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Abstract: The influence of the paleo-Tethys or paleo-Pacific oceanic plate subduction on Early Triassic
South China has long been debated. We have studied the zircon U-Th-Hf isotopes, trace elements,
and whole-rock geochemistry of Early Triassic peraluminous granitoids in the Qinzhou Bay area,
South China Block. LA–ICP–MS zircon U–Pb dating has revealed the Jiuzhou granodiorites and
Dasi-Taima granite porphyries formed between 248.32 ± 0.98 and 246.6 ± 1.1 Ma. These rocks
are characterized by high K2O and Al2O3, and low MgO, CaO, and P2O5 contents with A/CNK
= 1.06–1.17, showing high-K calc-alkaline S-type affinities. The Early Triassic intrusive rocks and
adjacent silicic volcanic rocks in the Qinzhou Bay area were found to be comagmatic and derived
from a common magma pool, detached in an undifferentiated melt instead of indicating remarkable
crystal—melt separation. Although the analyzed granitoids have highly enriched zircon Hf isotopic
compositions (εHf(t) = −23.9 to −7.8), they cannot originate solely from metasedimentary protoliths.
Source discrimination indicators have revealed enriched lithospheric mantle-derived magma was
also an endmember component of the S-type silicic magma, which provided a heat source for the
crustal anatectic melting as well. We inferred the studied Early Triassic granitoids formed under the
paleo-Tethys tectonic regime before the collision of South China and Indochina blocks, as the oceanic
plate subduction would have created an extensional setting which further caused the mantle-derived
upwelling and volcanic eruption.

Keywords: S-type granitoids; mantle contribution; Early Triassic; paleo-Tethys subduction; South China

1. Introduction

The Triassic tectonic evolution of the Asian continent is important and puzzling, per-
formed by the successive amalgamation of continental blocks such as Siberia, North China,
South China, Indochina, and India [1–3]. The tectonic development during this period
involved large-scale intracontinental deformation and associated magmatism, especially in
the South China Block [4]. However, the tectonic setting of the Triassic South China Block is
a point of debate, for which two main models are proposed: (i) the Andean-type subduction
of the paleo-Tethys oceanic plate followed by continent—continent collision [4,5], and (ii)
the flat-slab subduction of the paleo-Pacific oceanic plate followed by slab foundering and
retreat [6,7]. In addition, a few studies have considered the Emeishan plume as a possible
heat source for the high- or ultrahigh-temperature magmatism and coeval metamorphism
that characterized this period [8,9].

The voluminous Jurassic–Cretaceous granitoids and silicic volcanic rocks found in
coastal South China reflect the history of the paleo-Pacific oceanic plate subduction [10,11].
By contrast, the Triassic igneous rocks in South China are dispersed and occur mainly
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in the inland region, comprising mainly of granitic intrusions with much rarer volcanic
rocks [4]. The older Triassic igneous rocks were emplaced mainly at the southern and
southwestern margins of the block, such as Hainan Island and the Qinzhou Bay area,
adjacent to the northeastern part of the Indochina Block [12]. Here, we present a study of
the geochronology and geochemistry of Early Triassic S-type granitoids from the Qinzhou
Bay area, to place constraints on their petrogenesis and tectonic setting. Our new zircon
U–Pb–Hf isotopic and whole-rock geochemical compositions allow us to constrain the
timing and origin of the silicic magmatism. Based on these results, we examine the nature
of Triassic tectono-magmatic activity in South China.

2. Geological Background and Sampling

Formed through the collision of the Yangtze and Cathaysia blocks at ca. 880 Ma [2], the
South China Block is separated from the Indochina Block by the Ailaoshan-Song Ma suture
zone in the southwest, from the North China Block by the Qinling-Dabie-Sulu orogenic
belt in the north, and from Tibet by the Longmenshan Fault in the west [2] (Figure 1a). It is
also bounded by the Pacific oceanic plate in the east. Silicic magmatism occurred primarily
within the Cathaysia Block, and formed granitoids covering ca. 30% of the area in multiple
periods from early Paleozoic (ca. 450–420 Ma) to Permian–Triassic (ca. 280–205 Ma), and
Jurassic–Cretaceous (ca. 195–70 Ma) [4,5,11,13–15].
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[16] with sample locations. 

Figure 1. (a) Tectonic schematic map of South China and its surrounding blocks, including North
China Block in the north and Indochina Block in the southwest, as well as Tibet in the west, which is
subdivided into several smaller terranes; (b) geological map of the Qinzhou Bay Granitic Complex [16]
with sample locations.

The late Permian to Triassic magmatic rocks in South China primarily developed
within the interior of the block [5,6,13], with the older segments emerging along the south-
ern and southwestern margins, notably in regions such as Hainan Island, the Qinzhou
Bay area, the Ailaoshan, and the southern Lancangjiang zones [4,12,17,18]. These rocks



Minerals 2024, 14, 22 3 of 19

are predominantly granites, accompanied by minor syenites, diabase, gabbros, and infre-
quent mafic enclaves [15]. Among them, the prevailing types are biotite granites, two-mica
granites, and muscovite granites [5,13]. Geochemically, the granitoids are mainly high in
potassium, calc-alkalic, weakly to strongly peraluminous, and are predominantly catego-
rized as S-type and I-type or, more rarely, A-type granitoids [15].

The Qinzhou Bay area hosts the Late Permian to Triassic granitoids, forming the
Qinzhou Bay Granitic Complex, known for their typical S-type composition containing
cordierite [16]. The granitic complex strikes northeast parallel to the regional deep faults
and is approximately 400 km in length and 20–75 km in width, potentially extending further
into Vietnam, with a total outcrop area exceeding 10,000 km2 (Figure 1). The magmatic
rocks intruded into Cambrian–Permian sediments, and the country rocks are mainly flysch
formations with locally distributed molasse and carbonate rock formations [18]. This
granitic complex comprises over 40 plutons of different sizes, including the plutonic
Darongshan biotite granite suite, plutonic and hypabyssal Jiuzhou granodiorite suite, and
superhypabyssal-subvolcanic Taima granite porphyry suite, stretching from northeast to
southwest [18]. Enclaves, primarily metapelitic granulite, along with quartzo-feldspathic
gneiss, schist, arkose quartzite, hornfels, and sporadic mafic microgranular enclaves, can
be found dispersed within the granitoids, some reaching decimeter sizes [19]. Additionally,
this region exhibits the only known occurrence of Early Mesozoic silicic volcanic rocks
within the South China Block [20,21].

In total, nine granitic samples were collected from different granite quarries (Figure 1b).
The Jiuzhou granodiorite exhibits a medium- to coarse-grained equigranular texture
(Figure 2a,b), composed of plagioclase (30–50 vol.%), quartz (25–35 vol.%), alkali feldspar
(10–30 vol.%), biotite (8 vol.%), orthopyroxene (5 vol.%), and less than 1 vol.% cordierite.
It also contains accessory minerals such as zircon, monazite, apatite, and ilmenite. The
rocks of the Taima pluton are porphyritic, characterized by a phenocryst content of up to
40–50 vol.% (Figure 2c). These phenocrysts consist of plagioclase (35–40 vol.%), quartz
(25–30 vol.%), alkali feldspar (25–30 vol.%), minor orthopyroxene, biotite, and cordierite
(<3 vol.%). They are embedded in a matrix composed of plagioclase, alkali feldspar, quartz,
and biotite, along with accessory minerals such as zircon, monazite, apatite, and ilmenite.
The rocks of Dasi pluton display an even higher phenocryst content (up to 50–60 vol.%)
compared to the Taima granite porphyries. The mineral textures and compositions of the
crystal clusters in the Dasi pluton resemble those found in the Taima pluton (Figure 2d).Minerals 2024, 14, 22 4 of 19 
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Figure 2. Representative photomicrographs of (a,b) the Jiuzhou granodiorites, (c) Taima granite
porphyry, and (d) Dasi granite porphyry, respectively. Notes: Pl, plagioclase; Kfs, K-feldspar; Qtz,
quartz; Bt, biotite; Opx, orthopyroxene; Crd, cordierite.
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3. Analytical Methods

All analyses were carried out at the Guangxi Key Laboratory of Hidden Metallic Ore
Deposits Exploration, Guilin University of Technology, China.

Zircon grains were randomly extracted and mounted in a 2.5 cm diameter epoxy
disk, and then polished to expose the central parts of the grains. Photomicrographs
and cathodoluminescence (CL) images were obtained to characterize the internal struc-
tures of the grains and to select appropriate analysis sites excluding small crystal and
melt inclusions.

Zircon U–Pb dating was carried out using an Agilent 7500 ICP–MS equipped with
a GeoLas HD laser sampler. Elements such as Si, Ti, Y, and rare earth elements (REEs)
were simultaneously analyzed together with U–Th–Pb isotopic compositions. The standard
zircon GJ-1 was analyzed frequently to monitor the reproducibility and the stability of the
instrument. The analyses were conducted with a beam diameter of 32 µm, 6 Hz repetition
rate, and energy of 10 J/cm2. For the instrument settings, analytical procedures, and data
processing, we followed Liu et al. (2010) [22].

The Lu–Hf analysis spot was placed in a similar domain of a previous U–Pb spot
within the same zircon, based on the photomicrograph and CL image (Figure 3). In situ
zircon Hf isotope analyses were performed using a GeoLas HD laser ablation system with a
Neptune Plus MC–ICPMS, with a beam diameter of 44 µm, 6 Hz repetition rate, and energy
of 10 J/cm2. Zircon GJ-1 was used as the reference standard during the analyses. The
analytical details were similar to Liu et al. (2016) [11]. The initial 176Hf/177Hf ratios were
calculated using 176Lu decay constant of 1.867 × 10−11 yr−1 [23]. The chondritic values of
176Hf/177Hf = 0.282785 and 176Lu/177Hf = 0.0336 [24] were used to calculate εHf values. The
depleted mantle Hf model ages (TDM) were calculated using the depleted mantle reservoir
present 176Hf/177Hf ratio of 0.28325 and 176Lu/177Hf ratio of 0.0384 [25]. A two-stage
model age (TDM2) was also calculated by assuming the parental magma was produced
from a Depleted Mantle-derived average continental crust (176Lu/177Hf = 0.015) [26].
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Whole-rock major element analyses were conducted using the X-ray fluorescence
(XRF) method, whereas the loss-on-ignition (LOI) values of each sample were measured
after heating to 1000 ◦C. Trace element analyses were undertaken with an Agilent 7900CX
ICP–MS instrument after the acid dissolution of the samples in a mixture of HNO3, HCl,
and HF. The U.S. Geological Survey standards BHVO, AGV, W-2, and G-2 and Chinese
national rock standards (GSR-1, GSR-2, and GSR-3) were used to monitor analytical quality.
The analytical precision was better than ±5% for major elements and better than ±2%–5%
for most trace elements.

4. Results
4.1. Zircon U–Pb Geochronology and Trace Elements

The analyzed zircons, typically colorless or light yellow and transparent, exhibit a
primarily prismatic shape with lengths ranging between 100–300 µm and aspect ratios of
1:1 to 3:1. Within some zircon grains, there are small crystal and melt inclusions along-
side ellipsoidal inherited zircon cores shown in the CL images (Figure 3). These zircons
demonstrate a magmatic origin, evident through distinct oscillatory zoning and high Th/U
ratios [27] (Table S1). In addition, they display depletion in light REEs with strong negative
Eu anomalies (Eu/Eu* ≤ 0.06) and positive Ce anomalies (Ce/Ce* ≥ 1.53; Table S2), further
confirming their igneous origin.

One sample from each of the studied granitic bodies was selected for zircon U–Pb
dating (Table S1). The results of the analyses were all concordant or nearly concordant
(Figure 4), yielding weighted mean 206Pb/208U ages of 247.4 ± 1.0 Ma (2σ; MSWD = 0.66;
n = 22) for Jiuzhou granodiorite, 246.6 ± 1.1 Ma (2σ; MSWD = 0.47; n = 20) for Dasi granite
porphyry, and 248.32 ± 0.98 Ma (2σ; MSWD = 0.27; n = 23) for Taima granite porphyry,
being identical within error with each other. Moreover, one zircon grain from the Jiuzhou
granodiorite exhibits an older 206Pb/208U age of 357 ± 5 Ma, as is also the case for three
zircons (694 ± 4 Ma, 536 ± 10 Ma, 451 ± 11 Ma, respectively) from the Dasi granite
porphyry, implying these are inherited zircons.
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The trace elements of zircons in the analyzed samples largely overlap with each other
(Figure 5; Table S2). Most zircons, which we inferred to be magmatic, displayed notably
low concentrations of La (<1 ppm), except for two grains (La = 1.38 and 2.65 ppm), which
may contain micro-inclusions and were thus excluded from subsequent statistical anal-
ysis [28]. These zircons have regular contents of Th (39.7–201 ppm), U (162–604 ppm),
and Ti (3.08–17.9 ppm) but much higher Hf (9820–12496 ppm) and Y (1223–2658 ppm)
contents. Estimations of the crystallization temperatures for these magmatic zircon grains,
using Ti-in-zircon thermometry [29], yielded values of 702–882 ◦C (Table S2), with av-
erage temperatures of 811 ◦C, 805 ◦C, and 808 ◦C for the Jiuzhou granodiorite and the
Dasi-Taima granite porphyries, respectively. Notably, the magmatic temperatures of the
Jiuzhou granodiorite are slightly higher than those of the Dasi-Taima granite porphyries
(Figure 5a). Additionally, the Hf contents display an increase with decreasing Ti, i.e., with
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lower temperature. The Y/Dy values slightly increase with decreasing Th/U (Figure 5b),
comparable to those values of coeval silicic volcanic rocks [21]. The calculated ∆FMQ
values of these samples are highly similar, with averages of −4.8, −4.8, and −4.6 for the
Jiuzhou granodiorite and the Dasi and Taima granite porphyries, respectively. It suggests
a comparable oxidation state of the magma, as the state can be determined based on the
magnitude of zircon Ce anomalies [30].
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4.2. Zircon Hf Isotopes

The εHf(t) values of the analyzed zircons span a wide range from −23.9 to −7.8
(Figure 6; Table S3). Although each sample has one or two zircons reflecting a highly
enriched Hf isotopic composition (εHf(t) < −18.5), most of the zircons show unimodal
distributions ranging within 5–6 units. Excluding several outliers, the weighted mean εHf(t)
values are −10.5 ± 0.6, −9.8 ± 0.6, and −9.8 ± 0.5, corresponding to two-stage model ages
(TDM2) of 1.76–2.10 Ga, 1.74–2.07 Ga, and 1.77–2.03 Ga for the Jiuzhou granodiorite and
Dasi and Taima granite porphyries, respectively. As for the highly enriched members, the
two-stage model ages range from 2.20 to 2.75 Ga.

4.3. Whole-Rock Major and Trace Elements

The whole-rock major and trace element compositions of the Qinzhou Bay Granitic
Complex are given in Table 1. The granitic samples span a range of SiO2 contents
from 64.02 wt.% to 72.54 wt.%, and the total alkali (K2O + Na2O) contents range from
5.22 wt.% to 7.41 wt.%, showing geochemical features typical of high-K calc-alkaline gran-
ites and granodiorites (Figure 7a,c). Moreover, the magmatic rocks exhibit relatively low
contents of TiO2 (0.37–1.12 wt.%), MgO (0.60–2.15 wt.%), CaO (1.61–3.51 wt.%), and P2O5
(0.12–0.16 wt.%) but high Fe2O3

T (2.35–7.28 wt.%) and Al2O3 (13.90–14.42 wt.%). Therefore,
these samples are peraluminous with A/CNK values ranging from 1.06 to 1.17 (Figure 7b),
showing S-type affinities (Figure 7d).

The studied granitic rocks have REE contents of 187–327 ppm, with relative light over
heavy REE enrichment {(La/Yb)N = 6.16–13.03} and negative Eu anomalies
(Eu/Eu* = 0.47–0.56) (Figure 8a). All samples exhibit similar trace elemental patterns,
with significant depletion of high-field-strength elements (e.g., Nb, Ta, and Ti) and enrich-
ment of large-ion-lithophile elements (e.g., Rb and K) (Figure 8b).
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Table 1. Analytical results of whole-rock major (wt.%) and trace elements (ppm) for granitic rocks
from the Qinzhou Bay Granitic Complex.

Plutons Jiuzhou Granodiorite Dasi Granite Porphyry Taima Granite Porphyry

Sample No. GX18 GX19 GX25 GX44 GX35 GX36 GX39 GX41 GX45

SiO2 66.67 67.24 64.02 67.50 68.99 69.24 72.54 72.26 72.26

TiO2 0.81 0.85 1.12 0.79 0.72 0.67 0.39 0.37 0.39

Al2O3 13.95 14.18 14.01 14.13 14.03 14.14 13.90 14.42 14.18

Fe2O3
T 5.76 6.04 7.28 5.77 4.89 4.63 2.68 2.35 2.68

MnO 0.08 0.08 0.09 0.10 0.07 0.06 0.05 0.04 0.04

MgO 1.86 1.84 2.15 1.81 1.44 1.34 0.72 0.60 0.64

CaO 2.77 3.11 3.51 3.25 2.91 2.81 1.93 2.33 1.61

Na2O 1.73 1.84 1.90 1.61 2.15 1.96 2.18 2.21 1.98

K2O 3.79 3.82 3.32 3.99 4.05 4.23 4.91 4.91 5.43

P2O5 0.16 0.16 0.12 0.16 0.16 0.15 0.14 0.14 0.14

LOI 1.36 0.77 0.98 0.00 0.32 0.63 0.28 0.09 0.16

Total 98.94 99.95 98.51 99.11 99.72 99.85 99.72 99.71 99.49
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Table 1. Cont.

Plutons Jiuzhou Granodiorite Dasi Granite Porphyry Taima Granite Porphyry

Sample No. GX18 GX19 GX25 GX44 GX35 GX36 GX39 GX41 GX45

A/NK 2.01 1.98 2.09 2.02 1.77 1.81 1.56 1.61 1.55

A/CNK 1.16 1.11 1.07 1.09 1.06 1.09 1.12 1.09 1.17

V 92.5 94.2 68.3 100 68.9 61.8 24.5 23.6 26.9

Co 32.0 52.4 62.0 45.9 22.9 33.5 15.6 19.3 29.8

Ni 32.8 40.3 30.1 66.2 16.6 21.2 4.97 6.24 102

Ga 27.2 33.4 28.7 41.3 31.1 31.1 28.4 31.2 32.4

Rb 184 171 189 160 190 174 181 195 225

Sr 127 156 138 153 121 117 100 124 90.6

Y 39.1 40.0 37.9 36.3 41.2 36.9 36.6 36.7 43.5

Zr 284 272 218 429 305 268 204 200 214

Nb 16.2 16.0 14.4 19.8 15.8 14.0 10.5 10.5 11.9

Cs 13.7 10.0 11.8 9.49 7.67 8.36 11.4 10.8 15.1

Ba 590 788 670 1039 734 739 686 762 747

La 54.8 56.7 41.2 70.0 55.7 52.9 40.1 44.8 38.5

Ce 99.0 102 74.5 137 101 93.9 72.0 79.5 72.5

Pr 12.3 12.6 9.35 17.0 12.4 11.8 9.21 10.1 10.1

Nd 45.4 46.1 34.9 62.9 45.8 43.8 33.9 37.3 37.3

Sm 8.95 8.92 7.23 11.0 9.02 8.56 6.94 7.44 7.99

Eu 1.33 1.57 1.30 1.84 1.37 1.38 1.13 1.25 1.26

Gd 8.21 8.29 7.01 9.66 8.37 7.80 6.71 7.19 8.06

Tb 1.19 1.21 1.07 1.25 1.24 1.16 1.08 1.12 1.32

Dy 6.87 7.04 6.56 6.64 7.29 6.76 6.46 6.65 8.21

Ho 1.36 1.41 1.31 1.29 1.47 1.33 1.28 1.31 1.68

Er 3.85 3.88 3.66 3.68 4.08 3.70 3.63 3.71 4.78

Tm 0.59 0.60 0.55 0.56 0.62 0.55 0.53 0.54 0.70

Yb 3.73 3.87 3.54 3.72 3.79 3.47 3.31 3.36 4.33

Lu 0.57 0.57 0.53 0.59 0.56 0.50 0.47 0.48 0.60

Hf 7.68 7.31 6.05 11.5 8.21 7.36 5.67 5.60 6.17

Ta 1.27 1.41 1.46 1.48 1.21 1.34 0.99 1.03 1.31

Pb 30.0 31.6 35.0 28.7 31.6 29.7 30.5 32.7 30.4

Th 25.8 25.9 18.1 36.0 25.3 25.9 22.3 25.0 24.4

U 4.41 4.08 4.86 3.58 4.48 4.01 4.09 4.59 4.95

Eu/Eu* 0.47 0.56 0.55 0.54 0.48 0.51 0.50 0.52 0.48

ΣREE 248 254 193 327 253 238 187 205 197

Note: Eu/Eu* = EuN/(SmN × GdN)0.5, where N are normalization values after [33]. “T” means “in total”,
assuming that total Fe in rocks appear as Fe2O3.
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5. Discussion
5.1. Genetic Relationship with the Coeval Silicic Volcanic Rocks

One striking feature of the Qinzhou Bay area is that it hosts the only occurrence of Early
Triassic silicic volcanic rocks within the South China Block [20,21]. Closely associated with
the Jiuzhou pluton, the Triassic Banba Fm. volcanic rocks primarily comprise of rhyolites
interlayered with perlites, tuff lavas, agglomerate lavas, and rhyolitic tuffs. Meanwhile,
the lower Triassic Beisi Fm. volcanic rocks exhibit a volcanic succession characterized
by alternating dacitic-rhyolitic lavas interlayered with pyroclastic rocks. These distinct
volcanic formations, the Banba and Beisi Fms., are situated on the southeast and northwest
side, respectively, of the Shiwandashan Mesozoic–Cenozoic Basin. These silicic volcanic
rocks not only have comparable whole-rock geochemical and almost identical isotopic
compositions (Figures 6–8) but also formed coevally with the coexisting granites, with
zircon U–Pb dating results ranging from 248.8 ± 1.6 to 246.5 ± 1.3 Ma [21].

The genetic relationship between silicic plutonic and volcanic rocks has long been a
subject of debate, holding key significance in comprehending the geochemical evolution
of silicic magma systems [41]. Scholars have presented conflicting perspectives on this
matter. Some have argued the plutonic and volcanic rocks formed independently via
different processes. According to this view, large caldera-forming eruptions resulted from
rapid magmatic input, whereas the large plutons evolved incrementally over millions
of years, influenced by a lower thermal flux [41–43]. By contrast, an alternative theory
suggests a crystal—melt separation model that volcanic rocks arise from the extraction of a
fractionated melt from crystal mushes, while plutons are considered the residual crystal
cumulates left behind after the eruption of volcanic magma [44–46].

As mentioned above, the comparable whole-rock geochemical compositions of the
coexisting plutonic and volcanic rocks in the Qinzhou Bay area indicate they are comag-
matic rather than independent in terms of magmatic origin. On the other hand, the
crystal—melt separation model assumes silicic volcanic rocks undergo more extensive crys-
tal fractionation than their plutonic equivalents. In their case study, Medlin et al. (2015) [47]
investigated the intra-caldera Kathleen ignimbrite and Rowland Suite intrusions in West
Musgrave Province, Australia, and suggested the crystal-rich, porphyritic Rowland Suite
rhyolite intrusions represented a primitive cumulate endmember, whereas the Kathleen
ignimbrite eruption sequence represented the evolved and highly fractionated endmember
of the magmatic system. Yan et al. (2016) [48] also interpreted rhyolitic extrusives in
the Yandangshan caldera, SE China, as a highly fractionated endmember, whereas the
subvolcanic intrusions of porphyritic quartz syenites could be residual crystal mushes.
However, the Early Triassic granitic rocks in the Qinzhou Bay area have a total SiO2 range
of 62.95–74.47 wt.%, encompassing their volcanic equivalents (SiO2 = 64.32–72.65 wt.%;
Figure 9). There exists no complementary geochemical relationship between the silicic
volcanic rocks and granitic intrusions.
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Trace elements in igneous zircon crystals offer valuable insights into the conditions
of crystallization as a record of various magmatic processes, including magma rejuvena-
tion, magma mixing, and fractional crystallization [27,51,52]. For example, variations in
elements such as Hf and Th/U ratios in zircon can signify changes in melt composition and
temperature during crystallization. Notably, Hf in zircon typically increases, while Th/U
ratios decrease, with decreasing temperature [53]. Zircon trace elements of the Qinzhou
Bay volcanic and plutonic rocks also display almost identical compositional variations,
with no complementary signatures (Figure 5). Hence, it is impossible that the granitic rocks
are cumulates left behind after volcanic melt extraction.

In addition, a typical volcanic-intrusive complex would form in a ring structure, with
voluminous volcanics on the outside and subsequent intrusives at the center. The volcanic
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rocks in the Qinzhou Bay area, on the contrary, are located in the distant corner of the
entire volcanic-intrusive sequence, with a negligible mass compared to the granitoids. The
characteristics of the silicic volcanics and adjacent Jiuzhou pluton are clearly controlled by
the regional deep fault (Figure 1). Therefore, we believe the Early Triassic volcanic and
intrusive rocks are comagmatic and derived from a common magma pool, detached in an
undifferentiated melt instead of indicating remarkable crystal—melt separation.

In fact, we consider fractional crystallization played a less important role during the
silicic magmatic evolution of the Early Triassic Qinzhou Bay area. Another reason for
this is the rather homogeneous whole-rock geochemical composition observed within
a single granitoid body. The Jiuzhou pluton has a narrow SiO2 range of 64–68 wt.% in
the case of our sample and one of 64–70 wt.% based on the combined data from the
references. The same is true for the Dasi and Taima granite porphyries, with SiO2 ranges of
68–70 wt.% and 70–73 wt.%, respectively. The narrow and uncoincidental compositional
variation within a voluminous granitoid body requires a magmatic mechanism other than
fractional crystallization.

5.2. Petrogenesis of the Granitoids and Mantle-Derived Contribution

The granitoids in the Qinzhou Bay Granitic Complex have long been demonstrated as
unambiguous S-type granitoids, by their high Al2O3 contents, highly enriched radiogenic
Sr–Nd–Hf isotopic compositions, low oxygen fugacity, and, especially, the common pres-
ence of conspicuous cordierite in these granitoids [18,19,31,32,54,55]. The studied Jiuzhou
granodiorites and Dasi-Taima granite porphyries are characterized by a high silica content
(mostly SiO2 > 66 wt.%), peraluminous composition (A/CNK = 1.06–1.17), and low Sr
abundance (90.6–170 ppm). These attributes suggest the magma most likely originate
from Al-rich metasedimentary protoliths [56]. Their low zircon εHf(t) (−23.9 to −7.8), low
whole-rock εNd(t) (−11.6 to −11.2), and high initial 87Sr/86Sr (0.71874 to 0.72157) [16] reveal
a crustal source with an average crustal resident age exceeding 1.8 Ga. This is consistent
with the low zircon oxygen fugacity (∆FMQ < 0), as magmas derived from the melting
of metasedimentary rocks commonly exhibit similarly low f O2 [57]. We should note the
widespread occurrence of metapelitic granulite enclaved in the Jiuzhou granodiorites [19],
supporting the idea that the granitic complex is predominantly derived from the melting of
ancient metasedimentary rocks [18,19]. These granulite enclaves are considered residual
material from the host granitoids, supported by systematic elemental variation trends and
similar Sr–Nd isotope compositions between them [16,19].

Zhao et al. (2012) [19] conducted a subdivision of the granulite enclaves based on
their different initial 87Sr/86Sr values. According to their estimations, approximately
10%–40% low-87Sr/86Sr(i) and 60%–90% high-87Sr/86Sr(i) granulites were constrained as
the magma source for the host granitoids. Nonetheless, the granulite endmembers used for
this estimation have εNd(t) values at 253 Ma of −13.30 and −12.84, lower than the εNd(t) of
the host granitoids (−11.6 to −11.2) [16]. Thus, an extra high-εNd(t) endmember should be
included in the estimation of the magma source.

Combined with the coeval silicic volcanic rocks and granitoids reported in the lit-
erature, our data show the content of SiO2 correlated negatively with Fe2O3

T, Al2O3,
MgO, CaO, TiO2, P2O5, and MnO (Figure 9) and positively with K2O and Na2O + K2O
(Figure 7a,c). Several processes could potentially account for the modification of granitic
magma compositions, including fractional crystallization and cumulate formation, the
entrainment of restitic material, and/or magma mixing with mantle-derived melts. Above,
we have argued fractional crystallization might have played a less important role during the
magmatic evolution, because of the narrow geochemical variation within a single granitoid
body and the lack of a fractional signature in the cogenetic silicic volcanic rocks. Although
restitic material was notably found within the Jiuzhou granodiorites, occurring both in
centimeter-size enclaves and micro-restite [16], the whole-rock geochemical trends could
not be explained by restite entrainment as plagioclases in the restite were insufficient in
content to replicate the observed compositional variations [58].
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The granitoids in the Qinzhou Bay area, together with the cogenetic volcanic rocks, ex-
hibited lower molar Al2O3/(MgO + FeOT), (Na2O + K2O)/(FeO + MgO + TiO2), Al2O3/TiO2,
Rb/Sr, and Rb/Ba ratios but a higher CaO/Na2O ratio compared to the typical metapelite-
derived melt (Figure 10), which was discussed above as the major magma source. Thus,
these compositional distinctions suggested magmas of such compositions could not solely
originate from metapelitic sources. Instead, an evident transitional trend between metapelite-
and basalt-derived melts reveals the input of mantle-derived materials or juvenile crust
cannot be precluded in the genesis of the granitoids.
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The zircon saturation temperature estimation using the Watson and Harrison (1983) [61]
model reveals a narrow temperature range from 848 ◦C to 868 ◦C, although zircon inheri-
tance might partly contribute to the whole-rock Zr contents [62]. The calculated Ti-in-zircon
temperatures also imply magmatic activity mostly (for more than 95% of the zircon grains)
at 780–882 ◦C (Figure 5a), whereas major element contents of whole-rocks, such as TiO2
and P2O5, yield temperatures higher than 800 ◦C or even 900 ◦C (Figure 9e,f). Therefore,
the granitoids were generated at a temperature even higher than that of the coeval I- and
S-type granites in the interior South China Block [18].

The high-temperature magmatism and coeval metamorphism [16,18,19] require an
intense heat source. Previous studies have often ruled out the possibility of mantle-derived
material input in the granitic magma, mainly because of the enriched Sr–Nd of whole-rocks
and Hf isotopic compositions of their zircons [18,20,31]. However, Xu et al. (2018) [32]
recently presented a case study of contemporary dolerites and basalts between the Jiuzhou
and Darongshan plutons in the Qinzhou Bay area, which were inferred to originate from an
enriched lithospheric mantle source with minor contamination. These mafic rocks display
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comparable zircon Hf isotopic compositions (εHf(t) = −10.9 to −7.6, for t = ca. 250 Ma)
but higher whole-rock εNd(t) values (−10.4 to −6.7) than the granitoids [32]. Apparently,
the input of such mantle-derived materials into granitic magma would match the isotopic
characteristics of the studied granitoids.

Therefore, we suggest the mantle-derived mafic magma played an important role in
the generation of the granitic and volcanic rocks in the Qinzhou Bay area, not only as a heat
source for anatectic melting but may also as a component endmember. The compositional
variation of the peraluminous rocks was at least partly, if not purely, due to varying degrees
of mixing between crust- and mantle-derived magmas. Considering the lower SiO2 content
and the presence of microgranular enclaves in the Jiuzhou granodiorites, as well as the
slightly higher estimated zircon saturation and Ti-in-zircon temperatures, the contribution
of the mafic endmember in the Jiuzhou granodiorites might be higher than that in the Dasi
and Taima granite porphyries, which formed in succession.

5.3. Implications for Paleo-Tethys Geodynamic Evolution

Several geodynamic evolution models have emerged to explain the Early Trias-
sic tectono-magmatism in the Qinzhou Bay area, including subduction of the oceanic
plate [5,6,18,20,55] or disturbance caused by the Emeishan mantle plume [9,63]. Some
studies have entertained the idea of Emeishan plume as a possible heat source for the
high-temperature/ultrahigh-temperature metamorphism [8,9,63,64]. However, precise
geochronological studies have indicated the Emeishan mantle plume ceased at
ca. 259.1 ± 0.5 Ma [65], nearly 10 Ma before the onset of the magmatism and metamorphism
in the Qinzhou Bay area. Additionally, the Qinzhou Bay area sits approximately 900 km
distant from the Emeishan mantle plume center [66]. Moreover, mafic flows and dikes in
western Guangxi induced by the Emeishan plume typically exhibit markedly elevated Ti/Y
ratios with a limited εNd(t) range from +0.41 to +1.81 [67]. These characteristics stand in
clear contrast to the mafic volcanic rocks found in the Qinzhou Bay area [32].

The studied granitic rocks exhibit obvious light REEs enrichment relative to heavy
REEs and are significantly depleted in high-field-strength elements (e.g., Nb, Ta, and
Ti) and enriched in large-ion-lithophile elements (e.g., Rb, and K). These geochemical
traits showcase signatures typical of arc-related origins [20]. The genesis of the Late
Permian to Early Triassic igneous rocks in the Qinzhou Bay and neighboring regions
has been associated with either paleo-Tethys subduction [4,5,55,58,68] or paleo-Pacific
subduction [6,12,18,32]. This study confirms a subduction setting, wherein intense mantle-
derived upwelling is postulated to have functioned not only as a heat source but also as
a direct contributor to the formation of the granitoids and related silicic volcanic rocks in
the Qinzhou Bay area. Nevertheless, the debate persists regarding whether the regional
tectono-magmatism was controlled by paleo-Tethys or paleo-Pacific plate subduction.

Currently, it is widely accepted the substantial Late Mesozoic silicic magmatism in
SE China stemmed from the paleo-Pacific subduction during 204–88 Ma [4–6,13,14]. The
Early Triassic granitoids and silicic volcanic rocks display no close spatial—temporal
association with the Late Mesozoic granitoids and volcanic rocks in SE China, since there
is a significant time gap of over 40 Ma and a spatial separation of over 700 km between
them. Underplating of mantle-derived magma, the heat source accounting for the Late
Permian–Triassic magmatism and metamorphism in the study area, has been proposed
to result from slab roll-back and/or tearing of the oceanic plate [18,32]. Some argued the
stretching direction in NE of the Qinzhou Bay Granitic Complex coincided better with a
NW-ward paleo-Pacific subduction model rather than a NE-ward paleo-Tethys subduction
model [12,18,32]. It is worth noting the stretching shapes of Jiuzhou, Dasi, and Taima
plutons are obviously controlled by the regional deep faults, while the Pubei pluton to
the east of the faults displays in a much round shape. Thus, in our opinion, the silicic
magmas rose and intruded primarily along the pre-existing faults which have plausibly
been activated by the oceanic plate subduction (Figure 11).
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area, South China (modified after [68]). A sequence of Permian–Triassic arc igneous rocks, along 
with high-pressure, low-temperature metamorphic rocks, and notably ophiolites, are observed 
across the Ailaoshan-Song Ma suture zone, stretching towards Hainan Island [55,68] (and references 
therein). It is also essential to highlight the higher temperatures necessary for the formation of the 
Qinzhou Bay Granitic Complex compared to those of the coeval I- and S-type granites in the interior 
South China Block. Our preference leans toward the model that asserts the Late Permian–Triassic 
tectono-magmatism in the South China Block was influenced by paleo-Tethys subduction. 

The S-type Qinzhou Bay Granitic Complex is considered to originate from various 
degrees of melting of the similar protolith at different crustal levels [54]. Zhao et al. (2017) 
[16] put forth the notion of rapid migration of a magma source, indicating an early (255–
249 Ma) melting event at ~950 ± 30 °C and ~500 ± 80 MPa, followed by a later (245–246 Ma) 
melting event at ~905 ± 15 °C and ~675 ± 25 MPa. It was inferred the crustal magma source 
had rapidly migrated from a depth of ~18 to ~25 km within 3–10 Ma [16], implying distinct 
crustal thickening. On one hand, this contradicts the theory of the paleo-Pacific 
subduction model, which involves no crustal thickening event. On the other hand, the 
rapid crustal thickening indicates a switch in the geodynamic regime from subduction to 
continent–continent collision between the South China and Indochina blocks, because the 
volcanic rocks and mantle-derived underplating should have formed in an extensional 
setting due to subduction. In this case, it is plausible the Early Triassic granitic rocks 
formed in the latest stage of subduction, just before the closure of the eastern paleo-Tethys 
[55] (Figure 11). 
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from a common magma pool. Although fractional crystallization might have played a less 
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detached in an undifferentiated melt instead of evolving due to remarkable crystal‒melt 
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Figure 11. Schematic geodynamical model of Early Triassic tectono-magmatism in the Qinzhou
Bay area, South China (modified after [68]). A sequence of Permian–Triassic arc igneous rocks,
along with high-pressure, low-temperature metamorphic rocks, and notably ophiolites, are observed
across the Ailaoshan-Song Ma suture zone, stretching towards Hainan Island [55,68] (and references
therein). It is also essential to highlight the higher temperatures necessary for the formation of the
Qinzhou Bay Granitic Complex compared to those of the coeval I- and S-type granites in the interior
South China Block. Our preference leans toward the model that asserts the Late Permian–Triassic
tectono-magmatism in the South China Block was influenced by paleo-Tethys subduction.

The S-type Qinzhou Bay Granitic Complex is considered to originate from various
degrees of melting of the similar protolith at different crustal levels [54]. Zhao et al.
(2017) [16] put forth the notion of rapid migration of a magma source, indicating an
early (255–249 Ma) melting event at ~950 ± 30 ◦C and ~500 ± 80 MPa, followed by a
later (245–246 Ma) melting event at ~905 ± 15 ◦C and ~675 ± 25 MPa. It was inferred
the crustal magma source had rapidly migrated from a depth of ~18 to ~25 km within
3–10 Ma [16], implying distinct crustal thickening. On one hand, this contradicts the theory
of the paleo-Pacific subduction model, which involves no crustal thickening event. On
the other hand, the rapid crustal thickening indicates a switch in the geodynamic regime
from subduction to continent–continent collision between the South China and Indochina
blocks, because the volcanic rocks and mantle-derived underplating should have formed
in an extensional setting due to subduction. In this case, it is plausible the Early Triassic
granitic rocks formed in the latest stage of subduction, just before the closure of the eastern
paleo-Tethys [55] (Figure 11).

6. Conclusions

The Jiuzhou granodiorites and Dasi-Taima granite porphyries in the Qinzhou Bay
area, South China, formed between 248.32 ± 0.98 and 246.6 ± 1.1 Ma, coeval to the adjacent
silicic volcanic rocks. The granitoids also show whole-rock geochemical features very
similar to those of the volcanic rocks; thus, we inferred they were comagmatic and derived
from a common magma pool. Although fractional crystallization might have played a less
important role during the magmatic evolution, it was more likely the silicic magma was
detached in an undifferentiated melt instead of evolving due to remarkable crystal—melt
separation. Moreover, the source discrimination indicators and high calculated Ti-in-zircon
temperatures (702–882 ◦C) reveal magma derived from the enriched lithospheric mantle not
only provided a heat source for the anatectic melting of the metasedimentary protoliths but
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was also an endmember component of the S-type silicic magma. We inferred the studied
Early Triassic granitoids formed immediately before the closure of the paleo-Tethys Ocean,
as the subduction associated with this event would have generated an extensional setting
in which the mantle-derived upwelling and volcanic activity occurred.
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