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Abstract: Bubble columns are used in the mining industry for mineral recovery but are also widely
utilized in the chemical and petrochemical industry. The hydrodynamic characteristics of their
performance is a field of interest with a number of points, which are nonetheless poorly understood,
and a considerable amount of methods have aimed to shed light on the flow regimes that prevail in the
columns. The study of the hydrodynamic part of a flotation process should consider characteristics
such as air flow, volumetric gas fraction, flow field, and bubble size, along with the mechanical and
design factors and pulp properties. The present work aims to elucidate the characteristics of the gas
phase of a hybrid flotation system. For this purpose, a hybrid flotation column was designed and
constructed and the bubbles size distributions at different radial positions in the flotation column were
computed by analyzing high resolution digital images. A patented electrical impedance technique
was employed to instantaneously measure the local volumetric gas fraction. Flow dispersion in the
column was studied by residence time distributions using conductivity tracers. The experimental
results are discussed to comprehend the variation in the gas fraction in the column. In particular, the
study showed that the size of the bubbles changed from the center to the walls of the column, and
this was observed both radically and vertically. Moreover, the size of the bubbles affected the volume
fractions, and no coalescence of the bubbles was observed. Finally, the dispersion of the tracer in the
working solution was distributed uniformly in the volume of the column, with a time difference for
the four positions of the column.

Keywords: froth flotation; hydrodynamics; column; combined flotation; electrolysis; fine particles

1. Introduction

The most important parameters that affect a flotation process are the slurry chemistry
and the hydrodynamics of the phenomenon [1]. The performance of a flotation column is
affected by the characteristics of the flow field [2] and, moreover, importance is also paid to
the “micro-hydrodynamics” observed due to the lack of homogeneity with the appearance
of the local turbulent flow, which is responsible for the bubble−particle interactions and
flotation kinetics [3].

Studies have shown that the presence of the gas phase changes the local characteris-
tics of the flow [4–6], while suspended fine solid particles can prevent the generation of
turbulent flow [5,7]. Therefore, the study of the hydrodynamic part of a flotation process
should consider characteristics such as air flow, volumetric gas fraction, and bubble size,
along with the mechanical and design factors and pulp properties.

Air flow (or superficial gas velocity) is an extremely important parameter in the
flotation process [8]. In mechanical flotation devices, the apparent velocity is recommended
to not exceed 3 cm/s, because at higher values, the efficiency of the process decreases and
entrainment is observed [9]; meanwhile, values smaller than 1 cm/s reduce the kinetics
of flotation. In general, air flow affects the air dispersion, bubble size, and volumetric gas
fraction [10]. Higher air flow rate values result in a lower particle residence time in the
froth zone, preventing bubble coalescence [11]. This leads to an increase in yield, as the
coalescence of bubbles is one of the reasons for the detachment of the particles from the
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bubbles. In addition, increasing the air flow also increases the surface area of the bubbles,
enhancing the probability of particle to bubble collision [12]. At large values, a reduction in
the efficiency of flotation is caused, provoking entrainment. Finally, on the other hand, low
air flow leads to the opposite results and, more specifically, to the rupture of the bubbles
in the foam phase and thus to a reduction in recovery [12]. Values of 0.01–0.03 m/s are
considered optimal gas velocity values for industrial scale columns. Increasing the air
volume fraction up to a point can improve the flotation kinetics; however, at high values
(>30%) it leads to a decrease in efficiency [13]. Furthermore, increasing the apparent velocity
leads to entrainment of the solid particles, reducing the selectivity of the process [14].

Most early studies of the flow in the flotation columns assumed that laminar flow
dominated. A significant amount of older research stated that the flow velocity in the
center of a column was upward, whereas near the walls it faced downward [15]. Further-
more, Xia et al. established that the gas–liquid flow in the column could cause turbulent
pulsation [16]. Recently, the prediction and evaluation of these parameters have been
managed utilizing CFD simulations. This approach allows for the simulation of various
experimental conditions in different flotation devices, such as the Denver [17], Jameson
cell [18], or flotation column [19]. Flow fields have been studied throughout the years and
developments in experimental fluid dynamics (EFDs) and computational fluid dynamics
(CFDs) have been managed. Particle image velocimetry (PIV) is an advanced EFD-based
velocity measurement method that was developed in the late 1970s. In general, the flota-
tion process is accompanied by turbulent flow, independent of the flotation devices. In a
turbulent flow field, mineral particles interrelate with the bubbles instantly after the injec-
tion of the gas phase in the system. Several models have been reported that describe the
turbulence in a flotation system, such as k-ε, k-ω, Reynolds stress model, and large eddies
simulations. Additionally, the simulation of the multiphase flow can be modeled with
either the Eulerian–Langrangian or the Eulerian–Eulerian approach. The former considers
that the fluid is a continuous medium and the bubbles and particles are discrete phases,
whereas the latter considers continuous and dispersed phases as continuous media that can
penetrate each other. It is important to consider that precise liquid–phase hydrodynamic
properties can be achieved from the numerical simulation of the single-phase flow. Yet,
the requirements for the prediction of the flotation efficiency cannot be assembled by the
single-phase flow simulation.

The size of the bubbles is crucial for the successful recovery of mineral particles with
regards to the technique of flotation. For instance, microbubbles have a lower relative ve-
locity, which offers a number of advantages for the flotation of fine particles. For a constant
volume of air in the cell, as the bubble size decreases, the number of bubbles increases
noticeably and leads to an increase in collision probability. Furthermore, decreasing the
bubble size increases the gas hold-up and increases the bubble concentration, which leads
to an increase in the probability of bubble−particle collision. To that end, the bubble size
and shape has been studied extensively over the past years and frameworks for a number
of techniques have been developed. The most common methods to measure conventional-
sized bubbles are optical and photographic techniques [20], image analysis [21,22], and
electrical impedance [23,24]. There are a large body of experimental data that confirm
that the use micro or nano bubbles enhance the recovery of fine mineral particles. To
that end, recently, a number of techniques have been developed that can be utilized for
measuring micro and nano bubble size distributions. Among these methods are laser pulse
methods [25], nanoparticle tracking analysis [26,27], laser-diffraction-based technologies
and dynamic light scattering (DLS) [28] X-ray techniques [29], and indirect measurements
through dissolved oxygen reverse estimation [30].

Several techniques have been developed that aim to measure the volumetric gas
fraction in a two-phase flow. Among them are capacitance sensors [31], magnetic reso-
nance [32,33], ultrasonic methods [34,35], radiation attenuation techniques [36,37], and
wire mesh sensors [38,39]. The void fraction in a two-phase flow can also be measured
by applying acoustic emission technology for measuring acoustic emission signals. The
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most widely used method is the optical method, as it is non-intrusive and accurate. The
measurements are made using high-speed cameras and tomography algorithms. In pre-
vious studies [40,41], it was found that the laser transmittance varies with the area of the
gas-liquid surface when an infrared laser beam passes through the gas−liquid two-phase
flow. Information about the gas void fraction of the two-phase flow can be derived from the
laser transmittance. Another method is the electrical capacitance tomography technique,
which images the two-phase flow in a pressurized pipeline and is used for industrial
applications [42]. In addition, electrical impedance tomography is a method that was
introduced in past decades it results in accurate estimations of the local gas phase dispersed
in a liquid medium, taking into account the local axial, radial, and angular components of
the dispersed phase [43].

Bubble columns are widely used in the chemical, mining, and petrochemical industry
and the hydrodynamic characteristics of their performance is a field of interest with a
number of aspects that are still poorly understood. Recently, a considerable amount of
work has been devoted to developing methods that aim to understand the flow regimes that
prevail in columns. Among these methods is the radioactive particle technique (RPT), which
is used to obtain flow measurements [44]. Two non-intrusive methods for two-phase flow
study are the laser doppler velocimetry (LDV) [37,38] and the particle image velocimetry
(PIV) [45–48]. Experimental data derived from these methods show that the flow field in a
system with bubble evolution could be transformed from laminar to turbulent.

The scope of the work is the construction of a hybrid flotation column that generates
in situ microbubbles, by employing electrolysis of water in order to study and characterize
the hydrodynamics of the combined microflotation. To this end, the structure of this work
is as follows: first, the bubble size distributions are determined by capturing photos of both
conventional and electrolytic bubbles, and their size is calculated using custom-made image
analysis software. Then, the turbidity of the flotation medium is estimated by employing a
scattered light method. The gas holdup is determined by utilizing an electrical technique
that estimates the volumetric gas fraction in the current flotation system. Finally, an NaCl
solution serves as a conductivity tracer for the estimation of the residence time distributions
in an effort to study the mixing conditions inside the flotation column.

2. Materials and Methods
2.1. Experimental Set Up—The Hybrid Flotation Column

The laboratory device used for mineral flotation in the present study was a laboratory
scale custom constructed column (Figure 1). The flotation column consisted of three
plexiglas cylindrical sections, connected with two flanges, and it was completely sealed.
Plexiglas is a preferential material used for laboratory-scale flotation columns mainly due
to its stability and, moreover, it can also be used for three-phase flow observation.

The column’s height was 60 cm, its diameter was 7 cm, and the width of the walls was
3 mm. At the top of the flotation column, around the outer surface, a concentric cylindrical
overflow weir was mounted where the recovered particles were collected. The column
could be divided into two zones (Figure 1b): the collection zone, where particles collided
with the air bubbles and the froth zone, where the recovered particles were collected.

Two boron-doped diamond (BDD) electrodes served as an electrolysis unit, as de-
scribed in a previous study [49]. The unit was supported on the inner wall of the flotation
column, 6 cm above the column’s bottom (Figure 2), so that the produced microbubbles
could be dispersed homogeneously in the column’s volume. The electrodes were placed
horizontally and parallel and connected to an external power supply. There are many
studies indicating that combining conventional-sized bubbles with microbubbles leads to
enhancing the fine particle recovery [50–52]. The hybrid column was capable of producing
bubbles with an average bubble diameter less than 40 and over 400 µm, enhancing the
flotation of fine mineral particles.
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Figure 2. (a) Ceramic porous sparger and (b) BDD electrolysis unit.

Given the fact that the gas phase of a flotation system is crucial for the successful at-
tachment of mineral particles onto bubbles, experiments for measuring the size and number
of the bubbles involved in the flotation slurry were conducted. The gas fraction involved
in the flotation process was characterized using both optical and electrical methods. The
optical methods were employed to determine the bubble size distributions and turbidity
of the flotation medium (correlation of bubbles size and number), whereas the electrical
diagnostic techniques were involved in the determination of the volumetric fraction of the
gas bubbles.

Materials and Reagents

The frother used in this research was the anionic surfactant sodium oleate (NaOl,
≥82% fatty acids, Riedel-de Haen, Seelze, Germany). The pH was adjusted using 0.1 M
NaOH/HCl (Pancreac); moreover, pine oil was employed as the frother to improve the
stability of the froth [53]. Sodium chloride (NaCl; VWR Chemicals, Radnor, PA, USA) was
utilized as a background electrolyte, and throughout the flotation experiments dionized
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water (~10 µS/cm) was used. The experiments were conducted on the aforementioned
hybrid electroflotation column.

2.2. Diagnostic Techniques
2.2.1. Optical Measurements—Bubble Size Distributions

The size of the bubbles was determined by capturing the bubble images using a
high resolution digital camera (a 20 MP Canon EOS 70, Tokyo, Japan) equipped with
macro lenses and extension tubes for efficient image magnification (Figure 3). A custom-
made image analysis software (BubbleSEdit software) was used to automatically detect the
contour of the bubbles and to measure their size and consequently obtain the corresponding
bubble size distributions [54].
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Figure 3. Camera for the optical measurements.

It is worth mentioning that in order to calculate the size of the bubbles from the
photos taken, it is necessary to convert the pixels to µm. The calibration of the optical
measurements was achieved by capturing a standard 56 µm thick wire with the camera
settings used per the experimental conditions. Moreover, the possible alteration of the
dimensions of x,y inside the flotation column in the presence of water was taken into
consideration.

2.2.2. Intensity of Bubbles-Induced Scattered Light Method

An optical system (Intensity of bubbles-Induced Scattered Light method) was able
to estimate the turbidity of the flotation medium by measuring the intensity of the light
that passed from one side to the opposite side of the flotation cell (non-intrusive measure-
ments) [55]. The change in light intensity due to scattering was related to the formation of
bubbles in the two-phase system. The factors determining this change were the number
and size of the dispersed air bubbles. The optical measurement system consisted of a cold
light source placed on one side of the flotation device, while a photodetector was placed on
the other side of the device (S121C, Thorlabs Inc., Newton, NJ, USA), which was connected
to a computer via USB and power meter software (PM101 Photodiode and Thermal Power
Sensor Interface with USB, RS232 (Thorlabs GmbH (Lübeck), Lübeck, Germany)) (Figure 4).
For the measurement, a frequency generator was used and the current was adjusted and
remained constant, so that any change in the intensity of the light recorded by the sensor
was only due to its diffusion.



Minerals 2024, 14, 344 6 of 20

Minerals 2024, 14, x FOR PEER REVIEW 6 of 21 
 

 

and size of the dispersed air bubbles. The optical measurement system consisted of a cold 

light source placed on one side of the flotation device, while a photodetector was placed 

on the other side of the device (S121C, Thorlabs Inc., Newton, NJ, USA), which was con-

nected to a computer via USB and power meter software (PM101 Photodiode and Thermal 

Power Sensor Interface with USB, RS232 (Thorlabs GmbH (Lübeck), Lübeck, Germany)) 

(Figure 4). For the measurement, a frequency generator was used and the current was 

adjusted and remained constant, so that any change in the intensity of the light recorded 

by the sensor was only due to its diffusion. 

 

Figure 4. (i) Experimental set up for the optical intensity of bubbles-induced scattered light method: 

(a) generator, (b) light source, (c) light detector, and (d) laptop for the data acquisition and pro-

cessing. (ii) Close up photo of the light source (b) and detector (c). 

2.2.3. Electrical Technique—Gas Fraction Measurements 

The electrical technique was employed to determine the volumetric gas fraction in 

the current flotation system. The gas holdup parameter affected the flotation performance 

and defined the bubble-flow density, which was mostly related to the flotation kinetics 

[56]. The estimation of the gas holdup at different locations on the flotation column could 

be established with a unique patented method called I-VED, which is an electrical spec-

troscopy impedance technique with multiplexer technology (Figure 5) [57]. 

  

Figure 4: (i) Experimental set up for the opticalintensity of bubbles-induced scattered light 

method: (a) generator, (b) light source, (c) light detector, (d) laptop for the data acquisition 

and processing. (ii) close up photo of the light source (b) and detector (c). 

 

(i) (ii) 

(c) (b

) 

(a) 

(d) 

Figure 4. (i) Experimental set up for the optical intensity of bubbles-induced scattered light method:
(a) generator, (b) light source, (c) light detector, and (d) laptop for the data acquisition and processing.
(ii) Close up photo of the light source (b) and detector (c).

2.2.3. Electrical Technique—Gas Fraction Measurements

The electrical technique was employed to determine the volumetric gas fraction in
the current flotation system. The gas holdup parameter affected the flotation performance
and defined the bubble-flow density, which was mostly related to the flotation kinetics [56].
The estimation of the gas holdup at different locations on the flotation column could be
established with a unique patented method called I-VED, which is an electrical spectroscopy
impedance technique with multiplexer technology (Figure 5) [57].
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Figure 5. (i) (a)The annular electrodes in the channel for measuring the electrical impedance of the
passing medium and (b) the four different channels along columns height for measuring the volumet-
ric gas fraction with multiplex technology. (ii) Experimental set up for the electrical measurements:
(a) electrical impedance technique I-VED with multiplexer technology, (b) data acquisition card,
(c) digital multimeter, and (d) terminal resistance.
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The technique measured the ohmic component of electrical impedance, which is equiv-
alent to the electrical resistance or vice versa of the electrical conductivity of the medium.
The principle of the present technique is based on the fact that the formation of a gas phase
(non-conductive) in a liquid volume (conductive phase), increases the electrical resistance
(or equivalently reduces the electrical impedance) of the medium. The change in electrical
resistance was affected by the quality characteristics of the bubbles, such as their size and
number. The current technique permitted the evolution of local volumetric gas fraction
during the flotation process. This expanded the single-point information by showing, in
real time, the dispersion of the gas phase along the column height. Electrical impedance of
the studied flotation medium occurred by employing metallic electrodes that were placed in
pairs along the column’s height (Ch1–4, Figure 5i(a)). The distance between the electrodes
of each pair was 32 mm (Figure 5i(a)) and corresponded to D/2 of the column (where D
is the inner diameter of the column). According to previous experimental data [58,59], an
electrode distance equal to D/2 ensured the radial homogeneity of the impedance mea-
surements, while maintaining the local behavior of the measurement for the corresponding
column height. The impedance measured was the equivalent intervening between the
opposed electrodes. The electrical impedance data obtained during measurement were
transformed into gas fraction time series using Maxwell’s model. Measurements were
conducted at a frequency of 25 kHz in order to electrically excite the flow inside the column,
generating an input current passing through the medium. Experimental data indicated
that an excitation frequency of 25 kHz provided almost pure resistive behavior.

The present diagnostic technique took advantage of the fact that the electrical impedance
of the medium used in the flotation runs decreased in the presence of air (gas phase). Therefore,
the difference in the measured impedance of the flotation medium, before and after the
introduction of air, could be transformed to the gas phase evolution in time and height.

The specialized electronic equipment used to perform measurements with the I-VED
technique consisted of the following devices:

• Variable frequency signal generator (20 MHz, 33220A, Agilent, Santa Clara, CA, USA)
• Data acquisition card (NI USB-6363, X Series Multifunction DAQ, National Instru-

ments, Austin, TX, USA, 96 kHz/16 bit).
• Digital multimeter 51/2-digit (34405A, Agilent)
• Laptop (ASUSPRO, 4 GB RAM) with Sigview 5ch I-VED FFT v4.1 software.

2.2.4. Flow Field Investigation

An NaCl solution was utilized as a conductivity tracer for the estimation of the
residence time distributions in an effort to study the mixing conditions inside the flotation
column when a liquid jet was discharged. In particular, in this method, a high conductivity
solution was injected into a solution with a lower conductivity and at the same time
the electrical resistance of the mixture was measured locally at four different heights
of the column, while dispersed air (0.7 L/min) was also inserted. Essentially, the time
evolution of the electrical resistance developed described the flow field along the height
of the column. Certainly, the presence of air bubbles strongly affected the flow field. The
electrical resistance was measured using the electrical impedance technique I-VED using
multiplexing, the principle of operation and measurement processing. With the use of
multiplexing, the time evolution of the dispersion of the injection current in the liquid of
the device in the four measurement channels of the gas phase fraction was simultaneously
studied. In each experiment, the column contained an NaCl aqueous solution with a low
specific conductivity (150–300 µS/cm) and 3 mL of an NaCl aqueous solution of higher
specific conductivity (90 mS/cm) was injected into it. The solution was injected close to the
bottom and centrally so that the dispersion was as homogeneous as possible. The sampling
frequency of the measurements in the four channels was 25 kHz [60].
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3. Results and Discussion
3.1. Bubble Size Distribution

Figure 6 shows illustrative photographs of dispersed air bubbles in the flotation
column in the presence of sodium oleate as the frother. The experiments were conducted
at a concentration of 120 mg/L, which was the optimal amount during the flotation
experiments realized using the same apparatus, when sodium oleate was used as the
collector for magnesite particles [49]. The photographs were captured at a steady state for
the four different heights of the column (y = 17, 26, 36.2, and 46.5 cm) and at four radial
distances (z = 1, 5, 10, and 15 mm) from the inner wall of the column.
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Figure 6. Dispersed air bubble images at four different heights y = 17, 26, 36.2, and 46.5 cm; four
radial distances 1, 5, 10, and 15 mm from the column inner wall; and [SO] = 120 mg/L.

Capturing pictures at different radial distances aimed to study the dispersion of the bub-
bles in the cross-section of the two-phase flow inside the flotation column. Visual observation
of the indicative photos showed that the dispersion of the bubbles was not radially homoge-
neous, as the density of the bubble population appeared to be lower near the walls compared
with the number of bubbles at the center of the column. Figure 7 presents the corresponding
bubble size distributions for all positions and radial distances and, more specifically, shows
the average diameter (dB,av) and the standard deviation (StDev (dB,av)) for each distribution.
It is worth mentioning that for each distribution, at least 500 bubbles were processed in order
for the average calculated size to be statistically correct.
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The results showed that at the lowest height of y1 = 17 cm and at a distance of 1 mm
from the inner wall, the average size of the bubbles was 148 µm (±54), while at a radial
distance of 15 mm, it was 246 µm (±128). Regarding the position y2 = 26 cm near the
wall of the column, the average bubble size was 191 µm (±69), while closer to the center
(radial distance 15 mm) it was 230 µm (±91). The trend of increasing in size while moving
radially towards the center of the column followed from the data derived from the pictures
captured in position y3 = 36.2 cm: close to the inner wall, the average size of the bubbles
was 176 µm (±62), while at a radial distance of 15 mm, it was 210 µm (±90). In addition,
the bubble distributions of the highest position (y4 = 46.5 cm) appeared to follow the same
trend. Near the wall, the average size was 148 µm (±54), while closer to the center it was
246 µm (±128). Generally, it was observed that in all four vertical positions of the column,
the largest bubbles were located close to the center of the column, while the smaller bubbles
were closer to the walls. This was attributed to the fact that the coarser bubbles rose rapidly
in the center of the column, driving the smaller ones through recirculation to settle near the
walls. The bubbles in the center line drew the liquid upwards. This created an imbalance
and thus caused a kind of recirculation, and the liquid closer to the center flowed upwards
while that closer to the wall flowed downwards. If the velocity of the downflow was greater
than the relative velocity ub of the bubbles, the bubbles appeared to move downwards [61].
Finally, no aggregation of the bubbles was observed along the height of the column, as the
size of the bubbles did not seem to increase significantly at the highest locations. When the
bubbles “met”, they bounced off each other without agglomerating because of the presence
of the adsorbed frother on their surface [62].

Figure 8 outlines the effect of the frother concentration on the average diameter of
the dispersed air bubbles for the four heights, and in particular for the radial position
z4 = 15 mm, which was judged to be the most representative position of the two-phase
flow. The experimental data depict that the average size of the bubbles decreased when
the frother concentration increased and did not change significantly in height [63]. It was
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generally observed that the same trend was followed for the bubble size, both vertically
and radially, for the different positions in the column.
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Figure 8. Effect of frother concentration on the average bubble diameter; dispersed air; and
[SO] = 0, 60, 120, and 240 mg/L.

The presence of the surfactant led the solution surface tension decrease, resulting in a
noticeable reduction in the bubbles size compared with the bubbles in the absence of a frother.

Indicative photographs of the bubbles produced with electrolysis of water in the
flotation column in the presence of NaCl electrolyte (0.1 M) are presented in Figure 9. The
photos were captured at the four aforementioned heights and radial distances of the column
at steady state to study the dispersion of the electrolytic bubbles in the two-phase flow.
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Figure 10 shows the bubble size distributions. The observation of the photos led to the
assumption that the distribution of electrolytic bubbles was homogeneous, both vertically
and radially.
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In summary, Figure 11 indicates the results of the effect of the concentration of the
sodium oleate frother on the average size of the electrolytic air bubbles in the flotation col-
umn for the four positions along the height of the column for the radial position z4 = 15 mm,
which was considered the most representative of the flow. The average bubble size de-
creased slightly with increasing the frother concentration and did not change appreciably
at the different vertical positions.
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3.2. Volumetric Gas Fraction

Under the framework of studying the hydrodynamic characteristics of the hybrid
electroflotation column, the effect of the frother concentration on the volumetric gas fraction
of the dispersed air was examined. Figure 12 presents the time series of the gas fraction
for the four different heights of the flotation column (y = 17, 26, 36.2, and 46.5 cm) in the
presence of sodium oleate (120 mg/L). In the first minute, the recorded fraction was zero
and did not change, as no air was introduced to the column. In the sixth second, a sharp
increase in the volume fraction was observed, while the two-phase system reached a steady
state 50 s after the introduction of air. Air entrainment took place for 5 min, and the mean
value of the volumetric gas fraction from the measurements recorded in the steady state
region of each time series for locations y1 = 17 cm, y2 = 26 cm, y3 = 36.2 cm, and y4 = 46.5 cm
was 5.4%, 5.6%, 5.8%, and 8%, respectively. The signals obtained in the presence of the
highest frother concentration differed regarding the frequency of the peaks, compared with
the signals with a lower oleate concentration.
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Figure 12. Gas fraction (ε) time evolution at four different heights y = 17, 26, 36.2, and 46.5 cm;
dispersed air; [SO]= 120 mg/L; and 0.7 L/min.

The time that each height reached steady state varied by 1 s and the positions near the
porous sparger achieved a steady state quicker. Because of buoyancy, the bubbles moved
with a relative velocity to the liquid and thus had their own dynamics. Because of this, the
gas phase fraction reached a steady state faster than the liquid flow.

Figure 13 shows the effect of the frother concentration (0, 60, 120, and 240 mg/L) on
the variations in the electrical signal of the volumetric gas fraction during 10 s of injection
(steady state). The peak signals in the presence of 60 mg/L sodium oleate depicted a higher
intensity and this was attributed to the larger sized individual bubbles, which increased at
a higher speed. Furthermore, when the frother concentration was 120 mg/L, the volumetric
fraction was higher as the smaller bubbles that formed had a longer residence time in
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the column. Combining the data derived from the bubble size distributions at the same
concentrations with the electrical signal measurements to calculate the volume fraction of
the gas phase, it was concluded that the presence of smaller bubbles led to larger fractions
as smaller bubbles had a longer residence time in the column due to a lower buoyancy
speed, as already mentioned.
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Figure 13. Gas fraction (ε) fluctuations with time under different frother concentrations, at four different
heights y = 17, 26, 36.2, and 46.5 cm; dispersed air; [SO] = 0, 60, 120, and 240 mg/L; and 0.7 L/min.

Moreover, the difference observed in the values of the gas fractions could also be
attributed to the limited movement of the bubbles due to the adsorbed layer of the frother.
More specifically, the coefficient of the drag force exerted on the bubbles increased, and
as a result, the buoyancy speed decreased, which led to recording higher volumetric
fractions [64]. The fact that the electrical signals were in line with the optical measurements
proves that although a photograph represented the instantaneous state of the two-phase
flow, the information it contained was sufficient to describe the phenomenon overall.

Figure 14 presents the effect of the frother concentration on the evolution of the gas
fraction in the height of the flotation column. The final volume fraction of the gas phase (εf)
was calculated from the average values of the last measurements of the steady state region
from each time series in Figure 12. Apart from indicating the values of the gas fraction, the
electrical signals could furthermore be utilized to qualitatively characterize the two-phase
flow. Initially, Kostoglou et al. theoretically studied the interactions between adjacent bub-
bles in two-phase flow as a first attempt to characterize their size through electrical signal
fluctuations [65]. Then, Evgenidis and Karapantsios demonstrated experimentally that the
intensity and frequency of fluctuations around the mean value of the air volume fraction,
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in a two-phase flow with constant liquid and gas phase supply, depended on the mean
bubble size [66]. More specifically, they developed an empirical relationship according to
which the ratio of the standard deviation to the mean value of the air volumetric fraction
(StDev (εav)/εav) increased with increasing the bubble size of the two-phase medium. The
above possibility will be explored in the future.
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3.3. Intensity of Bubble-Induced Scattered Light Method

To characterize the gas phase of the flotation system in the hybrid flotation column,
experiments were carried out using the scattered light optical method. Figure 15 shows the
time series of the light energy intensity (W(t)) for the four vertical positions of the flotation
column in the presence of dispersed air in the absence of a frother and in the presence of
three different concentrations, 60, 120 and 240 mg/L.

Minerals 2024, 14, x FOR PEER REVIEW 16 of 21 
 

 

 

Figure 15. Change in energy intensity at four different heights y = 17, 26, 36.2, and 46.5 cm; dispersed 

air; [SO] = 0, 60, 120, and 240 mg/L; 0.7 L/min. 

We conducted a comparative study to manage the effect of the frother concentration 

on the change in the energy of the light source for the four vertical positions in the pres-

ence of dispersed air. As mentioned, the concentrations we studied were 60, 120, and 240 

mg/L. The results depict that a smaller change in energy took place in the presence of 

water (20–40%) with the lowest frother concentration (40–60%), while as the concentration 

of oleate increased, the change reached 90%. It was obvious that the change in energy 

depended on the size of the bubbles of the gas phase and, more specifically, the larger the 

size of the bubbles, the smaller the change in outward energy, as the light diffused less. In 

addition, the smaller bubbles moved in the bulk and covered the entire volume of the 

column, causing the light to diffuse intensely; therefore, a greater change in the recorded 

energy was observed [67]. The decrease in the light intensity appeared to be uniform for 

all four vertical positions of the column. This shows that the gas phase was homogene-

ously distributed along the height of the column and, furthermore, the average size of the 

bubbles and their distribution did not differ significantly in the different positions. 

Figure 16 shows the transmitted energy (%) of the light source due to scattering in 

the flotation column for various column heights and frother concentrations in presence of 

dispersed air. The greatest energy reduction was observed at the highest position of the 

column (y4 = 46.5 cm). It was observed that at the highest positions and for sodium oleate 

concentrations of 120 and 240 mg/L, a small percentage of energy that reached the oppo-

site side of the column was recorded, as the average bubble size was smaller due to a 

reduction in the surface tension. 

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

1.2  Water

 [SO]= 120 mg/L

 [SO]= 60 mg/L

 [SO]= 240 mg/L

E
n

e
rg

y
 (

W
)

Time (s)

y2=26 cm

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

 Water

 [SO]= 120 mg/L

 [SO]= 60 mg/L

 [SO]= 240 mg/L

E
n

e
rg

y
 (

W
)

Time (s)

y4=46.5 cm

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

1.2  Water

 [SO]= 120 mg/L

 [SO]= 60 mg/L

 [SO]= 240 mg/L

E
n

e
rg

y
 (

W
)

Time (s)

y1=17 cm

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

 Water

 [SO]= 120 mg/L

 [SO]= 60 mg/l

 [SO]= 240 mg/L

E
n

e
rg

y
 (

W
)

Time (s)

y3=36.2 cm

Figure 15. Change in energy intensity at four different heights y = 17, 26, 36.2, and 46.5 cm; dispersed
air; [SO] = 0, 60, 120, and 240 mg/L; 0.7 L/min.



Minerals 2024, 14, 344 15 of 20

In the first 60 s of the measurement, the intensity of light that passed from one side of the
device to the other before the introduction of air (baseline) was recorded. The light intensity
of the single-phase medium was constant with time as the composition of the slurry did not
change, and thus no diffusion of the energy occurred. The air intake (0.7 L/min) after 60 s
was accompanied by a sharp drop in light intensity. The light diffused over the dispersed air
bubbles it encountered along its path and the energy of the light beam exiting the other wall
of the device became less than that of the light source. Air was introduced for 5 min and a
steady state was achieved after about 10 s. Moreover, it was observed that at the end of the
air intake and, in particular, regarding the higher position, y4 did not return to its initial state
(single-phase medium) as foam had formed, resulting in the impossible gradual restoration of
the energy to the levels of the single-phase liquid medium.

We conducted a comparative study to manage the effect of the frother concentration
on the change in the energy of the light source for the four vertical positions in the presence
of dispersed air. As mentioned, the concentrations we studied were 60, 120, and 240 mg/L.
The results depict that a smaller change in energy took place in the presence of water
(20–40%) with the lowest frother concentration (40–60%), while as the concentration of
oleate increased, the change reached 90%. It was obvious that the change in energy
depended on the size of the bubbles of the gas phase and, more specifically, the larger the
size of the bubbles, the smaller the change in outward energy, as the light diffused less.
In addition, the smaller bubbles moved in the bulk and covered the entire volume of the
column, causing the light to diffuse intensely; therefore, a greater change in the recorded
energy was observed [67]. The decrease in the light intensity appeared to be uniform for all
four vertical positions of the column. This shows that the gas phase was homogeneously
distributed along the height of the column and, furthermore, the average size of the bubbles
and their distribution did not differ significantly in the different positions.

Figure 16 shows the transmitted energy (%) of the light source due to scattering in
the flotation column for various column heights and frother concentrations in presence
of dispersed air. The greatest energy reduction was observed at the highest position of
the column (y4 = 46.5 cm). It was observed that at the highest positions and for sodium
oleate concentrations of 120 and 240 mg/L, a small percentage of energy that reached the
opposite side of the column was recorded, as the average bubble size was smaller due to a
reduction in the surface tension.
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Figure 16. Effect of the frother concentration on the change in energy intensity at four different
heights y = 17, 26, 36.2, and 46.5 cm; dispersed air; [SO] = 0, 60, 120, and 240 mg/L; 0.7 L/min.
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Figure 17 summarizes the results of the hydrodynamic study on the flotation column
regarding the effect of the frother concentration (red line) on the average size of the dis-
persed air bubbles, (black line) on the time series of the volumetric gas fraction, and (blue
line) the energy of the light source that passes through the bulk due to diffusion, for the
four different positions of the column in height. It can be concluded that at the highest
positions, y3 and y4, the increase in the concentration of the frother led to an increase in the
volumetric gas fraction, while the recorded energy of the light that reached the detector
was lower due its diffusion at the bubble surfaces. The average bubble size decreased
with increasing the concentration; however, it did not change significantly at the different
vertical positions of the column. The measurements were conducted simultaneously.
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Figure 17. Pivot graph of the frother concentration effect on the (red line) bubble size distributions,
(black line) mean gas fraction, (blue line) change in light intensity due to diffusion at y = 36.2 cm, and
dispersed air.

3.4. Flow Dispersion

Figure 18 presents the evolution of the electrical resistance of the dispersion as coun-
tered by the electrode pairs. The evolution of the electrical resistance was due to the
conducting tracer injected in the flow field and it was representative of the residence time
distributions of the injection stream in the flotation column at the four different height posi-
tions in the presence of sodium oleate (120 mg/L) and dispersed air flow (0.7 L/min). Once
a steady state was accomplished, the tracer was injected close to the ceramic sparger in or-
der to ensure a presentative “picture” of the two-phase flow inside the column. Figure 18a
shows that the dispersion of the tracer in the working solution was distributed uniformly in
the volume of the column, while Figure 18b shows that the injection current was dispersed
along the height of the column and reached the four positions with a time difference equal
to 1 s, while a steady state (plateau) occurred after 7 s. The presence of bubbles in the flow
affected the residence time distribution of the liquid in the column in two ways; initially, by
forcing the dispersion of the tracer and, additionally, by controlling the time required to
restore equilibrium at different heights. As the bubbles rose to the free surface of the liquid,
a velocity profile was created around them, and thus the dispersion of the injection stream
in the column liquid was enhanced.
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4. Conclusions

In the present work, an experimental study of some of the hydrodynamic character-
istics of a hybrid electroflotation column was conducted. For this purpose, optical and
electrical methods were utilized to investigate the bubble size distributions, the volumetric
gas fraction, and the flow field evolution in the hybrid column.

The experimental results can be concluded as follows:

• The study of the size distribution of the bubbles in the flotation column showed that at
the four vertical positions of the column, coarser bubbles appeared in the center of the
column, while smaller bubbles appeared closer to the walls through the recirculation
zone near the walls. The average bubble size decreased when the frother concentration
increased and did not change considerably at the different vertical positions. In general,
that trend was observed both vertically and radially for the different positions in the
column. Moreover, no coalescence of the bubbles was observed.

• The measurement of the volume fraction showed that the presence of smaller bubbles
led to larger air fractions due to a lower buoyancy velocity and an increase in frother
concentration as the volume fraction increased.

• The experiments realized with the scattered light optical method for correlating the
bubble size and number showed that an increase in frother concentration caused a
greater change in the energy of the light source passing through the flotation devices,
due to diffusion over smaller and numerous bubbles.

• The study of the residence time distribution in the flotation column depicted that the
dispersion led to a uniform trace concentration along the column and the steady state
occurred 3 s after the dispersed air was inserted.
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