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Abstract: Farmland soil quality is a crucial determinant for agricultural productivity, food safety,
and human well-being. Among the various contaminants, heavy metals have emerged as pervasive
factors significantly impacting farmland quality, attracting widespread societal concern. In this study,
we systematically applied multivariate statistical analysis, geostatistical methods, and the positive
matrix factorization (PMF) source apportionment technique to elucidate the sources and contributions
of eight heavy metals (Cd, Hg, As, Pb, Cr, Cu, Zn, Ni) in farmland soils within an industrialized
town. Our findings reveal that Cd, Hg, Pb, and Zn exhibit pollution or enrichment in farmland soils
compared to natural background levels, with Hg and Cd surpassing 164.3% and 50.2%, respectively.
Notably, Zn demonstrates discernible point-source pollution. Source apportionment results highlight
industrial point sources, coal combustion, and agriculture as the primary anthropogenic contributors
to heavy metal contamination, with zinc-plating enterprises being the predominant industrial point
sources. Addressing the specific issue of point-source pollution from Zn in industrial activities,
further analysis establishes a correlation between soil Zn content and the distance from zinc-plating
enterprises. Utilizing an atmospheric transport model, we observe that the impact of industrial
activities on soil Zn is limited when the distance exceeds 1.5 km, emphasizing the importance of
monitoring Zn pollution within areas less than 1.5 km. This study pioneers a progressive source
apportionment approach, considering the origins of different heavy metals, pollution levels, dis-
tance factors, and the cost-effectiveness of environmental measures. The insights gained provide
scientifically sound strategies for future decision making in environmental protection.

Keywords: industrialized towns; farmland soil; heavy metals; pollution sources; zinc plating

1. Introduction

The rapid progress of urbanization, industrialization, and agriculture has led to an
escalating transfer of heavy metals to the soil, posing a severe threat to the soil environment
and food safety [1–3]. Due to their elevated toxicity, persistence, and resistance to degrada-
tion, heavy metals present a more formidable challenge to soil compared to other pollutants,
demanding heightened attention [4,5]. The accumulation of heavy metals in farmland
soil not only modifies the physicochemical properties of the soil, resulting in diminished
soil functionality and reduced crop yields, but also jeopardizes human health through the
transmission of contaminants along the food chain [6,7]. Surveys reveal that nearly 13.3%
of soil samples in China surpass standard values for heavy metals, with the most serious
heavy metal contamination in cultivated soils of industrially and agriculturally developed
regions [6,8]. Consequently, there is an urgent need to conduct thorough investigations in
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regions experiencing significant heavy metal pollution, accurately and objectively identify
the causes of soil metal accumulation, and implement measures for soil health management
and human health protection in these areas [9,10].

Generally, heavy metals accumulate in the soil through two primary pathways. Firstly,
natural sources contribute to heavy metal presence, as the weathering of parent rock forma-
tions naturally generates these contaminants. Areas with a high geological background are
particularly susceptible to heavy metal enrichment through this natural process. Secondly,
anthropogenic sources play a significant role, including industrial production, the excessive
use of fertilizers and pesticides in agriculture, and emissions from vehicles. The rapid
progress of industrialization and urbanization has led to human activities contributing pol-
lutant fluxes that often surpass those originating from natural sources. Notably, industrial
and agricultural activities have emerged as the principal sources of heavy metal enrichment
in the soil [8,11,12].

Diverse sources of heavy metal pollution necessitate tailored remediation and pre-
vention strategies, underscoring the importance of conducting source-tracing studies on
heavy metals for effective soil pollution prevention and control. Multivariate statistical
analysis serves as a common method for discerning the sources of heavy metals in the soil.
Principal component analysis (PCA) is one such technique that transforms heavy metal
factors into several principal components by analyzing combinations and correlations
among various elements. These principal components can be qualitatively interpreted as
the sources of heavy metals. However, PCA faces challenges in quantitatively analyzing
the sources of heavy metals and calculating their contributions [8,13,14]. Positive matrix
factorization (PMF) stands out as a quantitative source apportionment method that in-
tegrates uncertainty with concentration to allocate sources and derive more meaningful
factors [15,16]. In recent years, the PMF method has gained recognition from the U.S.
Environmental Protection Agency as a common multivariate factor analysis tool [10,17,18].
It can quantitatively calculate the contributions of potential sources to soil heavy metal
pollution under non-negativity constraints and data uncertainty conditions. However,
the PMF model lacks a method for determining a reasonable number of factors. While
PMF primarily focuses on the global allocation of toxic metal pollution sources, its ability
to define sources is confined to descriptive statistics and expert experience [19,20]. This
limitation hampers its precise identification of pollution types and the analysis of spatial
heterogeneity in local pollution sources. Therefore, a comprehensive approach involving
the combined application of multivariate statistical analysis and the PMF method, with
multivariate statistical analysis providing a reasonable number of factors for the PMF
model, and the integration of PMF with geostatistical methods, offers a complementary
advantage. This ensures that the results of heavy metal pollution source apportionment are
more reasonable and reliable.

Building upon the considerations outlined above, we propose a comprehensive source
apportionment method that integrates multivariate statistical analysis, geostatistical meth-
ods, and positive matrix factorization (PMF). This method is applied in a zinc-plating
industrial town situated in the economically developed Yangtze River Delta region of
China. The study aims to achieve four main objectives: (1) To comprehensively assess the
concentration and spatial distribution of heavy metals (Cd, Hg, As, Pb, Cr, Cu, Zn, and
Ni) in farmland soil using various indicators; (2) to identify the sources of heavy metals
and quantify their contributions by employing a combination of multivariate statistical
analysis, geostatistical methods, and PMF, along with industrial source information; (3) and
to simulate the atmospheric transport and deposition of the major heavy metal pollutant,
Zn, using an atmospheric transport model based on point source emission inventories,
thereby predicting changes in Zn accumulation in farmland soil under different scenarios.
The study results aim to provide crucial theoretical and practical references for the identifi-
cation, risk assessment, and integrated management of soil heavy metal pollution sources
in similar industrial towns.
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2. Materials and Methods
2.1. Study Area

The study area, situated between 119.203369◦ to 119.372299◦ E and 32.586290◦ to
32.759941◦ N, is located in the western part of Yangzhou City, Jiangsu Province, China.
Encompassing an approximate area of 153.67 km2, with arable land constituting 51.3%,
the terrain exhibits a slight elevation in the southwest and a lower profile in the northeast,
characterized mainly by a water-rich plain. The region experiences a subtropical humid
monsoon climate, featuring an annual average temperature and precipitation of 15.3 ◦C and
1036.6 mm, respectively. The soil belongs to paddy soil, with three main types: Irrigated,
submerged, and lateral seepage. The textures include light clay-heavy loam, light clay, and
medium loam-heavy loam, respectively. Primary crops grown are rice, wheat, and rapeseed.
The characteristic of agricultural production in this region is extensive fertilizer application,
which may lead to the accumulation of heavy metals in the soil. Notably, the agricultural
practices in this area involve extensive fertilization, potentially leading to the accumulation
of heavy metals in the soil. Of significance, the area serves as the largest production base for
street lighting in China and hosts well-developed zinc-plating industries. In the research
area, there are three large-scale galvanizing enterprises, each with a production history
of around 20 years. Collectively, they possess 10 hot-dip galvanizing production lines,
with an annual production capacity of approximately 31.5 million square meters. As a
consequence of agricultural, industrial, and urban development, inevitable issues of heavy
metal pollution have arisen in the farmland soil. However, there is currently a dearth of
research on the soil pollution status and spatial distribution of pollution sources in this
region. To effectively address soil pollution and ensure food safety, it is imperative to
conduct a comprehensive investigation into the pollution status and associated risks and
quantify pollution sources in the area.

2.2. Sampling and Analysis

In April and May 2020, a systematic collection of 157 surface soil samples (0–20 cm)
was conducted across farmland in the study area, employing a 1000 m grid. The sampling
locations, recorded using GPS devices, and the land-use distribution are depicted in Figure 1.
Each soil sample was gathered from a circular area with a 100 m radius around the sampling
point, constituting a composite of five sub-samples of surface soil evenly collected within
that range. After removing debris, the samples were air-dried at room temperature, further
ground to 0.074 mm using an agate ball mill for the analysis of elements. The testing method
for the samples refers to the standards outlined in the “The Specification of Testing Quality
Management for Geological Laboratories DZ/T0130–2006” [21], which is a geological and
mineral industry standard in the People’s Republic of China. Following digestion with
HF-HNO3, Cd, Cu, Ni, Pb, and Zn were determined by ICP-MS (inductively coupled
plasma mass spectrometry) at the Henan Geological and Mineral Test Center. Cr, Fe, and P
were determined using XRF (X-ray fluorescence spectrometry). As and Hg were measured
after digestion with (1 + 1) aqua regia using AFS (atomic fluorescence spectrometry). The
detection limits for Cd, Hg, As, Pb, Cr, Cu, Zn, Ni, and P were 0.03, 0.0005, 0.3, 2.0, 3.0,
0.5, 2.0, 1.0, and 10 mg/kg, respectively, while the detection limit for Fe was 0.035%. The
entire testing process follows quality assurance and control measures. National first-class
standard reference materials (GBW07401 to GBW07408, GBW07423 to GBW07426) are used
to monitor the testing process. The relative standard deviation (RSD) for the first-class
standard material samples is consistently below 5%, and the overall qualification rate
is 100%.

2.3. Research Methods

In this study, we proposed a comprehensive approach that combines soil heavy metal
source apportionment with atmospheric transport modeling for source risk assessment.
This integrated method enables a more precise identification of pollution sources and
facilitates the prediction of the extent and severity of their impact. By doing so, it con-
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tributes to a more nuanced understanding of heavy metal pollution dynamics, aiding in
the development of targeted and evidence-based measures to safeguard environmental
and human health.
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2.3.1. Pollution Assessment

The geo-accumulation index (Igeo) was applied to evaluate the extent of soil heavy
metal pollution [22], while the enrichment factor (EF) was employed to distinguish between
heavy metals of anthropogenic or natural origin [23,24].

Igeo = log2
Ci

k × Bi
(1)

EF =
(Ci/Cr)sample

(Ci/Cr)background
(2)

where Ci represents the concentration of element i in the surface soil (mg kg−1), Bi is
the soil background value for element i (mg kg−1), and k is the correction factor (chosen
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as 1.5) accounting for lithogenic processes. This study takes the average background
levels of heavy metals in C horizon soil in Jiangsu Province as Bi [25]. Cr denotes the
concentration of the reference element (mg kg−1). The reference element is selected based on
its high concentration in soil, minimal variation, and limited influence from anthropogenic
sources [26]. In this study, Fe was chosen as the reference element due to its lower coefficient
of variation compared to Mn and its relatively high concentration in the Earth’s crust.

2.3.2. Positive Matrix Factorization (PMF)

Positive matrix factorization (PMF) was employed to quantify the contributions of
various sources to heavy metals in the samples. PMF decomposes the sample matrix into
a source contribution matrix (G) and a source profile matrix (F) through covariance and
correlation matrices. This method, implemented using EPA PMF 5.0, constrains matrices to
be non-negative and handles missing and imprecise data [27].

The overall objective of the PMF model is to solve the chemical mass balance equation,
which can be expressed as:

Xij = gik·fkj + eij (3)

The parameters in Equation (3) are illustrated in Figure 2.
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In the EPA PMF 5.0 program, the object function Q (Equation (4)) is solved using a
multi-linear engine (ME) with multiple iterations at the lower level. The factor contributions
and distributions are obtained by minimizing the object function Q:

Q =
n

∑
i=1

m

∑
j=1

(
eij

uij

)2

(4)

where uij represents the uncertainty of element j in sample i, calculated based on the method
detection limit (MDL) and the error percentage (E%) from the measurement of standard
reference material for the specific method of the element. When the element content is not
greater than MDL, the uncertainty calculation formula is: uij = 5/6 ∗ MDL; otherwise, the
calculation formula is as follows:

uij =
√(

E%·cij
)2

+ (0.5·MDL)2 (5)

where cij represents the concentration of element j in sample i.

2.3.3. Prediction Scenario Setup

In the prediction scenario setup, eight scenarios were established based on the surface
soil Zn content in farmland in 2020, considering whether three galvanizing companies
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(G1, G2, G3) use dust removal equipment. Scenario A: None of G1, G2, and G3 use dust
removal equipment. Scenario B: Only G1 uses dust removal equipment, while G2 and
G3 do not. Scenario C: Only G2 uses dust removal equipment, while G1 and G3 do not.
Scenario D: Only G3 uses dust removal equipment, while G1 and G2 do not. Scenario
E: Both G1 and G2 use dust removal equipment, while G3 does not. Scenario F: Both G1
and G3 use dust removal equipment, while G2 does not. Scenario G: Both G2 and G3 use
dust removal equipment, while G1 does not. Scenario H: All three companies (G1, G2,
G3) use dust removal equipment. These scenarios serve as a framework for assessing the
potential impact of dust removal practices by galvanizing companies on the soil Zn content
in farmland. The variations in scenarios allow for a comprehensive analysis of different
operational setups and their implications for soil quality in the study area.

2.3.4. Atmospheric Transport Model

The AERMOD model (https://www.epa.gov/, accessed on 2 November 2023) utilized
in this study is a steady-state plume model that combines air dispersion based on planetary
boundary layer turbulent structure and scaling concepts. It incorporates treatments for
both ground-level and elevated sources, as well as simple and complex terrain, enabling
accurate simulation of spatial variations in atmospheric pollutant deposition under differ-
ent emission scenarios [28,29]. The specific location, operating time, and source emission
parameters of the galvanizing companies were extracted from the emission inventory
provided by the local environmental protection agency, along with on-site survey data. The
atmospheric Zn levels emitted by the galvanizing companies into the air were estimated
by multiplying the activity level (A) by the corresponding emission factor (EF). The emis-
sion factor data were obtained from the United States Environmental Protection Agency
(USEPA) Compilation of Air Pollutant Emissions Factors from Stationary Sources (AP-
42) (https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-
air-emissions-factors-stationary-sources, accessed on 11 January 2024). Hourly surface
meteorological data and upper-air meteorological data for the study area were provided by
the local meteorological department.

The AERMOD model outputs the annual deposition flux (F) of Zn for each farmland
plot. According to Equations (6) and (7), it predicts the cumulative amount (∆) and
cumulative percentage (P%) of Zn in the farmland soil in the study area.

∆ =
F × [1 − exp(−k × t)]

Z × k × ρ
(6)

P% =
∆

BV
(7)

where ∆ represents the increment of Zn in the surface soil of farmland due to atmospheric
deposition (mg kg−1); F is the Zn annual deposition flux output from the AERMOD model
(mg m−2 year−1); k is the loss constant of the pollutant in the soil (year−1), chosen as
0.06 [28]; t represents the predicted number of years (year), set to 20 years in this case; Z
and ρ are the mixing depth of the soil (m) and the bulk density of the soil particles (kg m−3),
taken as 0.2 and 1125, respectively [30]; P% represents the rate of increase in Zn in the
surface soil of farmland due to atmospheric deposition; BV represents the reference content
of Zn in the surface soil of farmland (mg kg−1).

2.3.5. Statistical Analysis

Descriptive statistical analysis, normality tests, correlation analysis, and principal com-
ponent analysis were conducted using SPSS 22.0 (IBM Inc., Armonk, NY, USA). The spatial
distribution characteristics of soil heavy metals were analyzed using Kriging interpolation
in ArcGIS 10.5 (ESRI Inc., Redlands, CA, USA). To better integrate spatial data, Kriging
interpolation was applied to the PMF contribution factors.

https://www.epa.gov/
https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emissions-factors-stationary-sources
https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emissions-factors-stationary-sources
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3. Results and Discussion
3.1. Soil Heavy Metal Distribution Characteristics

Table 1 provides a summary of the characteristics of the heavy metal content in the
soil. The average concentrations of Cd, Hg, As, Pb, Cr, Cu, Zn, and Ni are 0.12, 0.05, 9.93,
27.75, 71.71, 27.01, 70.77, and 30.67 mg/kg, respectively. Based on these average values, it is
observed that although the concentrations of all eight heavy metals are below the pollution
risk screening values of GB15618–2018 [31] and the target values of the Netherlands, Cd,
Hg, Pb, Cu, and Zn surpass the local soil background values. Specifically, Hg and Cd
exceed the soil background values by 164.3% and 50.2%, respectively. Additionally, the
average values of Cd, As, and Zn in the study area are higher than those in a town of the
southern Jiangsu Province. The soil type in that town is similar to that in the study area,
and there is also an electroplating industry present.

Table 1. Summarizes and compares the heavy metal content in farmland soil in the study area
(n = 157, g kg−1 for Fe, mg kg−1 for other elements).

Elements Cd Hg As Pb Cr Cu Zn Ni Fe P

Min 0.048 0.020 6.39 20.1 57.60 18.20 45.72 20.51 25.46 204.40

Median 0.114 0.050 9.85 27.5 71.60 26.68 68.43 30.69 34.48 568.90

Max 0.260 0.107 14.25 39.7 97.00 44.20 148.30 45.70 47.28 1226.70

Mean 0.120 0.051 9.93 27.8 71.71 27.01 70.77 30.67 34.45 589.90

SD 0.033 0.016 1.55 2.83 7.51 3.98 15.90 5.05 5.08 158.82

Skewness 1.38 0.42 0.14 0.79 0.46 0.81 2.23 0.25 0.29 1.08

Kurtosis 3.63 0.04 −0.47 2.16 −0.05 2.00 7.90 −0.19 −0.75 1.97

CV a 0.27 0.31 0.16 0.10 0.10 0.15 0.22 0.16 0.15 0.27

Background value b 0.08 0.02 11.05 24.32 73.59 27.13 67.99 33.91 - -

Average of a town in
southern Jiangsu c 0.11 - 7.46 31.41 86.38 31.60 61.63 34.93 - -

Screening value d 0.3 0.5 30 90 150 50 200 70 - -

Dutch target values e 0.8 0.3 29 85 100 36 140 35 - -
a CV is an abbreviation for the coefficient of variation, defined as the ratio of the standard deviation to the mean.
b The average background content of deep soil heavy metals in the study area. The data are obtained through
measurements, and iteration is used to exclude values (arithmetic mean ± 3 times the standard deviation). c The
average of several metals in top soils from a town in southern Jiangsu Province [32]. d Risk screening values for
soil contamination of agricultural land as specified in “Chinese Soil Environmental Quality” (GB15618–2018) [31].
It refers to pollutant concentrations in farmland soil that exceed this value, posing potential risks to the quality
and safety of agricultural products, crop growth, or soil ecological environment. e Dutch target values focus on
soil pollution. The data are sourced from Swartjes [33].

Figure 3 depicts the spatial distribution of soil heavy metal concentrations obtained
through ordinary kriging interpolation. Overall, there are differences in the spatial dis-
tribution of heavy metals in the study area. As shown in Figure 3c,e,h, As, Cr, and Ni
exhibit a similar spatial pattern, characterized by higher concentrations in the northeast
and lower concentrations in the southwest. Cd and Pb, especially in the eastern part of the
study area, show a similar spatial layout (Figure 3a,d). The Zn content is higher around the
zinc-plating enterprises. Particularly in the eastern region, the closer the proximity to the
galvanizing enterprises, the higher the concentration of zinc. (Figure 3g).

By calculating the geo-accumulation Index (Igeo) and enrichment factor (EF) of heavy
metals in the soil, it is possible to distinguish elements originating from human activities
and those from natural sources and assess the degree of anthropogenic impact. The results
are shown in Figure 4. In descending order of magnitude based on the average Igeo values,
the elements are ranked as follows: Hg > 0 > Cd > Pb > Zn > Cu > Cr > Ni > As. The Igeo
values for Cr, Ni, and As are all less than 0 in all samples, indicating low pollution levels
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for these elements. Cd and Hg show moderate and mild pollution in 37.6% and 93.0% of
samples, respectively. A few high values of Zn in the soil samples are classified as mild,
suggesting the presence of point-source pollution for Zn. Combining the analysis of the
spatial distribution of soil heavy metal concentrations, it is speculated that point-source
pollution is likely associated with zinc-plating enterprises. The enrichment factor results
align with the Geo-accumulation Index results, with the average EF values ranked as
follows: Hg > 2 > Cd > 1.5 > Pb > Zn > Cu > Cr > 1 > Ni > As. EF values for As and Ni
are less than 1, indicating natural sources. Cd exhibits a likely anthropogenic source (EF
between 1.5 and 2), and Hg shows moderate enrichment. Cd, Hg, and Zn exhibit localized
significant enrichment (EF values greater than 2).
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In summary, the farmland soil in the study area is influenced by human activities, with
significant impacts on Cd, Hg, and Zn. Further quantification of source analysis is needed
to understand the contributions of human and natural activities to the accumulation of
heavy metals in farmland soil. The point-source pollution associated with zinc-plating
enterprises, especially for Zn, warrants further investigation.
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Figure 4. The box plots depict the geo-accumulation index (a) and enrichment factor (b) for heavy
metals. Circles at the top and bottom of each box correspond to the maximum and minimum values,
respectively. Horizontal lines at the top, middle, and bottom of each box represent the 75th percentile,
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distribution of heavy metals in geological samples. The circles at the extremities indicate the presence
of maximum and minimum values, while the height and length of the boxes offer information about
data dispersion and the central tendency. This graphical representation aids in comprehending the
accumulation and enrichment patterns of heavy metals in surface soils.

3.2. Correlation Analysis of Soil Elements

After examining the characteristics of heavy metal pollution in the soil, identifying
the sources of heavy metals becomes a crucial prerequisite for preventing and controlling
soil contamination. We performed a correlation analysis of heavy metal elements (refer to
Figure 5), and the results reveal that, except for Hg, the other heavy metal elements display
positive correlations, with high correlation coefficients (p ≤ 0.01). This implies that these
elements in the farmland soil of the study area may share similar sources and migration
pathways. Fe is significantly and positively correlated with Cd, As, Pb, Cr, Cu, Zn, and Ni
(p ≤ 0.01), with correlation coefficients exceeding 0.8 for As, Cr, Cu, and Ni. This suggests
a common source for these heavy metal elements with Fe. Cd and Zn exhibit significant
positive correlations with P (p ≤ 0.01), and correlation coefficients surpassing 0.4 indicate
a potential association among Cd, Pb, and P sources. DG shows a significant negative
correlation with Zn (p ≤ 0.01), implying that the Zn content in farmland soil decreases
with increasing distance from zinc-plating enterprises. This further underscores Zn as a
noteworthy point-source pollutant in the farmland soil of the study area.

3.3. Principal Component Analysis (PCA)

To better uncover the inherent relationships between heavy metal elements in the soil
and identify their sources, principal component analysis (PCA) was employed to further
analyze the heavy metal content in the study area. The data successfully passed the Kaiser–
Meyer–Olkin (KMO) test, with a KMO coefficient of 0.792, indicating a strong correlation
among the various heavy metal elements and rendering them suitable for PCA [34,35].

As depicted in Table 2, four principal components (PCs) were extracted from the
heavy metals, collectively explaining 85.74% of the total data variance. The most prominent
principal component (PC1) exhibited the highest variance (52.08%), with As, Cr, Cu, and
Ni showing relatively high positive and negative loads with similar values. The second
principal component (PC2) was primarily influenced by Cd, Pb, and Cu, accounting for
17.67% of the total data variance. PC3 and PC4 were mainly associated with Hg and Zn,
contributing to 9.66% and 6.32% of the total data variance, respectively.
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Table 2. Rotated composition matrix of heavy metal data in agricultural soil of the study area.

Heavy Metal Element PC1 PC2 PC3 PC4

Cd 0.109 0.88 0.173 0.198
Hg −0.027 0.238 0.956 −0.014
As 0.816 0.074 0.106 0.165
Pb 0.364 0.734 0.309 0.146
Cr 0.863 0.128 −0.035 0.112
Cu 0.673 0.593 −0.029 0.166
Zn 0.246 0.256 −0.011 0.932
Ni 0.879 0.368 −0.07 0.125

Eigenvalues 4.167 1.414 0.773 0.506
% of variance explained 52.08 17.67 9.66 6.32

% of cumulative 52.08 69.75 79.41 85.74

Minerals 2024, 14, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 5. Correlation analysis of elements and relevant parameters. Note: * p ≤ 0.05; ** p ≤ 0.01; DG: 
the distance from the nearby zinc-plating enterprises. 

3.3. Principal Component Analysis (PCA) 
To better uncover the inherent relationships between heavy metal elements in the soil 

and identify their sources, principal component analysis (PCA) was employed to further 
analyze the heavy metal content in the study area. The data successfully passed the Kai-
ser–Meyer–Olkin (KMO) test, with a KMO coefficient of 0.792, indicating a strong corre-
lation among the various heavy metal elements and rendering them suitable for PCA 
[34,35]. 

As depicted in Table 2, four principal components (PCs) were extracted from the 
heavy metals, collectively explaining 85.74% of the total data variance. The most promi-
nent principal component (PC1) exhibited the highest variance (52.08%), with As, Cr, Cu, 
and Ni showing relatively high positive and negative loads with similar values. The sec-
ond principal component (PC2) was primarily influenced by Cd, Pb, and Cu, accounting 
for 17.67% of the total data variance. PC3 and PC4 were mainly associated with Hg and 
Zn, contributing to 9.66% and 6.32% of the total data variance, respectively. 

Table 2. Rotated composition matrix of heavy metal data in agricultural soil of the study area. 

Heavy Metal Element PC1 PC2 PC3 PC4 
Cd 0.109 0.88 0.173 0.198 
Hg −0.027 0.238 0.956 −0.014 
As 0.816 0.074 0.106 0.165 
Pb 0.364 0.734 0.309 0.146 
Cr 0.863 0.128 −0.035 0.112 
Cu 0.673 0.593 −0.029 0.166 
Zn 0.246 0.256 −0.011 0.932 
Ni 0.879 0.368 −0.07 0.125 

Eigenvalues 4.167 1.414 0.773 0.506 
% of variance explained 52.08 17.67 9.66 6.32 

% of cumulative 52.08 69.75 79.41 85.74 

Figure 5. Correlation analysis of elements and relevant parameters. Note: * p ≤ 0.05; ** p ≤ 0.01; DG:
the distance from the nearby zinc-plating enterprises.

3.4. Positive Matrix Factorization (PMF)

The PMF model was employed to identify the sources of heavy metals in the soil and
quantify their contributions. In practical applications, PCA is often utilized to determine
the optimal number of factors before conducting PMF analysis [36]. Accordingly, based on
the Varimax-rotated principal component analysis results, the factor number for the model
was set to 4, with random seed values and 20 runs. Under these settings, Q (true) remained
stable and approximated Q (robust), while the signal-to-noise ratio ranged between 6.0
and 10.0, with the majority of residuals falling within the −3 to 3 range. Moreover, the
determination coefficient between observed and predicted values for heavy metals ranged
from 0.476 to 0.997, indicating the reliability of the PMF model and its ability to better
elucidate the sources of heavy metals. The contribution and spatial analysis of each
source factor to heavy metal concentrations are illustrated in Figure 6, with heavy metals
exhibiting high loading factors considered representative in source apportionment. Factor 1
(F1) was dominated by Cd, Hg, and Cu, with contribution rates of 44.4%, 40.1%, and 34.5%,
respectively. Factor 2 (F2) was primarily associated with Ni, As, Cr, and Cu, contributing
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rates of 53.1%, 48.9%, 46.3%, and 45.3%, respectively. Factor 3 (F3) and Factor 4 (F4) were
mainly characterized by Hg and Zn, contributing rates of 49.3% and 47.8%, respectively.
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3.5. Comprehensive Source Apportionment of Soil Heavy Metals

Through the integration of PCA and PMF methods, heavy metal elements were
categorized into natural sources caused by parent material weathering, agricultural sources
related to fertilizer application, coal combustion sources, and industrial sources associated
with galvanizing activities. The following will provide a detailed description of their
characteristics.

3.5.1. Natural Sources (PC1 in PCA and F2 in PMF)

Both PC1 in principal component analysis (PCA) and Factor 2 (F2) in positive matrix
factorization (PMF) were characterized by Ni, As, Cr, and Cu as predominant elements.



Minerals 2024, 14, 279 12 of 17

These elements exhibited a relatively uniform spatial distribution, with average concen-
trations below their background values (refer to Table 1). Moreover, they are recognized
as constituents widely present in soil genesis processes due to factors such as soil parent
material [37,38]. The results suggest that external pollution sources, including industrial
production and other anthropogenic factors, have relatively low contributions to Ni, As,
Cr, and Cu. Additionally, correlation analysis indicated significant positive correlations
(p ≤ 0.01) between Ni, As, Cr, Cu, and Fe, with correlation coefficients exceeding 0.8. Given
that Fe serves as a structural element in terrestrial aluminosilicates and is controlled by
soil parent material and soil development, it is typically considered an indicator element
for natural soil sources [39]. Therefore, the presence of Ni, As, Cr, and Cu in the soil is
likely attributed to the weathering of the parent material and subsequent soil processes.
Therefore, Ni, As, Cr, and Cu in the soil are likely induced by soil weathering and other
natural factors [22]. It can be considered that PC1 and F2 are natural sources resulting from
parent material weathering.

3.5.2. Agricultural Sources (PC2 in PCA and F1 in PMF)

PC2 in PCA and Factor 1 (F1) in PMF were primarily associated with Cd and Cu.
Given the focus on farmland soil in this study area, extensive agricultural activities in-
volving the use of fertilizers and pesticides have occurred over the past few decades.
Correlation analysis indicated significant positive correlations (p ≤ 0.01) between Cd, Cu,
Zn, and P. Cadmium, as a companion metal to phosphorus, inevitably exists in phos-
phate fertilizers [40,41]. Therefore, continuous use of phosphate fertilizers can lead to
excessive accumulation of cadmium in agricultural soil. Similarly, the extensive use of
copper-based pesticides and fungicides can introduce substantial amounts of copper into
farmland soil [42]. Studies by Liu, Wu [43] along the lower reaches of the Yangtze River,
Liu, Zhang [5] in Shandong, and Guo, Li [44] in southeastern Yunnan have all indicated
that Cd and Cu are primarily controlled by agricultural sources. Thus, PC2 and F1 can be
considered indicative of agricultural sources.

3.5.3. Coal Combustion Sources (PC3 in PCA and F3 in PMF)

PC3 in PCA and Factor 3 (F3) in PMF were mainly associated with Hg. The coefficient
of variation for Hg was at a moderate level, indicating its susceptibility to anthropogenic
or other natural sources. Correlation analysis revealed a significant positive correlation
(p ≤ 0.01) between Hg and Pb. Previous studies have suggested that the significant sources
of mercury and lead accumulation in soil are industrial activities such as fossil fuel combus-
tion and cement production, with enrichment occurring through atmospheric deposition.
Mercury and lead contents in Chinese coal are relatively high, at approximately 0.35 and
35.7 mg/kg, respectively [45]. Moreover, it has been reported that approximately 40% of
the external mercury input into Chinese agricultural soil comes from coal combustion,
accounting for over 70% of the total atmospheric mercury input [18]. Studies by Wang,
Wu [46], and Shi, Liu [47] have emphasized that the enrichment of soil Hg and Pb mainly
results from atmospheric deposition associated with coal combustion. The high volatility of
mercury makes it easily enter flue gas, ultimately leading to the accumulation of mercury in
agricultural soil through atmospheric deposition [48]. Through field investigations and data
collection, it was found that the annual average coal consumption in Gaoyou City exceeded
500,000 tons in 2015 and 2016. Despite a reduction in coal consumption of 200,000 tons
since the initiation of the coal reduction action in 2017, the cumulative burning of coal over
the years has led to the accumulation of mercury and lead in farmland soil in the study
area. Therefore, PC3 and F3 can be considered indicative of coal combustion sources.

3.5.4. Industrial Sources (PC4 in PCA and F4 in PMF)

PC4 in PCA and Factor 4 (F4) in PMF were primarily associated with Zn. Correla-
tion analysis indicated a significant negative correlation (p ≤ 0.01) between Zn and DG,
suggesting that the enrichment of Zn is related to the production activities of zinc-plating
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enterprises. Based on the spatial distribution of F4 (refer to Figure 6h), high values of F4
were concentrated around large zinc-plating enterprises.

In the comprehensive assessment of heavy metal pollution in agricultural soils within
the study area, approximately 65.79% of the contamination is attributed to anthropogenic
activities, while the remaining 34.21% is attributed to parent material weathering. Among
the anthropogenic sources, agricultural practices, coal combustion, and zinc-plating indus-
trial activities contribute 24.41%, 12.23%, and 29.15% to the total pollution, respectively
(refer to Figure 7). Cadmium and copper are linked to agricultural activities, while mercury
is primarily derived from atmospheric deposition during coal combustion. Zinc is likely
associated with zinc-plating industrial activities, whereas chromium, nickel, and arsenic
primarily originate from natural sources. This comprehensive breakdown provides valu-
able insights into the major contributors to heavy metal pollution in the agricultural soils
of the study area.
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In conclusion, the consistency observed among the results obtained from correlation
analysis, PCA, and PMF enhances the robustness of the identified sources of heavy met-
als in the study area. PMF, in particular, emerges as a valuable tool for quantifying the
contribution rates of distinct sources. Therefore, a comprehensive approach integrating
various methods, such as correlation analysis, PCA, and PMF, can be employed stepwise
for in-depth soil heavy metal source analysis. Correlation analysis and PCA contribute to a
qualitative understanding of different sources, providing valuable insights for determining
appropriate factor numbers in PMF. Subsequently, PMF allows for the quantitative assess-
ment of the contribution rates from different sources. This methodological integration is
advantageous for enhancing the accuracy of source apportionment results.

3.6. Simulation of Zinc Accumulation in Soil from Zinc-Plating Industrial Emissions

As indicated in the preceding analysis, industrial activities contribute significantly
to heavy metal contamination in agricultural soils in the study area, including both coal
combustion and industrial emissions. However, our on-site investigation revealed that
coal combustion facilities throughout the entire study region have undergone renovation,
eliminating substantial coal consumption. Consequently, this section focuses on the investi-
gation of industrial point sources, specifically those represented by zinc-plating enterprises.
Simulating the transport and contribution of zinc from atmospheric deposition to soil under
different scenarios can provide insights to aid decision-makers in formulating appropriate
policies for atmospheric heavy metal emissions. We have selected three major zinc-plating
enterprises within the study area as point sources for emissions (refer to Figure 1) and
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predicted the contribution of zinc accumulation in agricultural soils from atmospheric
emissions by these enterprises over the next 20 years under eight scenarios (A–H).

Figure 8 illustrates the predicted growth rates of zinc in soil under the eight scenarios
(A–H), categorized by distance from zinc-plating enterprises into six groups (0–1 km,
1–1.5 km, 1.5–2 km, 2–2.5 km, 2.5–3 km, and >3 km). The results demonstrate a positive
correlation between the predicted growth rate of zinc in soil and distance across all eight
scenarios. As the distance increases, the growth rate of zinc gradually decreases, with a
significant decline observed when the distance exceeds 1.5 km. Based on this finding, it is
recommended to focus monitoring efforts on areas within 1.5 km to gain a comprehensive
understanding of the dynamic impact of zinc-plating enterprise atmospheric emissions on
surrounding soil zinc levels. This aids in accurately monitoring zinc pollution sources and
implementing corresponding environmental protection measures.
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Scenario H, where all three enterprises have dust removal equipment, exhibits the
lowest soil zinc growth rate, indicating a significant inhibitory effect on zinc emissions into
soil when comprehensive dust removal measures are implemented in environmental man-
agement. Conversely, Scenario A, where none of the three enterprises have dust removal
equipment, shows a relatively higher zinc growth rate, suggesting more severe soil zinc
pollution in the absence of proper environmental measures. However, in environmental
protection decision making, it is crucial to balance ecological effects with economic benefits.
When dust removal equipment is installed in only one enterprise (Scenario C), it has a lower
zinc growth rate compared to Scenarios B and D. Similarly, when two enterprises have dust
removal equipment (Scenario E), it exhibits a significantly lower zinc growth rate compared
to Scenarios F and G. Therefore, the predictive results suggest that formulating scientifically
sound environmental strategies is essential for simultaneously balancing economic benefits
while ensuring soil quality and ecological health.

4. Conclusions

Although the average concentrations of heavy metals in the soil of the study area are
generally below the relevant national environmental standards, accumulations of Cd, Hg,
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Pb, Cu, and Zn are still observed. Through a comprehensive analysis involving correlation
analysis, principal component analysis, positive matrix factorization, and spatial statistical
methods, four main sources of heavy metals in the soil of the study area have been identified.
These sources include natural sources associated with parent material, agricultural sources
related to fertilization, coal combustion sources, and industrial sources associated with zinc-
plating activities. Among them, agricultural activities contribute significantly to Cd and Cu,
coal combustion is primarily associated with Hg, and zinc-plating industrial activities are
the main contributors to Zn in farmland soil. Subsequently, based on whether zinc-plating
enterprises utilized dust removal equipment, eight scenarios were established to predict
the soil Zn growth rate over the next 20 years. The results showed a significant decrease
in the growth rate of Zn in soil when the distance exceeded 1.5 km. This provides a clear
basis for environmental protection decision making, suggesting a focus on monitoring
areas within 1.5 km to gain a comprehensive understanding of the impact of zinc-plating
enterprise atmospheric emissions on surrounding soil Zn, enabling the implementation
of economically effective environmental protection measures in line with prevention and
control objectives.

We established a progressive source apportionment method by integrating PCA and
PMF, demonstrating good applicability and accuracy. This method revealed the characteris-
tics of soil heavy metal pollution under the joint influence of human and natural factors.
To better manage and prevent soil heavy metal pollution, future environmental protection
decisions should comprehensively consider the sources, pollution levels, distance factors,
and economic feasibility of environmental protection measures for different heavy metals.
This approach facilitates the formulation of scientifically sound environmental strategies,
achieving a balance between economic benefits and ecological health. The comprehensive
research methodology presented in this study serves as a valuable reference for addressing
similar issues in other regions.

Author Contributions: Conceptualization, C.Q. and M.X.; methodology, C.L.; software, B.Y.; vali-
dation, M.X., J.L. and C.Q.; formal analysis, C.Q.; investigation, Z.J. and C.Q.; resources, B.G.; data
curation, S.L.; writing—original draft preparation, C.Q.; writing—review and editing, M.X., J.L. and
C.Q.; visualization, C.Q., B.Y. and C.L.; supervision, J.L.; project administration, M.X. and B.G. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the Special Funds for Geological Exploration of
Jiangsu Province (Grant No. 202006047D1S).

Data Availability Statement: The data presented in this study are available in the article.

Acknowledgments: We extend our sincere gratitude to Ding Zhichao for his invaluable assistance in
the field sampling work. We also appreciate the support and contributions of Zang Huihui in data
collection and model execution.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions

in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [CrossRef] [PubMed]
2. Safari, Y.; Delavar, M.-A. The influence of soil pollution by heavy metals on the land suitability for irrigated wheat farming in

Zanjan region, northwest Iran. Arab. J. Geosci. 2019, 12, 21. [CrossRef]
3. Zeng, S.; Ma, J.; Yang, Y.; Zhang, S.; Liu, G.-J.; Chen, F. Spatial assessment of farmland soil pollution and its potential human

health risks in China. Sci. Total Environ. 2019, 687, 642–653. [CrossRef] [PubMed]
4. Zhang, J.; Hua, P.; Krebs, P. Influences of land use and antecedent dry-weather period on pollution level and ecological risk of

heavy metals in road-deposited sediment. Environ. Pollut. 2017, 228, 158–168. [CrossRef] [PubMed]
5. Liu, H.; Zhang, Y.; Yang, J.; Wang, H.; Li, Y.; Shi, Y.; Li, D.; Holm, P.E.; Ou, Q.; Hu, W. Quantitative source apportionment, risk

assessment and distribution of heavy metals in agricultural soils from southern Shandong Peninsula of China. Sci. Total Environ.
2021, 767, 144879. [CrossRef] [PubMed]

6. Shi, J.; Zhao, D.; Ren, F.; Huang, L. Spatiotemporal variation of soil heavy metals in China: The pollution status and risk
assessment. Sci. Total Environ. 2023, 871, 161768. [CrossRef]

https://doi.org/10.1016/j.scitotenv.2018.06.068
https://www.ncbi.nlm.nih.gov/pubmed/29909337
https://doi.org/10.1007/s12517-018-4190-2
https://doi.org/10.1016/j.scitotenv.2019.05.291
https://www.ncbi.nlm.nih.gov/pubmed/31220718
https://doi.org/10.1016/j.envpol.2017.05.029
https://www.ncbi.nlm.nih.gov/pubmed/28528263
https://doi.org/10.1016/j.scitotenv.2020.144879
https://www.ncbi.nlm.nih.gov/pubmed/33550057
https://doi.org/10.1016/j.scitotenv.2023.161768


Minerals 2024, 14, 279 16 of 17

7. Wu, H.; Xu, C.; Wang, J.; Xiang, Y.; Ren, M.; Qie, H.; Zhang, Y.; Yao, R.; Li, L.; Lin, A. Health risk assessment based on source
identification of heavy metals: A case study of Beiyun River, China. Ecotoxicol. Environ. Saf. 2021, 213, 112046. [CrossRef]

8. Ren, S.; Song, C.; Ye, S.; Cheng, C.; Gao, P. The spatiotemporal variation in heavy metals in China’s farmland soil over the past
20 years: A meta-analysis. Sci. Total Environ. 2022, 806, 150322. [CrossRef]

9. Fei, X.; Lou, Z.; Christakos, G.; Ren, Z.; Liu, Q.; Lv, X. The association between heavy metal soil pollution and stomach cancer: A
case study in Hangzhou City, China. Environ. Geochem. Health 2018, 40, 2481–2490. [CrossRef]

10. Huang, J.; Guo, S.; Zeng, G.-M.; Li, F.; Gu, Y.; Shi, Y.; Shi, L.; Liu, W.; Peng, S. A new exploration of health risk assessment
quantification from sources of soil heavy metals under different land use. Environ. Pollut. 2018, 243, 49–58. [CrossRef] [PubMed]

11. Sun, L.; Liao, X.; Yan, X.; Zhu, G.; Ma, D. Evaluation of heavy metal and polycyclic aromatic hydrocarbons accumulation in plants
from typical industrial sites: Potential candidate in phytoremediation for co-contamination. Environ. Sci. Pollut. Res. 2014, 21,
12494–12504. [CrossRef] [PubMed]

12. Sun, L.; Guo, D.; Liu, K.; Meng, H.; Zheng, Y.; Yuan, F.; Zhu, G. Levels, sources, and spatial distribution of heavy metals in soils
from a typical coal industrial city of Tangshan, China. CATENA 2019, 175, 101–109. [CrossRef]

13. Zhang, J.; Li, R.; Zhang, X.; Bai, Y.; Cao, P.; Hua, P. Vehicular contribution of PAHs in size dependent road dust: A source
ap-portionment by PCA-MLR, PMF, and Unmix receptor models. Sci. Total Environ. 2019, 649, 1314–1322. [CrossRef] [PubMed]

14. Liao, S.; Jin, G.; Khan, M.A.; Zhu, Y.; Duan, L.; Luo, W.; Jia, J.; Zhong, B.; Ma, J.; Ye, Z.; et al. The quantitative source apportionment
of heavy metals in peri-urban agricultural soils with UNMIX and input fluxes analysis. Environ. Technol. Innov. 2021, 21, 101232.
[CrossRef]

15. Guan, Q.; Zhao, R.; Pan, N.; Wang, F.; Yang, Y.; Luo, H. Source apportionment of heavy metals in farmland soil of Wuwei, China:
Comparison of three receptor models. J. Clean. Prod. 2019, 237, 117792. [CrossRef]

16. Song, L.; Dai, Q.; Feng, Y.; Hopke, P.K. Estimating uncertainties of source contributions to PM(2.5) using moving window evolving
dispersion normalized PMF. Environ. Pollut. 2021, 286, 117576. [CrossRef] [PubMed]

17. Dong, B.; Zhang, R.; Gan, Y.; Cai, L.; Freidenreich, A.; Wang, K.; Guo, T.; Wang, H. Multiple methods for the identification of
heavy metal sources in cropland soils from a resource-based region. Sci. Total Environ. 2019, 651, 3127–3138. [CrossRef]

18. Fei, X.; Lou, Z.; Xiao, R.; Ren, Z.; Lv, X. Source analysis and source-oriented risk assessment of heavy metal pollution in
agricultural soils of different cultivated land qualities. J. Clean. Prod. 2022, 341, 130942. [CrossRef]

19. Fei, X.; Lou, Z.; Xiao, R.; Ren, Z.; Lv, X. Contamination assessment and source apportionment of heavy metals in agricultural soil
through the synthesis of PMF and GeogDetector models. Sci. Total Environ. 2020, 747, 141293. [CrossRef]

20. Zheng, J.; Wang, P.; Shi, H.; Zhuang, C.; Deng, Y.; Yang, X.; Huang, F.; Xiao, R. Quantitative source apportionment and driver
identification of soil heavy metals using advanced machine learning techniques. Sci. Total Environ. 2023, 873, 162371. [CrossRef]

21. DZ/T 0130–2006; The Specification of Testing Quality Management for Geological Laboratories. Ministry of Land and Resources
of the People’s Republic of China: Beijing, China, 2006.

22. Fei, X.; Christakos, G.; Lou, Z.; Xiao, R.; Lv, X.; Ren, Z. Assessment and source apportionment of toxic metal in soils using
integrated positive matrix factorization and Bayesian maximum entropy: A case study in Z county, southeastern China. Ecolog.
Indic. 2022, 145, 109647. [CrossRef]

23. Wu, Q.; Hu, W.; Wang, H.; Liu, P.; Wang, X.; Huang, B. Spatial distribution, ecological risk and sources of heavy metals in soils
from a typical economic development area, Southeastern China. Sci. Total Environ. 2021, 780, 146557. [CrossRef]
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