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Abstract: Recent years have witnessed growing research interest in applying rheology in grinding
and flotation treatment of finely disseminated ores. Slurry rheology has long been identified as the
comprehensive effect of inter-particle interactions, including their aggregation and dispersion states
in slurry, which are more impactive under the fine-particle effect. In this regard, rheology has the
potential to play a significant role in interpreting the flowing and deforming phenomena of inter-
particle aggregates, particle-bubble aggregates, and flotation froth. Though much attention has been
paid to the rheological effect in industrial suspension, this has not been the case for mineral grinding
and flotation for fine particles. The influential mechanism of rheology on the sub-processes of mineral
processing has not been systemically determined nor revealed thoroughly, thus the underpinning
mechanism for enhancing the processing efficiency has been difficult to discover. This paper reviews
the current application and importance of rheology in fine mineral processing, and the potential
research direction in the field is proposed.
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1. Introduction
1.1. The Characteristic of Mineral Slurry

Froth flotation has been the most widely used approach for treating complex low-
grade and finely disseminated ores. Flotation pulp consists of micro-particles with a
certain grinding fineness, which is generally expressed as the mass ratio (%) of less than
0.074 mm/the total grinding product (the grinding fineness depends on the target mineral
liberation degree) [1]. In mineral flotation operations, the mineral slurry is usually treated
via grinding, agitation, flotation, and transportation, and the micro-particle slurry is often
mixed with chemical reagent (mill and agitation tank) under such conditions, with air
bubbles being separated under certain shearing fields in water-used equipment, such as a
flotation cell or column [2].

One characteristic of the micro-mineral slurry is polydispersity, including size and
shape. The particle size distribution of the micro-mineral slurry usually covers a quite
large range, from less than 1 nm to larger than 1 mm, for there exists a series of dispersed
components including organic/inorganic molecules, ions, macromolecules, colloids of
mining reagents, suspending particles, and settling aggregation or grains [3]. For metallic
minerals and coal particles in handling plants, the particle size in slurry is on average
approximately 100 µm [4]; for some clay minerals, the particle size in handling operations
is mostly less than 10 µm [5]; but for clay mineral-based materials, the particle size could
decrease to less than 0.1 µm [6]. As for the particle shape, most of the mineral crystals after
crushing and grinding have a globule-like morphology. For the nesosilicate minerals and
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coal, the particles in the processing operation are usually of an irregular angularity [7]. For
the phyllosilicate minerals such as talc, graphite, and mica, particles in slurry are often in
lamellar or platy, while the chain silicate minerals, such as chrysotile and serpentine, are
often in a fibrous shape or have a silky morphology [8,9]. In a micro-mineral slurry, various
kinds of minerals of different sizes and shapes always exist. Therefore, the complexity of
the micro-mineral particle slurry makes it quite difficult to describe the size and shape
using one or two of the single mineral characteristics.

Another typical characteristic of the micro-mineral slurry is the complex interactions
among the different components, including solid-solid interactions, reagent-solid interac-
tions, and dynamic bubble-liquid-solid effects. It has been widely acknowledged that these
interactions are closely correlated to the solid content. For slurry with relatively coarse min-
eral particles and a small solid-to-liquid ratio, the particle interactions mainly manifest as
simple mechanical actions, such as mutual friction, collision, and compression [10–12]. For
slurry with relatively fine mineral particles and a high solid content, the surface force that
originates from solid surface phase change via chemical reactions or reagent adsorptions
determines the particle interactions. For slurry with agglomerated fine particles or flocs, the
complex interactions should also include the parcel effect between the new-born flocs and
primary fine slimes as well as the scrubbing effect between the new-born flocs and primary
coarse grains [13–15]. For the particles with different shapes in slurry, it was thought that
simple forces such as attractive or repulsive actions constitute the main particle interactions
between the globule-like particles and irregular angular particles [16,17]. The solid content
plays an important role in deciding the particle interactions, and it was widely thought that
a high solid-to-liquid ratio could lead to more complicated slurry properties, especially for
the fine mineral flotation process.

During the flotation operations, the particles in the slurry are not totally dispersed
or isolated, and the slurry is not a homogeneous water system with stable flowability.
The complex interactions among these particles depend on particle collision, aggregation,
dispersion, floating, sinking, and transportation, which mainly determine the flow and
deformation behaviors during the processing operations and have been understood using
slurry rheology.

1.2. Rheology in Mineral Processing

Rheology is the science of studying the flow and deformation behaviors of fluid
materials. The rheological parameters, such as viscosity, yield stress, viscoelasticity, have
been demonstrated to indicate the particle interactions and the particle structures in a
certain flowing field [2,17]. These common parameters are calculated by analyzing the
shear rate vs. shear stress curves, shear stress vs. shear strain curves, and viscous modulus
vs. elasticity modulus curves measured using a rheometer [18,19]. As a typical solid-
gas-liquid suspension with polydispersity and complex interactions inside, the flow and
deformation performance of micro-mineral processing slurry is usually determined using
non-Newtonian rheology, since it displays common rheological behaviors including shear
thickening, shear thinning, shearing yield, and compressing yield [20,21]. Therefore,
slurry rheology has long been used as an effective parameter to understand the particle
interactions and optimize processing efficiency, especially for fine mineral treatment [22,23].

Generally, the studying of mineral slurry rheology started when the effects of high
viscous fluids formed by very fine mineral particles on the grinding rate and efficiency
were first noticed [24]. At first, it was found that there existed a remarkable viscosity
effect on the grinding process when the dilatant fluid, pseudoplastic fluid, or Bingham
fluid were formed on a large scale inside the ball mill or rod mill [25,26]. Afterwards, in
other processes, including dense medium separation, bevel flow separation, magnetofluid
separation, and froth flotation, slurry rheology not only provided information about the
very complicated inter-particle interactions in processes related to the flow of mineral slurry,
but also explained the certain influences on the subtle processes of these operations [20].
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In recent years, the scope of mineral slurry rheology has significantly expanded in
regard to rheological methods [27]; rheological measurement tools [28]; and new rheological
conceptions related to particle interactions, particle-bubble interactions, and bubble-bubble
interactions under certain mineral processing operating conditions [29]. Therefore, this
paper reviewed the published literature on the regulation and effect of applying pulp
rheology to the grinding and flotation process, with the aim of establishing a quantitative
relationship between the grinding-flotation efficiency and rheological parameters and to
seek strategies that could accurately regulate rheological parameters. In addition, some
discussions, as well as a potential research field for the application of rheology in the
mineral processing industry, were also put forward.

2. Micro-Mineral Particle Slurry Rheometry

The rheological measurement instruments in mineral processing have been developing
and promote the development of slurry rheology. In early times, slurry rheology was
mainly developed via naked-eye observations or manual qualitative testing, such with
the spatula test, touching test, or flow cup test. These measurement results were useful
and effective for directly judging the viscosity and elasticity of tested materials. However,
these qualitative testing results could not provide the dynamic rheological information for
measuring the shearing field or shearing intensity. For this, the viscometer and rheometer,
which could quantitatively measure the shear rate and stress, were developed successively.
So far, most of the rheological measurements have been completed using the two kinds of
rheology equipment.

2.1. Rheological Measurement Using Viscometers

Around the 1990s, various kinds of viscosimeters that could provide the flowing
and deformation performance of slurry under several fixed shear rates were widely used,
such as the rotational viscometer and capillary (tube) viscometer [30,31]. For industrial
slurry, the rotational viscometer has been proven to better suit than the capillary viscometer
for its measurement principle [18,32]. The rotational viscometer calculates the viscosity
by measuring the torque that resists the deformation and flow of slurry and recording
the rotation rate of the measurement fixture dipped into the suspensions [19,27,33]. The
viscosity value is determined by transferring the torque and rotation rate to the shear stress
and shear rate, respectively, based on device parameters such as shape, surface flatness,
volume, dip angle of the measurement fixture, and sample holder [34,35].

Though the rotation mode of the viscosimeter could reflect the actual shear conditions
in the mineral processing operations, such as agitation in the tank and flotation cell, it could
only conduct single-point measurement services. Only the viscosity value under several
limited and several fixed shear rate values (usually 4 to 6 fixed shear rate values) could be
obtained. However, the available shear rate selections for the rotational viscometer do not
always reflect the actual shear rate distributions in the shear fields of mineral processing
operations. They may deviate significantly when the micro-mineral slurry presents shear
thickening, shear thinning, and other specific rheological performances.

2.2. Rheological Measurement Using Rheometers

In the late 1990s and the 21st century, corresponding rheometers fixedly assembled
with computers appeared and made it possible for the continuously variable measurement
to overcome the drawbacks of the viscometer. Similar to the rotational viscometer, the
rotational rheometers also measure the torque applied on the measurement tools and its
rotational speed and utilize the torque and rotation rate values to calculate the rheological
parameters [31,36]. However, different from the viscometer, the rotational rheometer has
a continuous control system that can measure the shear stress at any designed shear rate,
making it more convenient for simulating the exact shear conditions under any constant or
variable moving or agitating speed [28,34,37]. What is more, the rheometers can measure
the shear strains of the slurry under certain shear conditions, which provide the viscous
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and elastic property of the aggregated or dispersed micro-mineral slurry as well as the
information on the very subtle dynamic changes in the internal particle structures of the
slurry under a gradually applied yield stress [38,39].

There have been many measuring tools used for rheology measurements, such as
coaxial cylinders, cone plates, parallel plates, vanes, and impellers. For homogeneous or
uniformly dispersed solution systems, coaxial cylinders, cone plates, and parallel plates
could accurately measure the rheological properties. For typical heterogeneous systems
such as mineral slurry, vanes and impellers have been demonstrated to be more applicable
because these tools could effectively mix the dispersed micro-mineral particles before
rheology measurement and avoid the settling problems of particles or aggregations when
it comes to the measurement processes.

2.3. Developments in Rheological Measurement: Dynamic Oscillatory Techniques

There has also been a recent rise in the measurement of viscoelasticity of mineral
slurry, mainly realized using dynamic oscillatory techniques and which could help dis-
tinguish cross-linked network structures from isolated clay aggregates [37]. Unlike the
viscosity measurement or yield stress calculation, the dynamic oscillatory techniques aim
to characterize the particle network or specific superstructures by measuring the viscous
modulus and elastic modulus of the slurry in the linear elastic region. Strain sweep and
frequency sweep were suggested to be two main measurement methods used to clearly see
the degree of dispersion and the strength of the inter-particle association in the slurry [38].

The fundamental theory of using the viscous modulus and elastic modulus to de-
scribe the multi-particle structures and dispersed particles is the viscoelasticity of network
structures or super spatial structures formed by micro-mineral particles. When the micro-
particles transform into network structures or other super-specific structures, the new
aggregates can obtain a solid-like elasticity, which cannot be effectively detected and
quantified via viscosity or yield stress measurements [39]. Therefore, the elastic modulus
parameter was proposed to represent the elasticity property. The viscous modulus was used
to characterize the viscous attraction among the particles in the multi-particle structures
under relative static hydrodynamic conditions. One of the advantages of the dynamic
oscillatory rheology test is that the micro-mineral slurry is not shear-destroyed. Only defor-
mation and linear disturbance of the micro-mineral slurry happens using this measuring
mode, and it is possible to determine its variation continuously. Another advantage of the
oscillatory rheology test is that the testing results are independent of the shear rate, making
it more objective when making a comparison [38,39].

In short, the development of micro-mineral particle slurry rheometry is heading to-
ward the online and simultaneous characterization of inter-particle interactions, including
both the viscous resistance and viscous attractions during the mineral processing operations.

3. Quantitative Correlations between Rheological Parameters and
Processing Efficiency

Since mineral slurry rheology can shed light on particle interactions, it has long been
utilized to build relationships with processing operations. To some extent, it has been used
as an indication of the regulating variables.

3.1. Rheology in Ore Grinding

The rheology effect in grinding operations was the first to draw the attention of
researchers to the correlation between rheology and mineral processing operations. It
was found in 1985 that the grinding medium tended to be centrifugal when the slurry
viscosity exceeded a specific value (named the critical value), which resulted in the balls
sticking to the mill wall during rotation. The polymeric additives were demonstrated to
exhibit increasing [40] or decreasing viscosity effect, and an alteration in the rheological
behavior of the pulp could prevent the balls from centrifuging, with the mill subsequently
drawing full power and achieving higher grinding efficiency [25]. Later research confirmed
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that the measured shear rates inside a ball mill were approximately located in the range
of 13 to 730 s−1 [31] As the rheological nature of the micro-mineral slurry changes, the
grinding index can become quite different, and hence the solving strategies for increasing
the grinding efficiency can also be different. For pseudoplastic slurry containing a higher
solid content and a lower proportion of fine particles, such as primary or secondary mill
products, the approach to increasing the grinding efficiency was to enhance the viscosity
by increasing the fine particles mass ratio and observing appropriate regulation of the
classifier. For dilatant slurry with a relatively low solids content and a high proportion of
fine particles, such as tertiary or regrind mill products, the way to achieve a high grinding
efficiency was found to raise the slurry density by reducing water addition, except in cases
where the slurry already has a high yield stress [24].

The rheology effect on grinding efficiency also differs from the effect of the particle size.
For mineral processing grinding operations aiming to obtain the fully dissociated mineral
particles that are within an average of 50 µm, apparent viscosity was the main rheological
parameter influencing the grinding efficiency [26]. However, for the ultrafine grinding of
industrial materials such as ceramic materials, pigments, chemical products, microorgan-
isms, pharmaceutics, and paper that aims to obtain powders less than 1 µm, it has been
proven and comprehensively reviewed that the yield stress is the dominant rheological
parameter and exhibits a high correlation with the power draw, particle breakage rate, net
production of fine particles, and the product size distribution, and their relationships are
displayed in Figure 1 [26,41].
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Apart from the physical factors mentioned above, chemical factors could also help
adjust the slurry rheological behavior and improve the grinding efficiency. It has been
widely proved that chemical additives in mills, named grinding aids, have the benefits of
promoting grinding efficiency, decreasing water consumption, optimizing material mobility,
and reducing the size distribution range of grinding products [42,43]. The function mecha-
nisms of the grinding aid in changing the slurry rheological behavior and the subsequent
product fineness, size distribution, energy expended, and physicochemical environment,
and have been fully reviewed [44].
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3.2. Rheology in Froth Flotation
3.2.1. Rheological Properties of Froth Flotation Slurry

Solid concentration has been widely demonstrated to be the fundamental parame-
ter that determines the rheological behavior of flotation slurry and has been reviewed
previously [23]. Unlike mineral slurry in mills, a significant feature of flotation slurry
is that it contains large amounts of bubbles, which could exert remarkable influence on
its rheological properties. With flotation slurry, the internal structures are dependent on
the adsorption, collision, adhesion, bubbles merging, aggregation, dispersion, and mo-
tion behaviors among all of the mineral particles, dissolved reagents, formed bubbles,
and filled air flows, as well as other components. They are mainly determined by the
attractive forces and repulsive forces due to all kinds of electrical interactions, adsorption
layer interactions, and Van der Waals interactions [13,22]. As a result, flotation slurry can
display typical rheological phenomena such as shear thickening, shear thinning, dilatancy
or pseudo-plasticity in agitation operations, or separation processes [45]. Moreover, when
one of the above aspects is changed, the overall rheological behaviors will also undergo
non-negligible changes and further influence the subtle processes of flotation operations,
such as conditioning and mineralization particle-bubble transportation and enrichment of
froth. Based on this, the utilization of slurry rheology has the potential to act as a control
variable for flotation operations.

In the field of flotation rheology, the viscous effect of the micro-particle fluid is usually
tested using the shear rate vs. shear stress curves in the dynamic conditioning and flotation
processes. The aggregation effect of the internal structures in the slurry is often studied
by observing the shear stress vs. shear strain curves [12,46]. The former effect is often
characterized by measuring the shear stress that is exerted on flotation slurry when slurry is
in shear conditions (for agitation tanks is it commonly larger than 200 s−1, and for flotation
cells it is usually in the range of 40 s−1~150 s−1), which allows the interactions between
all of the fluid components in the dynamic conditions to be determined [19]. The latter
effect is usually presented by measuring the shear strain of the stabilized slurry when
gradually increasing shear stress is applied in static shear conditions, which allows for
the information about the shear resistance strength of internal structures that reflect the
electrostatic force, Van der Waals force, hydrophobic force, and steric hindrance between
the dispersed or aggregated particles to evaluated [34].

At the present time, the research on slurry rheology in flotation fields has been widely
extended to sulfide ores, oxide ores, salt-type ores, and clay ores, as shown in Table 1.
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Table 1. A collection of published papers related to the rheology parameters and flotation performance.

Ore Type Rheology
Parameters

Relation to Slurry Properties
and Flotation Performance Key Figures References

Fine galena ore Apparent viscosity;
yield value

Apparent viscosity was reported
and discussed in the context of
particle interaction; the yield

value was used to evaluate the
fine particle aggregation.
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Table 1. Cont.

Ore Type Rheology
Parameters

Relation to Slurry Properties
and Flotation Performance Key Figures References

Chalcopyrite type
copper ore

flow coefficient;
flow index; yield
stress; apparent

viscosity

Flow coefficient and flow index
were used to link the particle

interactions between
chalcopyrite and clays with

flotation kinetics; yield stress
was utilized to evaluate the
effect of the clay type on the

shear behaviors of mineral slurry
and quantified the reagent effect

on the surface modification of
clays; apparent viscosity could

reflect the effect of ion
concentration on the particle

interactions and could be
correlated to the froth properties.
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Table 1. Cont.

Ore Type Rheology
Parameters

Relation to Slurry Properties
and Flotation Performance Key Figures References

Fluorite Yield stress

Yield stress was used as a degree
of evaluating the

hetero-coagulation between
fluorite and quartz and found to
be able to decrease the flotation

rate constant.
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In short, as a special industrial suspension, the rheological behavior of the flotation
slurry in the separation process is determined by variables such as the solid concentration,
particle size distribution, surface charge, surface wettability, foam size, dissolved ions, and
shearing fields. Therefore, it is of great importance to clarify how slurry rheological behavior
affects the flotation subtle processes, such as collision, adhesion, aggregation, dispersion
between particles, bubbles, and other components in dynamic flotation conditions to
improve the flotation efficiency and selectivity. Additionally, here, we classify these effects
into three main parts: flotation kinetics, froth rheology, and froth properties.

3.2.2. Effects of Slurry Rheological Behavior on Mineral Flotation Kinetics

Generally, the mineral froth flotation contains four kinetic processes between mineral
particles and bubbles: collision, adhesion, transportation, and separation. If the flotation
time keeps constant, a successful froth flotation process depends on the probability and
rate of the above four kinetic processes. In the collision process between the mineral
particle and the bubble, the particle could possibly adhere to the bubble only when the
kinetic energy of the mineral particle could break through the hydration film and when the
induction time was shorter than the contact time [84,85]. Therefore, the kinetic energy of
the mineral particles and the induction time of the thinning/breakage of the bubbles is key
to successful adhesion.
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The rheological behavior of slurry affects the efficient collision process between the
mineral particles and bubbles. Quantitative research on the correlation between the appar-
ent viscosity of flotation slurry and the decaying rate of the kinetic energy of the mineral
particle has demonstrated that, if the apparent viscosity of the flotation slurry increased by
5%, the decaying rate of the kinetic energy of the mineral particle would double, and the
probability of the efficient collision and adhesion between the mineral particle and flotation
bubble would decrease by 12% [51]. In the flotation process, when the apparent viscosity is
relatively high, the motion and transportation of the mineral slurry will flow into different
layers in the horizontal direction where the shear rate is similar [86]. Inside each layer, the
motion velocity and path of the mineral particles, bubbles, and flotation medium are nearly
the same; between different layers, these values exhibit noticeable differences [87]. In this
situation, mineral particles and flotation bubbles almost have little chance to collide and
adhere. The transportation and the flotation of the bubbles carried with mineral particles
almost totally depend on the circulation of the flotation medium in the cell, which will
inevitably decrease the flotation rate of the desired minerals in the flotation operations [88].
In the flotation of a copper sulfide ore with magnesium aluminum silicate used as gangue
minerals, tests on the relationship between the rheological property of the flotation pulp
and the flotation kinetics have found that, when the viscosity coefficient of the flotation
pulp increased from 0.002 Pa·s to 0.02 Pa·s (at the same time the yield stress of flotation
slurry increased from 0.07 Pa to 0.28 Pa), the flotation rate constant of the copper sulfides
decreased from 0.55 min−1 to 0.11 min−1 [59], and the multilayer flow of the flotation slurry
was rather obvious, coupled with demonstrating quite low collision efficiency [54,89]. In
this case, the flotation could hardly proceed, and the separation efficiency was greatly
influenced due to the flotation slurry’s rheological behavior changes.

The rheological behavior of slurry affects the efficient dispersion process of the mineral
particles. When the rheological property of the flotation slurry is changed, the intensity
of the particle interactions and the shear fields will occur a certain degree of variation.
For example, when the apparent viscosity of the flotation pulp rises, the turbulent flow
intensity of the flotation pulp in the shear cyclic process will decrease significantly, which
will bring about markedly increased resistance toward the motion of the bubbles and
mineral particles [52,55,90]. In this case, a general intensity of mechanical agitation could
hardly realize the uniform distribution of the slurry density or reagent concentration, and
will further result in the decrease in the dispersion of the mineral particles and bubbles in
the flotation cell [91,92]. The series of changes in the cell will inhibit the effective interactions
between mineral particles and flotation bubbles and influence the transportation of the
bubbles attached with mineral particles. As a result, the foundation of flotation will
be destroyed. Especially in the flotation of finely disseminated ores, the fine particle
effectiveness, such as high specific area, small mass, and small momentum, will enhance
the formation of super structures in slurry. The super structures will induce a high degree
of particle aggregation in certain agitation areas where the agitation distributions could
not be involved [8,9,60]. It has been suggested that increasing the energy input in the
conditioning operation, adding an agitation medium, and using suitable slurry rheological
reagents could adjust the complicated slurry rheology [93–95], thus achieving optimization
of the kinetic environment and subsequent improvements in the flotation rate.

In froth flotation, slurry rheology not only reflects the overall comprehensive in-
teractions of all the components in slurry, but also helps explain certain effects on the
subtle processes of flotation kinetics. Therefore, it is of great significance to consider it
when studying the flotation rate and improving the flotation kinetic environment and the
flotation efficiency.

3.2.3. Effects of Frother Type on the Rheological Behavior of the Froth

Pine oil and MIBC (methyl isobutyl carbinol) are two main kinds of frother widely used
in froth flotation operations and were reported to induce quite different rheological effects
on froth characteristics. In addition, fatty acids and their derivatives, and even amines, can
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act as both collectors and frothers and exert a certain influence on the rheological behavior
of froth [96,97].

When pine oil is used as the flotation frother, especially in sulfide ore flotation, the
attraction performance between the bubbles is high. Therefore, the bubbles carried with
hydrophobic mineral particles can easily form structured network slurry [98]. In the
transportation and motion process of the networks from the slurry phase to the froth zones,
the networks with high yield stress can stably exist in the high shear fields, and the overall
apparent viscosity of the flotation slurry is therefore increased [79,99]. When MIBC is used
as a frother, the bubbles are easily merged in the slurry phase, relatively low apparent
viscosity of the slurry is achieved [100].

In oxidized ore and salt-type ore flotation, fatty acids and their derivatives are com-
monly used as both collectors and frothers, and they always form very stable froth due to
their own foamability and their interactions with the ions dissolved by the minerals, which
may result in a large number of colloids in the flotation solutions. The bubbles, minerals,
ions, and the colloid mixtures may lead to complicated rheological behavior when it comes
to the overall flotation pulp. Specially, if cationic surfactants such as amines are used, the
flotation bubbles are hard to generate and are always over-stable [101,102].

In the slurry circulation inside the flotation cell, the flotation slurry usually exhibits
a certain flow stress and viscous effect, resulting in a deteriorated dispersion state in the
flotation cell. When there are many fine particles or clay ores in the flotation slurry, the
fine particle effectiveness will always markedly change the rheological behavior of the
froth zone by forming relatively stable superstructures in slurry, as seen with high viscosity
and yield stress. Typical structures are network structures, aggregate structures, chain
structures, and other superstructures [103,104].

3.2.4. Effects of the Rheological Behavior of Froth on Mineral Flotation Froth Properties

Apparent viscosity affects the “secondary enrichment” of flotation froth. Some studies
indicate that the flotation froth properties will markedly vary with the slurry’s apparent
viscosity [105]. The increase in the slurry’s apparent viscosity results in an enhancement of
the surface strength of the bubble liquid film and drainage time, which will finally weaken
the “secondary enrichment” of the flotation froth in the slurry froth zone [106]. When
the bubble is dissolved in the aqueous solution with increasing viscosity, the diffusion
relaxation time of the gas and the half-life of the aqueous froth will be obviously extended,
which will prevent the bubbles in the slurry from contacting and merging [107]. Addition-
ally, with the strengthening of the slurry viscosity, the average size of the bubbles in the
slurry will decrease, the bubbles tend to be uniform in shape, and the resulting increase
in froth yield stress will improve the overall stability of the froth [92,108]. This is due to
the fact that the velocity of the yielding, deforming, merging, and breaking of the froth is
proportional to the product of the solubility and diffusion coefficient of the gas in the liquid
phase, and it is worth noting that the latter two gas parameters decrease with the rise in
solution viscosity [95,109].

The rheological behavior of froth affects the entrainment behavior of the flotation
froth. As the viscosity and yield stress of the flotation slurry increase, the froth stability
will increase, which will lead to the rise in the mechanical entrapment of the fine gangue
minerals and decrease the flotation selectivity (see Figure 2) [59,110]. When the apparent
viscosity of the flotation slurry increases, the amount of the fine gangues entering the foam
zone from the fluid column within the Plateau boundary will increase and the entrainment
will rise [61]. Inside the Plateau boundary, the motion state of the entrained mineral particle
is dependent on the equilibrium of three factors: gravity sinking, rising with liquid column,
and solid diffusion. For a specific mineral particle, its flotation via entrainment mainly
depends on two actions: geometric diffusion and Plateau boundary diffusion [111,112]. As
the stability of the froth rises, the resistance of the two diffusion actions will also increase,
and therefore, the probability of the flotation of the gangue minerals due to entrainment
will also increase and the total flotation selectivity will be weakened.
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Based on the above-mentioned understanding of the relationship between pulp appar-
ent viscosity and froth stability, the influence of the rheological behavior of slurry on the
froth behaviors in the froth flotation of various practical ores is attracting more and more
researchers. In the separation of fine chrysotile or serpentine and nickel sulfide minerals, it
was observed that when the mass proportion of chrysotile in mixture minerals increased,
both the overall apparent viscosity and the yield stress rapidly rose [52,55]; when the
pulp yield stress was higher than the 1.5–2.0 Pa range, the thickness of the flotation froth
zone was obviously reduced, along with the rapid decline in the concentrate grade [57]. It
was noted that the fine chrysotile existed in the pulp as a network of intertwined fibers,
which were hardly sheared or damaged. Further, it prevented the nickel sulfides from
being adhered to and carried by the bubbles, and finally resulted in decreased flotation
efficiency [54]. In the flotation of fine coal, when sea water rich in Na+, Ca2+, Mg2+ and
other ions was used as a flotation medium, the apparent viscosity of the flotation slurry in-
creased [78,113]. Additionally, the fine coal particles were promoted to form flocs with high
yield stress and further increased the stability of the froth zone [7,82,114], thus improving
the flotation recovery of the fine coals. In the flotation test for a gold-bearing copper ore,
the results proved that the higher the fine calcite and dolomite content, the more complex
the pulp rheology, which was accompanied with shear-thickening behaviors and stabil-
ity influence; the merging property of the flotation foam and the corresponding changes
will further exhibit an effect on the entrainment of the gangue minerals, the enrichment
of valuable minerals, and other flotation subtle processes. Therefore, the result can be
determined as aggregation [53,66–68] coupled with deteriorated copper ore flotation. The
rheological measurement and the froth property test verified that the dissolution of the
calcium-containing minerals could induce the formation of network structures using the
clays in the slurry, which would generate an adverse influence on the sufficient dispersion
of the bubbles in the circulation process and the merging of bubbles carrying mineral
particles [69–71]. As a result, the “secondary enrichment” of flotation froth behaviors was
severely weakened, as was the normal flotation process.

On the whole, slurry rheology demonstrates great potential when it comes to clarifying
how pulp rheology affects the flotation froth when searching for methods to improve the
foam property as well as increase the separation efficiency.

3.2.5. Manipulating Flotation Rheology

Based on the pulp rheological effect on the froth flotation performance, many re-
searchers have tried to manipulate flotation rheology to eliminate this negative effect
through regulating the process variables, mainly including a reagent, external field, and
rheological medium.

Some flotation reagents were found to have dual functions, acting as surface modifiers
and rheological regulators. The pH modifiers, such as lime and soda ash, were observed
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to exhibit different effects on rheological behavior of flotation pulps. The lime increased
apparent viscosities more than soda ash in copper-gold ores mixed with kaolinite, for
the Ca2+ released from lime could lead to the formation of stronger kaolinite aggregates
that were more easily entrained during flotation. Therefore, more dilution of the flotation
concentrate grade occurred when adjusting the pH with lime [67].

Except lime, using cations or even sea water also proved to effectively adjust the
rheological behavior of the pulp and enhance the flotation efficiency. For pyrite ores with
bentonite, the addition of CaCl2 was found to modify the rheological characteristics by
suppressing the swelling properties of bentonite and altering the surface charge properties
of bentonite clay particles. Further, the rheological effect of the bentonite, i.e., the decreased
movement of bubbles and particles within the flotation pulp, was reduced [115]. Other
cations, such as Na+, K+, Mg2+, and Ca2+, were also demonstrated to interact with bentonite
and reduce the apparent viscosity of the copper ore. What is more, the divalent cations,
Mg2+ and Ca2+, had a more significant effect on pulp viscosity and copper flotation than
monovalent cations Na+ and K+ [64]. Based on these findings, the sea water was introduced
as the flotation medium to reduce the swelling capacity of bentonite and modify the
association modes of bentonite platelets in the flotation pulp. The results showed the
breakup of links between the structures with relatively large pores, and finally contributed
to the improvement of copper and gold flotation [69].

Dispersant was found to be able to mitigate the negatively rheological effects of clay
mineral flotation. In the copper and gold ore flotation pulp with non-Newtonian behavior
and a high apparent viscosity, a lignosulfonate-based bio polymer (DP-1777) was applied
to improve both the gold grade and gold recovery significantly through the reduction of
mechanical entrainment and pulp viscosity, respectively [71]. The lignosulfonate dispersant
could also eliminate the negative effect of clay minerals on copper and gold flotation
when the amount of iron oxidation products originated from the grinding media was
minimized [116]. Other reagents, such as H2SO4, were also used to attack and dissolve the
inter-fiber networks made up of micro serpentine flocs that were spread across the pulp
volume, and by creating acidic flotation conditions, the impact of the pulp’s rheological
behavior on Ni ore beneficiation was strongly alleviated [58].

External field-reinforced pulp conditioning could also adjust the rheological behavior
of pulp. It has been proven that microwave pre-treatment could greatly reduce the shear
viscosity (average 80% reduction at 200 s−1) and direct yield stress (peak yield stress
reduced by 92%–93%) of ultramafic nickel ore slurries. The underlying mechanism for
this rheological change was ascribed to the conversion of serpentine to olivine, which
effectively avoids the serpentine’s troubling rheological effects in the form of high viscosity
and yield stress on the comminution and flotation operations [57]. Further, the energy
of the microwave was found to be closely linked to the change in the iron ore-water
slurry rheological behavior. We tested to see whether the microwave-treated ore had better
rheological properties compared to the untreated ore. With more microwave energy, the iron
ore-water slurry tended to undergo shear thinning and was easy to transport as it exhibited
pseudo-plastic behavior. The action mechanism might be dependent on the decreased
viscosity and density of the slurry with the increase in the microwave energy [117]. As
more novel pulp conditioning devices or energy fields are being developed for fine particle
flotation, the method for adjusting the challenging slurry rheological behavior may also be
put forward correspondingly.

Recent years have witnessed a growing attention on using coarse particles as medium
to adjust the rheological behavior of slurry and improve the flotation efficiency of fine parti-
cle flotation. In fine skarn-type scheelite ore flotation, fine calcite was found to dominate the
high viscosity and yield stress due to the bridging effect of the hydrogen bonding between
the fine calcite surfaces that formed the network structures, as shown in Figure 3 [118].
Interestingly, by adding garnet or glass beads as an agitation medium, the network struc-
tures could be destroyed, resulting in changes in the flow index of the flotation slurry. It
was calculated that as the spiked agitation medium became coarser, the flotation slurry
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was found to be more similar to the Newtonian fluid with less particle interactions and
improved flotation kinetics [12].
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Coincidentally, this method also worked for controlling the flotation rheological be-
havior of the Cu-Ni sulfide ore containing large amounts of fine serpentine. It was found
that the hetero-coagulation was not the only factor affecting the flotation of Cu-Ni sulfide-
containing serpentine, the high pulp viscosity could also worsen that. The addition of
coarse garnet particles (−104~+44 µm) could markedly decrease the pulp yield stress and
limit the hetero-coagulation. Meanwhile, it was observed that the applied garnet could also
decrease the pulp viscosity and that the synthetic actions improved Cu-Ni sulfide flotation,
showing increased Ni recovery [59].

4. Conclusions and Potential Future Development

This paper reviewed the progress of rheological measurement technology and the
influence of rheological behavior in grinding and flotation. It revealed that apparent pulp
viscosity and yield stress were two important rheological parameters guiding grinding and
flotation operations and that the measurement technology measuring them had achieved
satisfactory progress. At the grinding stage, pulp rheology was highly correlated with
power draw, particle breakage rate, net production of fines, and product size distribution,
and it was observed that the energy consumption for crushing and grinding occupied
the largest proportion in the total energy consumption of the beneficiation process, up to
40%–60%. Therefore, adjusting the rheological behavior of the pulp shows high application
value in grinding energy saving and efficiency. In froth flotation, the rheological behavior of
the pulp not only reflected the comprehensive interaction among mineral particles, bubbles,
and flotation media, including collision, adhesion, transportation, and separation, but also
had a significant impact on flotation kinetics. In addition, increasing the flotation froth
stability would lead to the weakening of the flotation froth’s secondary enrichment and the
enhancement of mechanical entraining, thus worsening the mineral processing index, which
could be eliminated by adjusting the pulp apparent viscosity. Based on the importance of
rheology in mineral processing operations, more and more researchers are paying attention
to improving grinding and flotation efficiency by controlling the rheological parameters of
pulp and froth through the adjustment of process variables. However, it was worth noting
that the real-time monitoring and controlling of the rheological parameters of pulp and
froth was the key to achieving the successful application of rheological properties in the
fine mineral processing industry.

In conclusion, to obtain better grinding and flotation efficiency, investigating the
following areas is recommended:

(1) Monitoring the pulp and froth’s rheological parameters in real-time using rheological
equipment and establishing correlations with mineral processing industry indexes
and process variables, so that rheological control becomes an effective approach for
increasing the grinding and flotation efficiency.
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(2) Based on the obvious significance of fine particles (−10 µm) on slurry and froth
properties, rheological research on the enhanced collection and inhibition of over-
grinding mineral particles could be investigated so as to improve the fine particle
flotation efficiency.

(3) Identifying the crucial flotation variables such as pH, solid concentration, dispersants
and particle size, etc., affecting the sulfide minerals floatability, then exploring the
influence of these variables on the pulp and froth’s rheological properties in an
attempt to reveal the internal mechanism of serpentine inhibition from the perspective
of particle interactions and flotation kinetics.

(4) The rheological behavior of froth potentially acts as a correlation index to predict
the recovery and grade of flotation concentrate, helping us to respond quickly to
variations in the complex flotation pulp system, which is of great significance to
stabilize the production indexes.
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