Survey’s Earth Resources Observation and Science (EROS) Centre, using
the USGS earth explorer website (https://earthexploere.usgs.gov). In addition, the user
must also register on the National Aeronautics and Space Administration website (NASA)
to obtain ASTER data (https://earthdata.nasa.gov). In this study, one scene of Landsat-8,
two scenes of Sentinel-2, and four scenes of ASTER were obtained on different dates to
cover the study area. All scenes have (0%–2%) cloud coverage and (>0.05) maximum
Normalized Different Vegetation Index (NDVI), which suit the basic requirements for
geological investigation. Table 1 shows the technical properties of different sensors and the
characteristics of various scenes used in this investigation.

Table 1. Technical characteristics and dataset attributes of different remote sensing data.

Satellite Bands Wavelength (µm) Spatial
Resolution (m) Scene ID Date and Time

of Acquisition Other Info

Landsat-8

Band 1-(coastal/aerosol) 0.435–0.451 30

LC817304620
21360LGN00

26 December 2021
08:08:23

Path = 173
Row = 46

Band 2-Blue 0.452–0.512 30
Band 3-Green 0.533–0.590 30
Band 4-Red 0.636–0.673 30

Band 5-(NIR) 0.851–0.879 30
Band 6-(SWIR) 1 1.566–1.651 30
Band 7-(SWIR) 2 2.107–2.294 30

Band 8-Panchromatic 0.503–0.676 15
Band 9-Cirrus 1.363–1.384 30

Band 10-(TIRS) 1 10.60–11.19 100 * (30)
Band 11-(TIRS) 2 11.50–12.51 100 * (30)

https://earthexploere.usgs.gov
https://earthdata.nasa.gov
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Table 1. Cont.

Satellite Bands Wavelength (µm) Spatial
Resolution (m) Scene ID Date and Time

of Acquisition Other Info

Sentinel-2

Band 1-(coastal/aerosol) 0.421–0.457 60

S2A_MSIL1C
_20211203T08
1321_N0301

3 December 2021
09:28:49

Orbit No.: 78
Tile No.: T36QXJ

Band 2-Blue 0.439–0.535 10
Band 3-Green 0.537–0.582 10
Band 4-Red 0.646–0.685 10

Band 5-Red edge 0.694–0.714 20
Band 6-Red edge 0.731–0.749 20
Band 7-Red edge 0.768–0.796 20

S2A_MSIL1C
_20211203T08
1321_N0301

3 December 2021
09:28:49

Orbit No.:78
Tile No.:
T36QXH

Band 8-NIR 0.767–0.908 10
Band 8A-Narrow NIR 0.848–0.881 20
Band 9-Water vapour 0.931–0.958 60

Band 10-Cirrus 1.338–1.414 60
Band 11-SWIR 1.539–1.681 20
Band 12-SWIR 2.072–2.312 20

ASTER

Band 1-VNIR
(green/yellow) 0.520–0.60 15

ASTL1A
070331082541
0010269001

31 March 2007
08:22:08

ASTER Scene ID:
(173, 129, 4)Band 2-VNIR (red) 0.630–0.690 15

Band 3N-VNIR 0.760–0.860 15
Band 3B-VNIR 0.760–0.860 15
Band 4-SWIR1 1.600–1.700 30

ASTL1A
070331082550

0010269001

31 March 2007
08:22:07

ASTER Scene ID:
(173, 130, 4)

Band 5-SWIR2 2.145–2.185 30
Band 6-SWIR3 2.185–2.225 30
Band 7-SWIR4 2.235–2.285 30
Band 8-SWIR5 2.295–2.365 30

ASTL1A
06122508250
0010269001

25 December 2006
08:24:03

ASTER Scene ID:
(173, 129, 5)

Band 9-SWIR6 2.360–2.430 30
Band 10-TIR1 8.125–8.475 90
Band 11-TIR2 8.475–8.825 90
Band 12-TIR3 8.925–9.275 90 ASTL1A

061225082515
0010269001

25 December 2006
08:24:03

ASTER Scene ID:
(173, 130, 5)Band 13-TIR4 10.250–10.950 90

Band 14-TIR5 10.950–11.650 90

In this study, the spatial resolution of various multispectral data was resampled to 30m
using nearest neighbor technique. Since ASTER scenes were obtained on different dates, the
Thermal Infrared (TIR) bands of ASTER and Landsat-8 were excluded to avoid unfavorable
changes in surface thermal emission. Moreover, the coastal and cirrus bands of Landsat-8
and Sentinel-2 were designed for atmospheric correction. Therefore, they were not used
in the analysis, as well as the panchromatic band (band 8) of Landsat-8 and water-vapor
band (band 9) of Sentinel-2. Landsat-8 level 1 terrain corrected (L1T) data and ASTER
level 1 Precision Terrain Corrected Registered At-Sensor Radiance (AST_L1A) data are
radiometrically calibrated and geometrically corrected [27]. Both datasets were atmospheri-
cally corrected using the FLASH (Fast Line of Sight Atmospherics Analysis of Hypercubes)
algorithm provided by ENVI 5.2 software. The FLASH algorithm was applied to ASTER
data after implementing a cross-track illumination correction to the short waves infrared
(SWIR) bands. Dark Object Subtraction (DOS) method in the semi-automatic classification
plugin provided by QGIS 3.16.7 software, was employed to automatically atmospherically
correct Sentinel-2 data. All atmospherically corrected datasets were georeferenced to the
Universal Transverse Mercator (UTM) coordinate system in zone 36 N.

3.2. Random Forest (RF)

RF is an ensemble learning algorithm that is developed based on the concept of
Decision Trees (DTs) [48]. The accumulation of multiple classification or regression DTs
is employed to obtain repeated predictions of the target phenomenon represented by
the training dataset [40]. These trees are grown based on random selection from the
original training datasets using a procedure known as “bootstrap bagging” [49]. This
sampling method increases the diversity of the trees by generating training subsets (bag
samples) using about two-thirds of the training features for prediction, whereby the left
out of the training samples (out-of-bag (OOB) samples) are used to validate the prediction
accuracy [34].



Minerals 2023, 13, 49 6 of 31

To overcome the overfitting issue of the DT, RF attempts to grow trees in a way that
maximizes the reduction in purity by searching through the optimal feature/split node,
which varies from pruning trees according to discriminative conditions in the standard
DT [50]. In other words, RF generates a tree using the best variable within bag samples,
which reduces the correlation between the trees and minimizes the generalization error [48].
RF uses the Gini index to ensure the best split selection based on the comparison of the
information purity of the leaf nodes with that of their root nodes. The Gini index used in
this study is shown in the following equation [50]:

IG( f ) =
n

∑
i=1

fi(1− fi) (1)

where fi is the probability of class n, which can be calculated by dividing
(
mj

)
the number

of samples belonging to class j, by (m) the total number of samples in a specific node. The
ultimate decision of RF is made by combining the votes of every DT, then averaging the
results as shown in Equation (2) [7]:

f K
r f (x) =

1
K

K

∑
K=1

T(x) (2)

where T(x) represents the result of DTs using x input vector, while K denotes the number of
DTs that are grown to obtain RF results ( f K

r f ) [2].
It is important to mention that RF has another essential advantage besides the unbi-

ased estimation of the generalization error, which is the ability to measure and sort the
importance of different predictor variables [51,52]. This is achieved internally by using
the OOB samples, which originally are used to calculate the number of classified trees.
Variables’ importance is measured by randomly permutating each variable including OOB
samples and then sending down these permuted OOB cases to the trees again. Calculating
the correctly classified cases and subtracting them from the original correctly classified
cases derived from non-permuted data, allows measuring the importance of that vari-
able [53]. In other words, RF measures the marginal effect of a specific variable by holding
all other predictor variables constant [4]. This asset is vital for multi-source data that are
characterized by high dimensionality, where it is significant to grasp the influence of each
predictor on the prediction performance [7,37,54].

3.3. Induction of RF Predictive Model

The process of inducting data-driven predictive machine learning modeling consists
of three main steps, which directly affect the model’s outcome. These three steps are:
(i) the preparation of the input training dataset, which is considered the most important
and critical step in the MPM field; (ii) specifying the suitable configuration of parame-
ters in each model, also known as “hyperparameters tuning”; (iii) assessing predictive
model performance [7,37]. Figure 2 shows the technical flowchart of this study’s overall
methodology and different stages to completely train RF predictive model. As shown in
the figure, the preparation of input data includes generating predictor variables (also called
feature predictors) and target variables. Predictor variables are thematic maps derived
from integrating muti-source data and guided by a deep understanding of the gold mineral
system. These predictor maps represent the critical stipulations for generating a desirable
prediction of mineral potential [3]. On the other hand, target variables are the ground truth
data of the studied phenomena. Unlike classification tasks where the target is defined by
categorical data that are presented as labeled classes, predictive models (regression tasks)
use continuous data as target variables to predict a continuous quantity of specific phe-
nomena. In the case of MPM, mineral occurrence and non-occurrence are given as binary
values (1 and 0, respectively) to predict continuous output representing the likelihood of
gold value. In this study, the generation of different input datasets was accomplished by
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using ENVI and ArcGIS software. Meanwhile, Python 3 was implemented to train different
RF by using “Scikit-Learn” library.
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In common practice, leave-out and cross-validation methods are utilized to assess
model performance [55]. The leave-out approach is achieved by randomly splitting the
target variables into training and testing subsets. Data split usually takes different portions
according to the user’s definition when it typically is carried out at 75:25 or 80:20. On
the other hand, the cross-validation approach, namely K-Fold cross-validation method,
employs all the target data in the training and testing process simultaneously. This is
achieved by splitting the data into k subsets, where each subset serves once as a testing
set while the remaining sets are used to train the model. This process is repeated k times
until all of the target data appear in the training and testing set. This method, thereafter,
averages the scores of the prespecified accuracy metric from each k fold performance. Since
the study focuses on regression task, the mean square error (MSE) was utilized to measure
the average squared difference between the trained model predicted result (ŷi) and the true
value of each sample (yi). This can be formalized as follow:

MSE =
1
N

N

∑
i=1

(ŷi − yi)
2 (3)

where N is the number of samples in the test dataset.
This study uses both approaches for assessing performance and reducing overfitting.

The train-test split method was utilized to introduce possible bias since there is limited
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target data. Moreover, this method aids in comparing the performance of various outputs of
RF by measuring accuracy metrics from the testing dataset. On the other hand, the purpose
of employing five K-Fold cross-validations is to reduce overfitting and obtain optimal
parameters for training each dataset. The possibility to find an optimal combination
of parameters varies with different input datasets. Therefore, an objective grid search
method known as “GridSearchCV” was used for hyperparameter tuning. This method is
provided by the Scikit-Learn library (https://scikit-learn.org). As shown in Figure 3, this
method searches through all possible combinations of parameters using k iteration for each
combination. The user defines a dictionary of the possible set of values for each parameter
whether they are categorical or numerical (e.g., number of trees). Although this process
has a high computational cost, it is vital to measure the influence of model configuration
on prediction performance. In the present study the range of the number of trees was set
between 50 and 500 at intervals of 50, and the number of features between 2 and 12 at
2 intervals [3,7,8,40].

1 
 

 
Figure 3. A plot demonstrates the GridSearchCV method: in this case using two parameters (numeri-
cal/categorical) and 5-folds cross-validation.

3.4. Predictor Variables

As mentioned before, the input datasets (input-feature vectors) of MLA are the set
of information derived from combining different thematic layers at each grid location. In
this regard, different layers combination represents a unique input dataset. Four different
datasets are employed in this study from integrating geological data with various multi-
spectral remote sensing data. In addition to the geological predictor maps in each dataset,
predictor maps processed from data of a specific sensor are appended. Therefore, dataset-1,
dataset-2, and dataset-3 are formed by Landsat-8, Sentinel-2, and ASTER data, respectively,
while the fourth dataset is composed of synergy from the three datasets.

3.4.1. Geological-Based Predictor Maps

According to the primer understanding of gold mineralization controlling factors, and
geological data availability as well, we produced four geological-based predictor maps
by using GIS spatial analysis methods. Identifying permissive lithologies, structures, and
hydrothermal alteration zones is the main criterion of exploration. From prior literature
about the Red Sea Hills, it is well known that mineralization zones have the same linear
structures and exist in the acid meta-volcanic rocks [42,44,56]. Faults/fractures are favored
channels for fluid migration, which represent the main ore-controlling factor in shear
zone-related gold deposits. Therefore, two maps of distance to NE- and NW- faults were
generated by using the Euclidean distance method (Figure 4a,b). The contact zone of the
intrusive rocks (older and younger) lies in meta-sediments and metavolcanics, which may
indicate the spatial agreement with gold mineralization in Hamissana area. Moreover,

https://scikit-learn.org
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younger intrusions in the study area are highly sheared and contain several dykes. Hence,
the proximity to outcropped intrusions was employed as a predictor map (Figure 4c).
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NE-SW faults; (b) proximity to NW-SE faults; (c) proximity to intrusions; (d) density of lineaments.

Since the valleys and drainage in the study area are structurally controlled by the
shear zone, we automatically extracted lineaments as an indication of structural weakness,
faults, fractures, or lines that separate different formations [57,58]. In mineral exploration,
excessive lineaments are often localized close to mineralogical deposits, which may corre-
spond to the main conduits for carrying hydrothermal solutions [15,25,58,59]. Therefore,
these lineaments are adequate to be an indirect indicator of mining potential. Sentinel-2 has
a higher spatial resolution than Landsat-8 and ASTER, which makes it more suitable for
lineament extraction. Prior literature reported that Principal Component Analysis (PCA)
has a better capability for automated lineament extraction compared with the original
remote sensing data and other enhancement techniques [58,60]. Using PCI Geomatica
software, lineaments were automatically extracted from PC5 of Sentinel-2. (Figure 4d)
shows the concentration of lineaments distribution as a density map, which was employed
as the fourth geological-based predictor map.

3.4.2. Remote Sensing-Based Predictor Maps

Remote sensing data provides significant information about different geological ob-
jects, such as mineral assemblages, lithological units, and hydrothermal alteration zones.
Studying the existence of different alteration zones was another exploration key criterion
since economic mineralization is often associated with these alteration zones. Multispectral
data such as Landsat-8, Sentinel-2, and ASTER can be utilized to detect surface alteration
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zones using various remote sensing enhancement techniques. The main objective of these
processing techniques is to interpret the remote sensing spectral signature of different alter-
ation zones (Argillic, Phyllic, Propylitic) or minerals that are associated with hydrothermal
alteration (iron oxides, clay, and hydroxyl bearing minerals). To generate different thematic
layers of different alteration zones, this study employs different enhancement technique
methods, such as Band Ratio (BR), PCA, and Minimum Noise Fraction (MNF).

BR is one of the most applicable techniques which aims to reduce the shadow effects
of topography [15,61,62]. This method improves the spectral characteristic of specific
alteration minerals (e.g., iron oxide, alunite, kaolinite, or chlorite) or alteration zones by
dividing the digital number (DN) value of one band by the DN of another band [27,39,63].
On the other hand, Relative Absorption Band Depth (RBD) is another method that attempts
to detect the typical absorption of targeted minerals, but it uses three bands to formalize the
ratio (the sum of two bands is divided by the absorption band) instead of two bands [39].
Since ASTER sensor was developed particularly for geological investigations, several
mineralogical indices were developed using bands in SWIR and TIR regions [64–66]. Table 2
lists all selected BR, RBD, and mineralogical indices, which were suggested by previous
studies [15,39,61,66–70] to map targeted alteration minerals and zones. It is important to
point out that the BR image for mapping ferric oxide was excluded in the case of Landsat-8
and ASTER datasets because the range of the data values (histogram width) of the generated
imagery is very low, which may affect the output of the MLA models.

Table 2. Selected BR, RBD, and mineralogical indices of each sensor to map targeted minerals.

Method Target Landsat-8 Sentinel-2 ASTER

BR

Hydroxyl-
bearing 6/7 11/12 4/6

Ferric iron 4/2 4/3 2/1
Ferrous iron (7/5) + (3/4) (12/8a) + (3/4) (5/3) + (1/2)
Ferric oxide 6/5 (Excluded) 11/8a 4/3 (Excluded)

Alunite - - 4/5
Calcite - - 4/7

RBD
Argillic (RBD1) - - (4 + 6)/5
Phyllic (RBD2) - - (5 + 7)/6

Propylitic
(RBD3) - - (6 + 9)/(7 + 8)

Mineralogical
Indices

Hydroxyl-
bearing
(OHI)

- - (7/6) * (4/6)

Kaolinite (KLI) - - (4/5) * (8/6)
Alunite (ALI) - - (7/5) * (7/8)
Calcite (CLI) - - (6/8) * (9/8)

“-“ represents that there is no mathematical formula for the specific satellite data to map targeted mineral.

PCA and MNF are transformation methods, which have been successfully utilized
to enhance remote sensing imagery. Both statistical methods are employed for spectral
data reduction by transforming the information in the original remote sensing data into a
new set of data. In the PCA procedure, the new dataset (PC components) has less variance,
since each component is extracted based on uncorrelated linear combinations of values
(also called eigenvector loadings). These eigenvectors are calculated in a matrix called
covariance matrix (Eigen matrix), which comes across the statistical relation between all
the PCs. On the other hand, MNF method also uses the covariance matrix to rescale and
segregate noise in the data. In the new dataset, the noise is reduced and whitened in a
descending way based on the eigenvalue of each MNF component.

Since the eigenvector loadings (sign and magnitude) are linked to the spectral feature
(absorption and reflectance) of objects, they can be utilized to detect the existence of a
specific alteration mineral. For this purpose, the selective PCA technique (also known as
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Crosta technique) was developed to extract features of the specific object as bright or dark
pixels in the PCs. This method is applied to VNIR+SWIR bands, where bands are selected
(mostly 3 or 4 bands) based on the prior knowledge of the spectral behavior of an alteration
mineral. One of the PCs will have two strong loadings with opposite signs that indicate
the reflection and absorption bands of that alteration mineral. If the loading has a positive
sign in the reflection band, the PC enhances the targeted mineral in bright pixels. In the
meantime, this PC could also enhance that mineral in dark pixels, if the sign is negative
in the reflectance band [29,39,46,71]. In this study, all selected bands from different sensor
data to map different hydrothermal alteration zones and minerals, are illustrated in Table 3.

Table 3. Selected bands of each sensor’s data to perform PCA transformation for mapping defined targets.

Dataset Target Selected Bands

Landsat-8
Hydroxyl-bearing 2, 5, 6 and 7

Iron oxides 2, 4, 5 and 6

Sentinel2
Hydroxyl-bearing 2, 8a, 11, and 12

Iron oxides 2, 4, 8a, and 11

ASTER

Hydroxyl-bearing 1, 3, 4 and 6
Iron oxides 1, 2, 3 and 4

Argillic 1, 4, 6 and 7
Phyllic 1, 3, 5 and 6

Propylitic 1, 3, 5 and 8

Unlike PCA method, MNF technique is less interpretable and very subjective. MNF
results are only statistics and do not indicate specific mineral occurrences. However, separat-
ing and rescaling the noise process helps MNF to identify differences inside the image in the
first few bands, while the latest few bands subsequently convey more noise [24,72]. There-
fore, we visually assessed all MNF bands in each dataset, then for each dataset (Landsat-8,
Sentinel-2, ASTER), we carefully selected three MNF that have a spatial agreement with
different hydrothermal alteration minerals.

3.4.3. Data Preparation

At this stage, different predictor maps are generated from multisource data, so the
numeric range of each input data is different. This variance in the range gives a chance for
more domination to those inputs with a greater range than those with a smaller one. This
issue directly affects the outputs of RF and brings numerical obstacles during the models’
execution [73]. In this regard, each input was normalized in the range of [0, 1] using the
following equation:

xnorm =
x− xmin

xmax − xmin
(4)

where x is the input data, xmax and xmin donate to the maximum and minimum values of
the original data respectively. After normalizing each predictor map, they were stacked to
form four distinct datasets as shown in Table 4.

Table 4. Input layers of each dataset to conduct data-driven MPM.

Dataset
Remote Sensing-Based Geological-Based No. of All

Input LayersBR PCA MNF

Landsat-8 (Dataset-1) 3 2 3 4 12
Sentinel-2 (Dataset-2) 4 2 3 4 13

ASTER (Dataset-3) 12 5 3 4 24
Data integration

(Dataset-4) 19 9 9 4 41
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3.5. Target Variable

The target binary variables, corresponding to the gold occurrence and non-occurrence
location, are used to train and validate the performance of supervised predictive models. A
set of 25 occurrence locations are given a score of 1. In the meantime, the non-occurrence
locations corresponding to the score of 0, were selected based on prespecified criteria. The
selection of non-occurrence samples was achieved according to (i) a clustering procedure
similar to the one proposed by Torppa [74]; (ii) several other criteria that were defined in
previous literature [2,3,6,35]. Unsupervised classification (clustering) is utilized to describe
the spatial distribution of gold occurrence using several clusters. By classifying these
clusters using known occurrences, we can delineate geologically similar areas of occurrence
and non-occurrence. In this study, we employed k-means as a clustering method to generate
some clusters that do not exceed the number of known occurrences. Hence, 20 clusters
were produced by applying this method to ASTER dataset, since ASTER dataset has more
input layers than those in Landsat-8 and Sentinel-2. Thereafter, we divided those clusters
into six prsopectivity classes (very high, high, moderate, low, very low, non-occurrence),
by visually counting the frequency of known occurrence in each cluster. Non-occurrence
samples were then selected from low, very low, or non-occurrence classes according to the
following criteria:

1. The number of non-occurrence samples must be equal to the number of mineral occurrences.
2. Non-occurrence samples should be spatially distributed randomly.
3. The selection of non-occurrence locations should be distal from any known gold

occurrences. Here, we applied a 10 km buffer zone around known occurrences.

By following these requirements, we generated a full set of target variables, which
contains 50 points of samples. Furthermore, we randomly split these variables into train-
ing and testing datasets. 70% of target variables were assigned to the training dataset
(35 points), and the remaining 30% were employed as the testing dataset.

3.6. Model Assessment

The performance of the trained RF predictive model was comprehensively assessed by
various statistical measurements, including the prediction and classification performance.
Classification, here, means labeling the floating value (0, 1) at each cell as prospective
or non-prospective (barren region) by using a 0.5 threshold value. A confusion matrix
can be successfully utilized to evaluate and explain the classification performance of
predictive models using the following categories: (i) true-positive “TP”, when there is an
agreement between the model and the reality about mineral occurrence; (ii) true-negative
“TN”, when there is an agreement between the model and reality about mineral non-
occurrence; (iii) false-positive “FP” when the model incorrectly classified a non-occurrence
sample into mineral occurrence; and (iv) false-negative “FN”, when the model mistakenly
classified a mineral occurrence as non-occurrence [2,37,75]. These four situations are used
to calculate six statistical metrics, namely overall accuracy (OA), sensitivity, specificity,
positive predictive value (PPV), negative predictive value (NPV), and Kappa [76,77]. These
statistical matrics can be formalized as follow [3,78]:

Sensitivity =
TP

TP + FN
(5)

Specificity =
TN

TN + FP
(6)

PPV =
TP

TP + FP
(7)

NPV =
TN

TN + FN
(8)

OA =
TP + TN

TP + TN + FP + FN
(9)
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K =

TP + TN − [(TP + FN)(TP + FP)
+(FP + TN)(FN + TN)]/(TP + FP + TN + FN)

(TP + FP + TN + FN)− [(TP + FN)(TP + FP)
+(FP + TN)(FN + TN)]/(TP + FP + TN + FN)

(10)

Furthermore, the overall predictive performances of different datasets were compared
using the success-rate curve and receiver operating characteristic (ROC) curve [4,7]. The
success-rate curve was created by plotting the percentage of correctly classified gold (true
positive rate “TPR”) against the area percentage of prospective regions that are generated
by reclassifying MPM using moving threshold values [79]. Subsequently, the optimal
goal of the model is to capture as many mineral occurrences as possible in the smallest
possible prospective area. This method is very useful in delineating or classifying different
prospective regions (high, moderate, low), by identifying the change in curve slope. Since
the success-rate curve only depends on the TPR, the ROC curve was created to also
consider the false positive rate (FPR). In the ROC curve, TPR and FPR are plotted against
each other on the y-axis and x-axis, respectively. In addition, the predictive performance
can be measured by calculating the area under ROC curve (AUC), where the better model
performance is indicated by how closer the curve can be to the upper left corner [7,80,81].

4. Results
4.1. Generating Remote Sensing-Based Predictor Maps

Figure 5a–c illustrate hydroxyl-bearing minerals derived from BR 6/7 of Landsat-8,
BR 11/12 of Sentinel-2, and BR 4/6 of ASTER, respectively. The distribution of these
minerals (Al-OH and Fe, Mg-OH) is shown as cyan pixels. As seen in the figure, the spatial
distribution of hydroxyl-bearing minerals is similar in all three images. However, Landsat-8
and Sentinel-2 ratio images show these minerals in association with drainage channels. On
the other hand, ASTER BR image extensively mapped these minerals in the southeastern
part. Another method employed to map hydroxyl-bearing minerals is OH bearing altered
minerals index (OHI = 6/7 * 4/6). As displayed in Figure 6a, the spatial distribution of
these minerals is relatively similar to ASTER BR image. OH-bearing altered minerals
are concentrated in the metavolcanic rocks and have a spatial agreement with known
gold occurrence.

Iron minerals, including ferrous iron Fe+2 and ferric iron Fe+3, are shown in Figure 5d-
i. The light orange color in Figure 5d–f depicts ferrous iron minerals, which were produced
by using BRs (7/5) + (3/4) of Landsat-8, BRs (12/8a) + (3/4) of Sentinel-2, and BRs (5/3) +
(1/2) of ASTER. The distribution of ferrous iron minerals in the three images is concentrated
in the northeastern part. However, it can be seen in other parts of ASTER image, while it
almost disappeared in the western part of Landsat-8 image. On the other hand, Figure 5g–i
show ferric iron minerals as dark orange pixels, derived from BR 4/2 of Landsat-8, BR
4/3 of Sentinel-2, and BR 2/1 of ASTER, respectively. Unlike the spatial distribution of
ferrous minerals, ferric iron minerals are significantly detected in the drainage areas around
younger intrusion in the northeast and the lower middle parts of the three BR images.
This distribution of these minerals has less association with documented gold occurrences
compared with ferrous iron minerals. Moreover, another BR using Sentinel-2 data was
used to map ferric oxide minerals, which is 11/8a. In this imagery, iron oxide minerals are
illustrated by red pixels in Figure 5j. By using this ratio image, ferric oxide minerals were
mapped in a very extensive way that cover most of the outcrops, including younger and
older intrusions, metasediments, and metavolcanics rock units. This distribution relatively
matches the density of lineaments features.
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Figure 5. BR images derived from different sensors showing various targeted minerals in colored
pixels (a–c) Hydroxyl-bearing minerals derived from Landsat-8 (6/7), Sentinel-2 (11/12), and ASTER
(4/6), respectively; (d–f) Ferrous iron minerals derived from Landsat-8 (7/5 + 3/4), Sentinel-2 (12/8a
+ 3/4), and ASTER (5/3 + 1/2), respectively; (g–i) Ferric iron minerals derived from Landsat-8 (4/2),
Sentinel-2 (4/3), and ASTER (2/1), respectively; (j) Ferric oxide minerals derived from Sentinel-2
(11/8a); (k,l) Calcite and Alunite minerals derived from ASTER BR 4/7 and 4/5, respectively.
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Figure 6. The mineralogical indices images derived from ASTER SWIR bands show the spatial
distribution of targeted minerals in colored pixels: (a) OHI; (b) CLI; (c) ALI; (d) KLI.

In order to delineate minerals that indicate the existence of specific alteration zone,
further BR and mineralogical indices were employed in the present study using ASTER
data. Calcite, indicating propylitic alteration, was derived from BR 4/7 (Figure 5k) and
cal-cite mineral index (CLI = 6/8 * 9/8) (Figure 6b). The prominent areas of calcite were
marked as purple color in both images. The distribution of calcite is almost similar in
both produced images, but it is more outspread in the northeastern part of the CLI im-
age than the BR image. Argillic or advanced argillic alteration zone is characterized
by the existence of kaolinite and alunite minerals. BR 4/5 and alunite mineral index
(ALI = 7/5 * 7/8) were utilized to detect alunite altered mineral, while kaolinite mineral
index (KLI = 4/5 * 8/6) was utilized to detect kaolinite. The identification of the alunite
mineral in the BR image (Figure 5l) exhibits mineral distribution pattern different from the
ALI image (Figure 6c). As shown in the images, the BR image mapped alunite similarly
to the 4/6 ratio image (OH-bearing minerals), but it has a lower surface abundance. On
the other hand, areas of alunite in the ALI image are highlighted in sky-blue tone in the
drainage area and superficial deposits. Kaolinite mineral also coincides with drainage
areas, but it is more concentrated in the northern part.

Three ASTER RBD images were specifically used for the detailed mapping of alteration
zones (Figure 7). RBD1 (4+6/5), RBD2 (5+7/6), and RBD3 (6+9/7 + 8) were used to obtain
argillic, phyllic, and propylitic alteration zone, respectively. The argillic alteration zone is
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illustrated by red pixels, which is more concentrated in the northern part around younger
and older intrusions, meanwhile, it can also be seen in the southwestern part between
younger intrusions and metavolcanics. The phyllic alteration zone is typically concentrated
in the metavolcanic rock unit and partially scattered in the younger intrusion unit. The
output of the third RBD, indicating the propylitic alteration zone, is similar to the image
derived from CLI index (see Figure 6b).
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Figure 8a–c show hydroxyl-bearing minerals derived from PCA using selective bands
of Landsat-8, Sentinel-2, and ASTER, respectively. The eigenvector loadings corresponding
to bands 2,5,6 and 7 of Landsat-8, bands 2,8a,11, and 12 of Sentinel-2, and bands 1,3,4,
and 6 of ASTER, are listed in Table 5. After careful scanning of the eigenvectors, PCA
derived from the selected bands of Landsat-8 shows a unique contribution of OH-bearing
minerals, which corresponds to reflection in band 6 and absorption in band 7. This PCA
has strong negative loading in the reflectance band (−0.7) followed by a strong positive
loading in the absorption band (0.633). Hence, PCA 4 mapped OH-bearing minerals as
dark pixels, due to the negative loading in the reflectance band. Thereafter, we inverted the
dark pixels to bright ones by multiplying the image by −1. Similarly, PCA results using
Sentinel-2 and ASTER data exhibit similar patterns for mapping OH-bearing minerals, since
PCA4 in both datasets contains unique eigenvectors that correspond to the spectral feature.
PCA4 of Sentinel-2 has strong loading in band 11 (−0.675) and band 12 (0.609), while the
strong loadings in ASTER data correspond to band 4 (−0.595) and band 6 (0.692). both
PCA 4 images of Sentinel-2 and ASTER were negated to display hydroxyl-bearing in
bright pixels.

Moreover, PCA was applied on Landsat-8 bands 2,4,5, and 6, Sentinel-2 bands 2,4,8a,
and 11, and ASTER bands 1,2,3, and 4, for mapping iron oxide minerals. Exploring
eigenvector loadings displayed in Table 6 reveals that PCA2 in all three datasets has unique
loadings corresponding to the spectral feature of iron oxide minerals. these PCAs showed
moderate loadings with a positive sign in absorption bands (Landsat-8 B2 and B5, Sentinel-
2 B2 and B8a, and ASTER B1 and B3), and strong loadings with a negative sign in the
reflectance band (Landsat-8 B6, Sentinel-2 B11, and ASTER B4). The three PCA2 images
were transferred to ArcGIS software and negated. Then, the pixels representing the iron
oxide minerals were changed to orange color (Figure 8d–f). It is quite noticeable that
the surface abundance of these minerals is lower compared to images derived from BR.
Nevertheless, these minerals in PCA images are more distributed in northeast parts and
have spatial agreement with hydroxyl-bearing minerals (see Figure 8a–f).
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For more details about argillic, phyllic, and propylitic alteration zones, PCA method
was also applied specifically to ASTER data. Table 7 shows the eigenvector loadings for
argillic using bands 1, 4, 6, and 7, phyllic using bands 1, 3, 5, and 6, and propylitic using
bands 1, 3, 5, and 8. The argillic zone has reflectance spectral features in bands 1 and 6,
and absorption ones in bands 4 and 7 [29]. Subsequently, most loadings that correspond to
this typical spectral feature are found in PCA 4, although the loadings are weaker in band
1 (−0.025) and band 4 (0.133) compared with band 6 (−0.767) and band 7 (0.631). PCA4 is
selected to map phyllic alteration zone since it shows loadings with opposite signs in band
5 (−0.694) and band 6 (0.707). Thus, this loadings pattern corresponds to the assumption
that band 5 could be considered as a reflection band since the absorption of muscovite
mineral (typical mineral reveals phyllic alteration) is lower in band 5 than in band 6 [39].
Then PCA4 image of phyllic alteration was negated because band 5 has negative loading.
PCA3 loadings in the eigenvector matrix of propylitic alteration, correspond to the calcite
spectral properties. This PCA shows strong negative loading in band 5 (−0.722) and strong
positive loading in band 8 (0.563). In this case band 5 was treated as a reflectance band
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because Fe, Mg-oh group has a lower absorption feature in band 5 compared with the
strong absorption in band 8. Therefore, this PCA imagery was also negated. As seen in
Figure 8g–i, PCA images are significantly different from those derived by RBD method.
The surface abundance of the PCA images is much lower and the spatial distribution is
almost different than RBD images.

Table 5. The eigenvector matrixes of PCA results for mapping hydroxyl-bearing minerals using
different remote sensing data; Bold text represents the selected PCA and the unique eigenvalues.

Landsat-8 Eigenvector Band 2 Band 5 Band 6 Band 7
PCA1 0.248 0.552 0.591 0.534
PCA2 0.468 0.646 −0.367 −0.479
PCA3 0.816 −0.470 −0.166 0.291
PCA4 −0.230 0.239 −0.700 0.633

Sentinel-2 Eigenvector Band 2 Band 8a Band 11 Band 12
PCA1 0.215 0.557 0.606 0.526
PCA2 0.402 0.688 −0.346 −0.495
PCA3 0.834 −0.372 −0.240 0.329
PCA4 −0.310 0.280 −0.675 0.609

ASTER Eigenvector Band 1 Band 3 Band 4 Band 6
PCA1 0.399 0.576 0.536 0.470
PCA2 0.497 0.517 −0.498 −0.488
PCA3 0.695 −0.586 0.332 −0.251
PCA4 0.332 −0.240 −0.595 0.692

Table 6. The eigenvector matrixes of PCA results for mapping iron oxide minerals using different
remote sensing data; Bold text represents the selected PCA and the unique eigenvalues.

Landsat-8 Eigenvector Band 2 Band 4 Band 5 Band 6
PCA1 0.251 0.533 0.556 0.587
PCA2 0.328 0.460 0.243 −0.789
PCA3 0.829 −0.020 −0.532 0.169
PCA4 −0.377 0.710 −0.590 0.075

Sentinel-2 Eigenvector Band 2 Band 4 Band 8a Band 11
PCA1 0.221 0.512 0.566 0.607
PCA2 0.306 0.513 0.239 −0.766
PCA3 0.633 0.257 −0.700 0.206
PCA4 0.676 −0.640 0.363 −0.045

ASTER Eigenvector Band 1 Band 2 Band 3 Band 4
PCA1 0.388 0.530 0.557 0.508
PCA2 0.309 0.349 0.232 −0.854
PCA3 −0.778 0.020 0.618 −0.106
PCA4 0.385 −0.773 0.503 −0.040

MNF method was employed to extract further information about alteration minerals
and zones in the study area. After careful screening of the features presented in dark and
bright colors in each MNF band. Three bands were selected and displayed in RGB colors.
MNF 3, 4, and 5 of Landsat-8, and MNF 2, 3, and 4 of Sentinel-2 were selected. It can be
seen in Figure 9a,b that altered rocks are presented as white to sky-blue tones. The white
color demonstrates that there is important information in all three bands that were assigned
to RGB colors. Combining negated MNF2, MNF3, and MNF4 clearly displays areas of
alteration in white to yellow color (Figure 9).
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Table 7. The eigenvector matrixes of applying PCA to ASTER selected bands for detailed mapping
of argillic, phyllic, and propylitic alteration zones; Bold text represents the selected PCA and the
unique eigenvalues.

Argillic Eigenvector Band 1 Band 4 Band 6 Band 7
PCA1 0.409 0.565 0.496 0.518
PCA2 0.910 −0.202 −0.263 −0.247
PCA3 0.056 −0.792 0.311 0.522
PCA4 −0.025 0.113 −0.767 0.631

Phyllic Eigenvector Band 1 Band 3 Band 5 Band 6
PCA1 0.414 0.597 0.486 0.487
PCA2 0.474 0.503 −0.510 −0.512
PCA3 0.770 −0.619 0.148 −0.043
PCA4 0.106 −0.084 −0.694 0.707

Propylitic Eigenvector Band 1 Band 3 Band 5 Band 8
PCA1 0.403 0.584 0.474 0.522
PCA2 0.525 0.483 −0.444 −0.542
PCA3 −0.287 0.281 −0.722 0.563
PCA4 0.693 −0.589 −0.239 0.340
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Figure 9. MNF results: (a) Landsat-8 MNF3, MNF4, and MNF5 in RGB.; (b) Sentinel-2 MNF2, MNF3,
and MNF4 in RGB.; (c) ASTER MNF2 (negated), MNF3, and MNF 4 in RGB.

4.2. Generating Target Variable Using K-Means Clustering

All evidence layers of ASTER dataset that were mentioned earlier, including geological
predictor maps, were utilized to classify the study area using k-means clustering. The
purpose of this unsupervised method is to delineate non-prospective tracts, which then aids
the process of selecting non-occurrence samples. Defining the proper number of clusters
is the most critical step because these clusters will be assigned to different classes based
on their spatial agreement with known gold occurrences. Each class prospectivity score is
defined according to the percentage of captured deposits in the clusters. For instance, if
each of the n clusters captured x deposits, then these n clusters will be classified as one class
and the class prospectivity score is determined by the percentage of x deposits from the total
known deposits. Therefore, increasing cluster numbers increases the number of clusters
with no occurrence’s association, which subsequently increases the area of non-prospective.
Herein, we proposed that the number of clusters must be equal to or less than the number
of known occurrences (k ≤ Au samples). In this case, the worst scenario will be if the
frequency of occurrence in each cluster is one, which indicates that the k-means calculation
process failed to find a connection between occurrences distribution and evidential layers.

Figure 10a shows the twenty clusters derived from applying k-means on ASTER
dataset. As displayed in Figure 10b, the highest frequency is found to be 5 samples per
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cluster, which takes place in clusters 11 and 12. These two clusters were then classified as
the very high prospective class. Clusters 14 and 8 captured four and three Au occurrence
samples, respectively, so they were labeled as high and moderate classes. Each one of
clusters 7,13, and 15 captured 2 occurrences, which were afterward combined to form
the low prospective class. In the meantime, the pattern of one occurrence per cluster is
found in clusters 16 and 20, which were defined as the very low prospective class. Finally,
the rest of the clusters were classified as the non-prospective class, since none of the Au
occurrences is spatially associated with these clusters. Figure 10c illustrates the selection of
25 non-occurrence points following the results of classifying k-means outputs, as well as
the criteria described earlier in the methodology section.
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Figure 10. (a) K-means 20 clusters derived from ASTER and geological evidential layers.; (b) the
number of Au occurrences spatially associated with different clusters.; (c) classified prospectivity
clusters based on the frequency of the occurrences in each cluster obtained from (b).

4.3. Sensitivity of RF Predictive Model to Parameter Tuning

The success key for training data-driven models with higher accuracy prediction is the
configuration of parameters (also called parametrization). Thus, due to its great impact on
the robustness and generalization capacity of ML predictive models. The parameterization
process was achieved using the GridSearchCV method based on 5-fold cross-validation.
Figure 11 shows significant variations in MSE values of four RF models obtained from
different parameter combinations and different datasets. Generally, RF is a very stable
model since the higher MSE values are lower than 0.138 in all four datasets. Although
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there are complex variations of parameter selection using different datasets, the minimum
score of MSE is very promising in the case of ASTER and data-integration datasets. The
minimum score of MSE obtained by training ASTER and data-integration datasets were
0.096 and 0.093, respectively. Meanwhile, RF model had less accuracy in the case of using
Sentinel-2 and Landsat-8, reaching minimum MSE values of 0.102 and 0.12, respectively.
The results of MSE indicate that the complex architecture of RF does not lead to an accurate
performance in different cases. For instance, the grid searching method selected only two
features to be used in individual trees in both Landsat-8 and Sentinel-2 datasets. It is
also suggested that the number of trees in the forest was set to 50 in training Sentinel-2
and data-integration datasets. The highest number of trees grown in the forest was 300
trees in the case of Landsat-8, while the highest number of features was 8 in the case of
data-integration dataset.
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Figure 11. Contour maps showing the sensitivity of RF model based on MSE results obtained by
training different datasets; the number of trees and number of features employed for training RF
models based on: (a) Landsat-8; (b) Sentinel-2; (c) ASTER; (d) data integration.

4.4. Comparison of Various Datasets Performance

Different RF regression models were trained by the optimal parameter configurations
to produce gold potential maps, where the prediction at each cell denotes the likelihood of
gold occurrence by floating probability value (0–1) (Figure 12). The accuracy report of the
classification performance is produced by labeling each cell into binary classes (prospective
areas and barren areas), and thus by using a threshold value of 0.5 to define those areas.
Table 8 lists all statistical metrics for measuring the classification performance of RF using
four various datasets. In general, both ASTER and Data-integration datasets achieved an
overall classification accuracy of 73.3%, which outperformed the classification of Sentinel-2
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and Landsat-8 datasets. OA of Landsat-8 and Sentinel-2 were 60% and 66.7%, respectively.
Although the OA of ASTER and data-integration datasets are the same, ASTER is more
sensitive to correctly identifying 73.2 of the occurrence locations, while data-integration
dataset has higher predictive values whether it is PPV or NPV. However, the highest
predictive values (PPV and NPV) are found in Sentinel-2 dataset. RF models trained by
Landsat-8 and Sentinel-2 have the worst specificity scores (28.6).
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Figure 12. Predictive maps of likelihood score of gold propsectivity obtained from RF predictive
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Table 8. Classification report of RF performance using different datasets.

Dataset Sensitivity (%) Specificity (%) Positive Predictive
Value (%)

Negative Predictive
Value (%) Accuracy (%) Kappa

Landsat-8 58 28.6 62.5 66.6 60 0.167
Sentinel-2 64.3 28.6 80.8 100 66.7 0.299

ASTER 73.2 71.4 73.2 71.4 73.3 0.464
Data-Integration 72.3 57.1 75 80 73.3 0.454

Taking the cost of mineral exploration in the real world into counts, it is impractical
to make a decision based on prospective tract delineation from the classification scenario
(i.e., probability > 0.5) [3]. Therefore, it is essential to assess the predictive performance of
high-probability zones using ROC curve. Figure 13 shows ROC curves and AUC values of
various MLAs trained by four different input datasets. The closest ROC curve to the top
left corner belongs to the data-integration dataset, whereby the AUC value is 0.938. Both
ASTER and Sentinel-2 have AUC values of 0.875, which clarifies that both datasets have
comparable prediction performance. Landsat-8 performs the weakest predictive capability
with AUC value of 0.625.
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Figure 13. ROC curves showing AUC value of each RF model trained by Landsat-8, Sentinel-2,
ASTER, and data integration datasets.

For a better understanding of the spatial distribution of Au deposits, and delineating
exploration target areas, it is important to reclassify the MPM probability score into different
levels (very high, high, moderate, and low). This can be achieved by classifying the success-
rate curve based on the variations in the curve slope using four regression lines. The higher
predictive region is defined by the steeper slope. Figure 14 shows the success-rate curves
of four RF MPMs derived from different datasets, while the classified maps are displayed
in Figure 15. The steepest curve is achieved by data-integration dataset, which indicates
that this data predictive performance has the ability to define a smaller prospective area
compared with datasets. The very high potential class of the data-integration identifies
about 70.6% of the deposits in 11.5% of the total area. However, ASTER dataset was able to
identify all of the occurrence locations in 33.3% of the total area, which is 4.5% lower than
the total area that captured all occurrences in the MPM of data-integration. The total area of
capturing all deposits is larger in the case of Landsat-8 and Sentinel-2, which are 47.2 and
42.1, respectively. As it is displayed in Figure 14a, the curves of ASTER and Landsat started
similarly with a high angle, but they quickly become less steep by increasing the percentage
of cumulative area. Hence, about 35% of the occurrence are captured in approximately
3.5% of the study area.
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5. Discussion

The discovery of new prospective areas is deliberated as the most significant issue
in mineral exploration. MPM has been successfully used to integrate geological features
derived from multisource data to outline new undiscovered mineral deposits. Although
remote sensing data represent a great source for recognizing surface alteration and other
geological features (e.g., lineament and lithology), they have not yet been fully investigated
as the main core of the input data for training mineral prospectivity predictive modeling.
The comparison of Landsat-8, Sentinel-2, ASTER, as well as data fusion, for training
714 RF data-driven predictive model is successfully illustrated in the present study. The
main findings are discussed below.

Several remote sensing enhancement techniques including BR, MNF, and PCA, have
been employed in this study for generating predictor maps. MNF imagery is the only data
used to produce color composite images, where the detection of altered rocks is specified
by color tones. The selection of three MNF bands to composite images in RGB is the
only subjective procedure in the study, which mainly depends on visual judgment and
prior knowledge of hydrothermal alteration. Other methods are employed to produce
grey-scale predictor maps, where the alteration zones or minerals are presented by the
bright regions (higher value) of that image. These methods were extensively and suc-
cessfully used in prior literature for mapping alteration zones associated with mineral
deposits, which mainly depend on the spectral signatures of hydrothermal alteration
minerals [29,31,39,68–70,82]. In this regard, all three multispectral sensors data have the ca-
pability to detect hydroxyl-bearing and iron-oxide minerals in general. Clay and carbonate
minerals including kaolinite, alunite, muscovite, calcite, and dolomite, have high reflectance
near 1.6 µm and absorption near 2.2 µm [15,61]. This reflectance signature relatively coin-
cides with band 6 of Landsat-8, band 11 of Sentinel-2, and band 4 of ASTER, meanwhile, the
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absorption signature coincides with band 7 of Landsat-8, band 12 of Sentinel-2 and band 6
of ASTER. Therefore, these were employed to map OH-bearing minerals using BR method
(Landsat-8: 6/7; Sentinel-2: 11/12; and ASTER: 4/6) and selective PCA method as well
(Landsat-8: 2,5,6,7; Sentinel-2: 2,8a,11,12; and ASTER: 1,3,4,6). Likewise, iron (ferric and
ferrous)/iron-oxide minerals, such as hematite, jarosite, and goethite, display significant
absorption features in the VNIR region (from 0.4 µm to 1.3 µm) [61,83]. Specifically, iron-
bearing minerals have two absorption features near 0.5 µm and 0.87 µm, which perfectly
corresponds to bands 2 and 5 of Landsat-8, and bands 2 and 8a of Sentinel-2 [69,84]. Unfor-
tunately, ASTER can only detect one diagnostic absorption feature near to 0.5 µm (band 2),
due to its course spectral resolution in the VNIR region. Due to its higher spectral resolution
in the VNIR than ASTER data, and its higher bandpass than Landsat-8, Sentinel-2 data
have potential for MPM similar to ASTER data and greater than Landsat-8 data.

Unlike the limited capability of Landsat-8 and Sentinel-2 to map alteration minerals
(mapping OH-bearing minerals in general), the higher resolution of ASTER data in the
SWIR region allows it for detailed mapping of the hydrothermal alteration zones. Di-
agnosing Al-OH and Mg-OH groups of minerals helps define different alteration zones.
The argillic alteration zone which is characterized by kaolinite and alunite minerals has a
double absorption signature at 2.16 µm and 2.2 µm, which coincide with bands 5 and 6,
respectively [15]. These bands, therefore, are used to enhance argillic to advance-argillic
zone using 4/5 BR, (4 + 6)/5 RBD, and PCA (using bands 1, 4, 6, and 7). Identifying kaolin-
ite and alunite minerals can be achieved using KLI and ALI mineral indices, respectively.
The phyllic alteration can be recognized by the muscovite mineral, which shows double
absorption features at 2.17 µm and 2.2 µm. The absorption at 2.2 µm (coinciding band 6) is
stronger than that at 2.17 µm (coinciding band 5) [39]. This spectral feature is employed to
map phyllic alteration using only two methods, which are (5 + 7)/6 RBD, and PCA using
bands 1,3,5, and 6. For the optimum discovery of Mg-OH group minerals (e.g., chlorite,
epidote, and calcite), band 8 is employed to detect such minerals. These minerals repre-
sent the propylitic alteration zone, which has a spectral absorption feature near 2.33 µm
(coinciding with band 8). This high absorption property is used to detect propylitic zone
using different methods, including propylitic RBD (6 + 9/7 + 8), calcite mineral index (CLI
= (6/8) * (9/8)), and PCA (using bands 1,3,5, and 8). Although thermal bands of ASTER
are not used in this study, they can be utilized to extend the number of predictor maps.
TIR region helps identify minerals at the surface with specific emissivity and absorption
features [37,65]. For example, silicate and carbonate can be mapped using BRs 13/12 and
13/14, respectively [24,66]. Moreover, Quartz Index (QI = 11 * 11/10 * 12) can be used as a
predictor in the case of gold associated with Quartz dykes/veins [66]. It can be concluded
that the possible number of predictor maps that are produced using ASTER data, is about
11 higher than those derived from other remote sensing data. Subsequently, this could be
the main reason why ASTER dataset outperforms Landsat-8 and Sentinel-2 datasets in the
classification performance of the MPM in the study area.

Since RF is trained using different input variable data, it is essential to assess the spatial
association between these predictor variables and the gold occurrence (target variables).
In the present study, predictor variables are produced from (i) different sources including
geological and remote sensing data; (ii) different multispectral sensors including Landsat-
8, Sentinel-, and ASTER; (iii) different processing methods including spatial analysis
methods and remote sensing enhancement techniques. Hence, it is critical to measure the
influence of each predictor variable on the prediction performance. As mentioned earlier,
RF algorithm ranks the importance of the feature variables according to their marginal
effect on the target variables [34]. Graphs in Figure 16 illustrate the importance of input
feature variables in each dataset. Through all datasets, the most important geological-based
predictor variable turns out to be lineaments. In both Landsat-8 and Sentinel-2 datasets,
the lineaments density map yields the first rank of importance, while it comes second after
propylitic RBD in ASTER and data-integration datasets. The second prominent pattern
of the geological predictors through all datasets is that the distance from NW- faults is
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more important than the NE- faults, which indicates that the spatial association of known
gold occurrences is much closer to NW-SE trending faults. RF did not vote for a specific
enhancement technique method to be highly distinct from other methods. However,
it can be noticed from data-integration dataset that four out of the first five important
predictors are produced by the rationing technique. Predictor maps indicating iron-bearing
minerals are much more important than those corresponding to hydroxyl-bearing minerals
in Landsat-8 and Sentinel-2 datasets. In ASTER dataset, predictors of propylitic alteration
zone are significantly more important than other alteration zones, since the propylitic RBD
and calcite BR (4/7) are ranked as the first and the fourth important features. It can be
noticed that mineralogical indices are relatively less important than other enhancement
techniques. It is important to mention that predictors from different remote sensing sensors
are highly representative in data-integration dataset. In other words, the rating of features’
importance is roughly distributed between different remote sensing data.
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Figure 16. RF model important feature analysis results: (a) Landsat-8; (b) Sentinel-2; (c) ASTER;
(d) data integration (Symbol ‘L’ represents Landsat-8; ‘S’ represents Sentinel-2; ‘A’ represents ASTER).
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6. Conclusions

The investigation of various multispectral remote sensing data capabilities was carried
out to produce mineral prospectivity map for gold mineralization in the Hamissana area,
NE Sudan. Based on the combination of geological-based predictor maps (proximity to
intrusion and faults, and density of lineaments) with remote sensing-based predictor maps
(BR, PCA, and MNF), four input datasets including Landsat-8, Sentinel-2, ASTER, and
data-integration datasets were prepared. The random forest algorithm was used as an
objective tool for comparing the capabilities of various datasets.

As it is demonstrated by the comparison results and discussion, we conclude that
Sentinel-2 and ASTER multispectral data have greater potential for mineral prospectivity
modeling than Landsat-8. Both datasets achieved 0.875 AUC, while the overall classification
accuracy of ASTER dataset (73.3%) is higher than Sentinel-2 (66.7%). Data-integration
dataset boosts the prediction performance of RF up to (AUC: 0.938). The density of the
lineaments plays a significant role in the prediction performance in all datasets.

Modeling results using different datasets suggest several prospecting regions. Nev-
ertheless, considering the uncertainty of remote sensing data and MPM results, further
geological investigation and exploration should be taken into account. Specifically, drilling,
geophysical and geochemical surveys, and 3D modeling techniques are essential for future
work and further accurate targeting.

In our future research, we plan to compare current multispectral remote sensing data
with other data from multiple sources (e.g., comprehensive geochemical survey, gravity,
and magnetic geophysical survey), which are not available at present. Moreover, we would
like to conduct a comprehensive comparison using other machine learning algorithms
such as a support vector machine and an artificial neural network. Finally, other deep
learning techniques are preferable to be applied also in MPM, since deep learning is still a
hot research topic in several geoscience fields.

Author Contributions: “Conceptualization, A.M.M.T. and Y.X.; methodology, A.M.M.T. and Q.H.;
software, A.M.M.T., S.W. and X.L.; validation, A.M.M.T., Q.H. and A.H.; formal analysis, A.M.M.T.
and Y.X.; data curation, A.M.M.T.; writing—original draft preparation, A.M.M.T.; writing—review
and editing, A.M.M.T. and Y.X.; supervision, Y.X.; funding acquisition, Y.X. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the Priority Academic Program Development of Jiangsu
Higher Education Institutions (PAPD).

Data Availability Statement: All remote sensing data used in this paper are freely available online on
the websites mentioned in Section 3.1—Data. Python codes are available online on the first author’s
GitHub webpage (https://github.com/Abdallah-M-Ali).

Acknowledgments: We would like to express our respect and gratitude to the anonymous reviewers
and editors for their professional comments and suggestions on improving the quality of this paper.
The research was undertaken thanks to funding from the Priority Academic Program Development
of Jiangsu Higher Education Institutions [PAPD].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Arndt, N.T.; Fontboté, L.; Hedenquist, J.W.; Kesler, S.E.; Thompson, J.F.; Wood, D.G. Future global mineral resources. Geochem.

Perspect. 2017, 6, 1–171. [CrossRef]
2. Wang, K.; Zheng, X.; Wang, G.; Liu, D.; Cui, N. A Multi-Model Ensemble Approach for Gold Mineral Prospectivity Mapping: A

Case Study on the Beishan Region, Western China. Minerals 2020, 10, 1126. [CrossRef]
3. Sun, T.; Li, H.; Wu, K.; Chen, F.; Zhu, Z.; Hu, Z. Data-Driven Predictive Modelling of Mineral Prospectivity Using Machine

Learning and Deep Learning Methods: A Case Study from Southern Jiangxi Province, China. Minerals 2020, 10, 102. [CrossRef]
4. Carranza, E.J.M.; Laborte, A.G. Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of

Random Forests algorithm. Ore Geol. Rev. 2015, 71, 777–787. [CrossRef]
5. Porwal, A.; Carranza, E.J.M. Introduction to the Special Issue: GIS-based mineral potential modelling and geological data analyses

for mineral exploration. Ore Geol. Rev. 2015, 71, 477–483. [CrossRef]

https://github.com/Abdallah-M-Ali
http://doi.org/10.7185/geochempersp.6.1
http://doi.org/10.3390/min10121126
http://doi.org/10.3390/min10020102
http://doi.org/10.1016/j.oregeorev.2014.08.010
http://doi.org/10.1016/j.oregeorev.2015.04.017


Minerals 2023, 13, 49 29 of 31

6. Carranza, E.J.M.; Hale, M.; Faassen, C. Selection of coherent deposit-type locations and their application in data-driven mineral
prospectivity mapping. Ore Geol. Rev. 2008, 33, 536–558. [CrossRef]

7. Rodriguez-Galiano, V.; Sanchez-Castillo, M.; Chica-Olmo, M.; Chica-Rivas, M. Machine learning predictive models for mineral
prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol. Rev.
2015, 71, 804–818. [CrossRef]

8. Sun, T.; Chen, F.; Zhong, L.; Liu, W.; Wang, Y. GIS-based mineral prospectivity mapping using machine learning methods: A case
study from Tongling ore district, eastern China. Ore Geol. Rev. 2019, 109, 26–49. [CrossRef]

9. Yousefi, M.; Nykänen, V. Introduction to the special issue: GIS-based mineral potential targeting. J. Afr. Earth Sci. 2017, 128, 1–4.
[CrossRef]

10. Cheng, Q.M.; Agterberg, F.P. Fuzzy weights of evidence method and its application in mineral potential mapping. Nat. Resour.
Res. 1999, 8, 27–35. [CrossRef]

11. Abedi, M.; Norouzi, G.-H.; Fathianpour, N. Fuzzy outranking approach: A knowledge-driven method for mineral prospectivity
mapping. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 556–567. [CrossRef]

12. Yousefi, M.; Nykänen, V. Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral
prospectivity mapping. J. Geochem. Explor. 2016, 164, 94–106. [CrossRef]

13. Ghezelbash, R.; Maghsoudi, A.; Bigdeli, A.; Carranza, E.J.M. Regional-Scale Mineral Prospectivity Mapping: Support Vector
Machines and an Improved Data-Driven Multi-criteria Decision-Making Technique. Nat. Resour. Res. 2021, 30, 1977–2005.
[CrossRef]

14. Harris, J.R.; Grunsky, E.; Behnia, P.; Corrigan, D. Data- and knowledge-driven mineral prospectivity maps for Canada’s North.
Ore Geol. Rev. 2015, 71, 788–803. [CrossRef]

15. Abdelkareem, M.; Al-Arifi, N. Synergy of Remote Sensing Data for Exploring Hydrothermal Mineral Resources Using GIS-Based
Fuzzy Logic Approach. Remote Sens. 2021, 13, 4492. [CrossRef]

16. Rowan, L.C.; Mars, J.C. Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission
and reflection radiometer (ASTER) data. Remote Sens. Environ. 2003, 84, 350–366. [CrossRef]

17. Pazand, K.; Pazand, K. Identification of hydrothermal alteration minerals for exploring porphyry copper deposit using ASTER
data: A case study of Varzaghan area, NW Iran. Geol. Ecol. Landsc. 2020, 6, 217–223. [CrossRef]

18. Pour, A.B.; Hashim, M. Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER
data, SE Iran. J. Asian Earth Sci. 2011, 42, 1309–1323. [CrossRef]

19. Guha, A.; Mondal, S.; Chatterjee, S.; Kumar, K.V. Airborne imaging spectroscopy of igneous layered complex and their mapping
using different spectral enhancement conjugated support vector machine models. Geocarto Int. 2020, 37, 349–365. [CrossRef]

20. Rao, D.A.; Guha, A. Potential Utility of Spectral Angle Mapper and Spectral Information Divergence Methods for mapping lower
Vindhyan Rocks and Their Accuracy Assessment with Respect to Conventional Lithological Map in Jharkhand, India. J. Indian
Soc. Remote 2018, 46, 737–747. [CrossRef]

21. Rani, N.; Mandla, V.R.; Singh, T. Spatial distribution of altered minerals in the Gadag Schist Belt (GSB) of Karnataka, Southern
India using hyperspectral remote sensing data. Geocarto Int. 2016, 32, 225–237. [CrossRef]

22. Rani, N.; Mandla, V.R.; Singh, T. Evaluation of atmospheric corrections on hyperspectral data with special reference to mineral
mapping. Geosci. Front. 2017, 8, 797–808. [CrossRef]

23. Noori, L.; Pour, A.; Askari, G.; Taghipour, N.; Pradhan, B.; Lee, C.-W.; Honarmand, M. Comparison of Different Algorithms to
Map Hydrothermal Alteration Zones Using ASTER Remote Sensing Data for Polymetallic Vein-Type Ore Exploration: Toroud–
Chahshirin Magmatic Belt (TCMB), North Iran. Remote Sens. 2019, 11, 495. [CrossRef]

24. Pour, A.B.; Hashim, M. Identifying areas of high economic-potential copper mineralization using ASTER data in the Urumieh–
Dokhtar Volcanic Belt, Iran. Adv. Space Res. 2012, 49, 753–769. [CrossRef]

25. Pour, A.B.; Hashim, M.; Makoundi, C.; Zaw, K. Structural Mapping of the Bentong-Raub Suture Zone Using PALSAR Remote
Sensing Data, Peninsular Malaysia: Implications for Sediment-hosted/Orogenic Gold Mineral Systems Exploration. Resour. Geol.
2016, 66, 368–385. [CrossRef]

26. Pour, A.B.; Hashim, M.; Park, Y. Application of ASTER SWIR bands in mapping anomaly pixels for Antarctic geological mapping.
J. Phys. Conf. Ser. 2017, 852, 012025. [CrossRef]

27. Pour, A.B.; Park, Y.; Park, T.-Y.S.; Hong, J.K.; Hashim, M.; Woo, J.; Ayoobi, I. Regional geology mapping using satellite-based
remote sensing approach in Northern Victoria Land, Antarctica. Polar Sci. 2018, 16, 23–46. [CrossRef]

28. Son, Y.-S.; Lee, G.; Lee, B.H.; Kim, N.; Koh, S.-M.; Kim, K.-E.; Cho, S.-J. Application of ASTER Data for Differentiating Carbonate
Minerals and Evaluating MgO Content of Magnesite in the Jiao-Liao-Ji Belt, North China Craton. Remote Sens. 2022, 14, 181.
[CrossRef]

29. Bahrami, Y.; Hassani, H.; Maghsoudi, A. Investigating the capabilities of multispectral remote sensors data to map alteration
zones in the Abhar area, NW Iran. Geosyst. Eng. 2018, 24, 18–30. [CrossRef]

30. Fereydooni, H.; Mojeddifar, S. A directed matched filtering algorithm (DMF) for discriminating hydrothermal alteration zones
using the ASTER remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2017, 61, 1–13. [CrossRef]

31. Chen, Q.; Zhao, Z.-F.; Xia, J.-S.; Zhao, X.; Yang, H.-Y.; Zhang, X.-L. Improving the accuracy of hydrothermal alteration mapping
based on image fusion of ASTER and Sentinel-2A data: A case study of Pulang Cu deposit, Southwest China. Geocarto Int.
2022, 1–26. [CrossRef]

http://doi.org/10.1016/j.oregeorev.2007.07.001
http://doi.org/10.1016/j.oregeorev.2015.01.001
http://doi.org/10.1016/j.oregeorev.2019.04.003
http://doi.org/10.1016/j.jafrearsci.2017.02.023
http://doi.org/10.1023/A:1021677510649
http://doi.org/10.1016/j.jag.2012.07.012
http://doi.org/10.1016/j.gexplo.2015.10.008
http://doi.org/10.1007/s11053-021-09842-4
http://doi.org/10.1016/j.oregeorev.2015.01.004
http://doi.org/10.3390/rs13224492
http://doi.org/10.1016/S0034-4257(02)00127-X
http://doi.org/10.1080/24749508.2020.1813371
http://doi.org/10.1016/j.jseaes.2011.07.017
http://doi.org/10.1080/10106049.2020.1734873
http://doi.org/10.1007/s12524-017-0733-3
http://doi.org/10.1080/10106049.2015.1132484
http://doi.org/10.1016/j.gsf.2016.06.004
http://doi.org/10.3390/rs11050495
http://doi.org/10.1016/j.asr.2011.11.028
http://doi.org/10.1111/rge.12105
http://doi.org/10.1088/1742-6596/852/1/012025
http://doi.org/10.1016/j.polar.2018.02.004
http://doi.org/10.3390/rs14010181
http://doi.org/10.1080/12269328.2018.1557083
http://doi.org/10.1016/j.jag.2017.04.010
http://doi.org/10.1080/10106049.2022.2086625


Minerals 2023, 13, 49 30 of 31

32. Joly, A.; Porwal, A.; McCuaig, T.C.; Chudasama, B.; Dentith, M.C.; Aitken, A.R.A. Mineral systems approach applied to GIS-based
2D-prospectivity modelling of geological regions: Insights from Western Australia. Ore Geol. Rev. 2015, 71, 673–702. [CrossRef]

33. Carranza, E.J.M. Natural Resources Research Publications on Geochemical Anomaly and Mineral Potential Mapping, and
Introduction to the Special Issue of Papers in These Fields. Nat. Resour. Res. 2017, 26, 379–410. [CrossRef]

34. Carranza, E.J.M.; Laborte, A.G. Random forest predictive modeling of mineral prospectivity with small number of prospects and
data with missing values in Abra (Philippines). Comput. Geosci. 2015, 74, 60–70. [CrossRef]

35. Zuo, R.; Carranza, E.J.M. Support vector machine: A tool for mapping mineral prospectivity. Comput. Geosci. 2011, 37, 1967–1975.
[CrossRef]

36. Brown, W.M.; Gedeon, T.D.; Groves, D.I.; Barnes, R.G. Artifcial neural network: A new method for mineral prospectivity mapping.
Aust. J. Earth Sci. 2000, 47, 757–770. [CrossRef]

37. Xi, Y.; Mohamed Taha, A.M.; Hu, A.; Liu, X. Accuracy comparison of various remote sensing data in lithological classification
based on random forest algorithm. Geocarto Int. 2022, 1–29. [CrossRef]

38. Mansouri, E.; Feizi, F.; Jafari Rad, A.; Arian, M. Remote-sensing data processing with the multivariate regression analysis method
for iron mineral resource potential mapping: A case study in the Sarvian area, central Iran. Solid Earth 2018, 9, 373–384. [CrossRef]

39. Bolouki, S.M.; Ramazi, H.R.; Maghsoudi, A.; Beiranvand Pour, A.; Sohrabi, G. A Remote Sensing-Based Application of Bayesian
Networks for Epithermal Gold Potential Mapping in Ahar-Arasbaran Area, NW Iran. Remote Sens. 2019, 12, 105. [CrossRef]

40. Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Chica-Rivas, M. Predictive modelling of gold potential with the integration of
multisource information based on random forest: A case study on the Rodalquilar area, Southern Spain. Int. J. Geogr. Inf. Sci.
2014, 28, 1336–1354. [CrossRef]

41. Gaboury, D.; Nabil, H.; Ennaciri, A.; Maacha, L. Structural setting and fluid composition of gold mineralization along the central
segment of the Keraf suture, Neoproterozoic Nubian Shield, Sudan: Implications for the source of gold. Int. Geol. Rev. 2020,
64, 45–71. [CrossRef]

42. Mohamed, M.T.A.; Al-Naimi, L.S.; Mgbeojedo, T.I.; Agoha, C.C. Geological mapping and mineral prospectivity using remote
sensing and GIS in parts of Hamissana, Northeast Sudan. J. Pet. Explor. Prod. 2021, 11, 1123–1138. [CrossRef]

43. Bierlein, F.; Reynolds, N.; Arne, D.; Bargmann, C.; McKeag, S.; Bullen, W.; Al-Athbah, H.; McKnight, S.; Maas, R. Petrogenesis of a
Neoproterozoic magmatic arc hosting porphyry Cu-Au mineralization at Jebel Ohier in the Gebeit Terrane, NE Sudan. Ore Geol.
Rev. 2016, 79, 133–154. [CrossRef]

44. Zeinelabdein, K.A.E.; Nadi, A.H.H.E. The use of Landsat 8 OLI image for the delineation of gossanic ridges in the Red Sea Hills
of NE Sudan. Am. J. Earth Sci. 2014, 1, 62–67.

45. Sasmaz, A. The Atbara porphyry gold–copper systems in the Red Sea Hills, Neoproterozoic Arabian–Nubian Shield, NE Sudan. J.
Geochem. Explor. 2020, 214, 106539. [CrossRef]

46. El Khidir, S.O.; Babikir, I.A. Digital image processing and geospatial analysis of landsat 7 ETM+ for mineral exploration, Abidiya
area, North Sudan. Int. J. Geomat. Geosci. 2013, 3, 645–658.

47. Ali, A.; Pour, A. Lithological mapping and hydrothermal alteration using Landsat 8 data: A case study in ariab mining district,
red sea hills, Sudan. Int. J. Basic Appl. Sci. 2014, 3, 199–208. [CrossRef]

48. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
49. Breiman, L. bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
50. Breiman, L.; Friedman, J.; Olshen, R.; Stone, C. Classification and Regression Trees; Wadsworth & Brooks; Cole Statistics/Probability

Series; Chapman & Hall: London, UK, 1984.
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