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Abstract: The accurate reconstruction of the early Cambrian paleoclimate and paleoceanographic
conditions on the Yangtze Plate is crucial for understanding the ancient environment during the
Cambrian Explosion. It is also a key factor in understanding the ecological habits of organisms
during the Cambrian Explosion. The study utilized field outcrops, thin section analysis, and major
and trace elements to investigate the sedimentary environment, provenance, paleoweathering, and
paleoclimate of the Lower Cambrian Hongjingshao (HJS) Formation (Cambrian Stage 3, ~515 Ma) in
the Yangtze Basin, eastern Yunnan, SW China. The HJS sandstones are composed of 10 lithofacies,
including massive and weakly bedded gravel supported by coarse sandstone (Gm), trough cross-
bedded sandstone (St), planar cross-bedded sandstone (Sp), ripple cross-laminated sandstone (Sr),
horizontal bedded sandstone (Sh), scour-fill sandstone (Se), massive sandstone (Sm), fine to medium
sandstone with thin bed muddy siltstone (Fl), muddy siltstone (Fsc), and mudstone (Fm). On the
basis of these lithofacies, channel fill and over-bank deposits in delta and shallow shelf depositional
environments are suggested for HJS Formation. The major elements-based provenance discriminant
function and mineral composition indicate that felsic rocks from the recycled orogen and continental
block are the main sediment source terrane for the HJS sandstones of the study area. CIA, PIA, and
CIW values range from 71.29 to 93.72, indicating an intermediate to intense chemical weathering and
semiarid to humid climate conditions in Cambrian Stage 3. The research findings have clarified the
paleoclimate and paleoceanographic environment of the Early Cambrian in the Yangtze region, which
is of significant importance for understanding the early biological and ecological marine environment
in the study area.

Keywords: lithofacies; geochemistry; shallow marine depositional environment; provenance; chemical
weathering; Cambrian Stage 3; Yangtze Basin

1. Introduction

Chemical compositions of sedimentary rocks provide important information for re-
constructing depositional environments, paleoclimate, and provenance of sedimentary
basins [1–9]. The acquisition of the geochemical properties of sedimentary rocks is of great
interest. Geochemical methods in reconstructing paleoenvironments have been increas-
ingly emphasized in sedimentology research [10,11]. Recent studies have demonstrated
the discriminative potential and sensitiveness of geochemical data against many factors,
such as the source-area lithology, weathering, redox conditions, and tectonic regime of
the basin [3,5,12,13]. Trace elements (e.g., V, Ni, and Co) of clastic sediments are used
as effective tracers of provenance and depositional environments [6,14,15]. Lithofacies,
classified based on lithological details, sedimentary structures, composition, and various
physical characteristics, are significantly useful for understanding sedimentary facies [6,8].

Several studies have been published in the past describing the sedimentary envi-
ronments and facies, paleogeography, and source rock potential of the HJS Formation in
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the southwestern Yangtze Basin [16,17]. However, sedimentological, petrographic, and
geochemical studies focusing on the characterization and reconstruction of the depositional
environments, source rock composition, and paleoweathering conditions are still scarce.
Therefore, we are conducting a petrological characterization to constrain the depositional
settings using sedimentological observations, at the core scale to the micron scale, in six
complete outcrop profiles, to allow for a more complete sedimentological, petrograph-
ical, and geochemical study. This study introduces a unique dataset on lithology and
major/trace elements from the HJS Formation in eastern Yunnan, a renowned area asso-
ciated with the “Cambrian Explosion of life”. The depositional environment, source rock
composition, and paleoweathering conditions were discussed. The findings from this study
are of great significance for reconstructing the paleoenvironment in the western Yangtze
Basin on a regional scale and for providing the characteristics of ancient structures and
marine environments during Cambrian Stage 3 on the western edge of the Yangtze Basin,
SW China.

2. Geological Setting

The Cambrian strata is widely distributed in eastern Yunnan (Figure 1A) and forms
part of the Yangtze Basin, located in the South China Block (Figure 1C). The Cambrian
Stage 3 Hongjingshao (HJS) Formation is well exposed in Kunming, Wuding, Luquan,
and Huize (Figure 1A) and mainly consists of coarse sandstone, medium sandstone, fine
sandstone, and siltstone (Figure 1B). In the Wuding–Kunming area, the HJS Formation
is predominately composed of reddish-purple, grayish-green, thick to very thick-bedded
sandstone, along with rare thin-bedded reddish–brown shale [16,18]. In the Huize area, the
HJS Formation typically consists of gray sandstone, interbedded with thin-bedded dark
gray siltstone [19].
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The sedimentation of the Cambrian Stage 3 HJS Formation began around 515 million
years ago [20]. Ding et al. (2022) suggested that the HJS Formation in the Malong county,
nearby Kunming, was deposited in an intertidal environment [16]. Sedimentary and
lithofacies evolution at the Wulongcun (Wuding) section indicates that early Cambrian
HJS successions in East Yunnan were deposited in a delta environment within the Yangtze
Basin [20]. The samples were collected from Kunming, Wuding, Luquan, and Huize
(Figure 1A).

3. Materials and Methods

The HJS Formation in eastern Yunnan is well exposed, with clear boundaries (Figure 2A,C).
A total of 52 sandstone and shale samples were collected for petrological analysis. Seventeen
sandstone and shale samples were collected for elemental analysis. The lithology and the
locations of the 17 HJS samples are listed in Table 1. All samples were stored in plastic bags
to ensure as little oxidation as possible.

Table 1. Lithology, lithofacies, and locations of HJS samples collected for elemental analysis.

Sample No. Location GPS Lithology Lithofacies

WLC-40 Wulongcun,
Wuding

25◦34′55′′ N
102◦22′49′′ E

Light brown to light
grey medium-to-coarse

sandstone
St

WLC-42 Wulongcun,
Wuding

25◦34′55′′ N
102◦22′49′′ E

Light grey
medium-to-coarse

sandstone
St, Sh

XES-33 Xiaershao,
Luquan

25◦39′31′′ N
102◦35′5′′ E

Light gray, thin-bedded
medium to coarse

sandstone
Sm

GLC-01 Guliancun,
Kunming

24◦52′51′′ N
102◦38′58′′ E

Greyish-green sandy
mudstone Fm

GLC-03 Guliancun,
Kunming

24◦52′51′′ N
102◦38′58′′ E

Light brown
thin-bedded siltstone

and sandstone
Sm

GLC-05 Guliancun,
Kunming

24◦52′51′′ N
102◦38′58′′ E

Brownish-red muddy
siltstone Fsc

GLC-12 Guliancun,
Kunming

24◦52′51′′ N
102◦38′58′′ E

Brownish-red siltstone
and fine sandstone Sh

GLC-14 Guliancun,
Kunming

24◦52′51′′ N
102◦38′58′′ E

Brownish-red muddy
siltstone Fl

GLC-20 Guliancun,
Kunming

24◦52′51′′ N
102◦38′58′′ E

Brownish-red muddy
siltstone Fl

GLC-22 Guliancun,
Kunming

24◦52′51′′ N
102◦38′58′′ E

Brownish-red to light
grey siltstone, fine

sandstone
Fsc

GLC-26 Guliancun,
Kunming

24◦52′51′′ N
102◦38′58′′ E

Light grey mudstone
and silty mudstone Fm

FZQ-13 Fengziqing,
Huize

26◦30′52′′ N
103◦16′26′′ E

Grey muddy sandstone,
siltstone Fm

FZQ-14 Fengziqing,
Huize

26◦30′52′′ N
103◦16′26′′ E

Grey muddy sandstone,
siltstone Fm

HT-01 Heite, Luquan 25◦42′41′′ N
102◦40′59′′ E

Medium-coarse
sandstone with muddy

gravel
Sp

LBS-01 Longbaoshan,
Kunming

24◦57′20′′ N
102◦48′41′′ E

Medium-to-coarse
sandstone Sm

LBS-05 Longbaoshan,
Kunming

24◦57′20′′ N
102◦48′41′′ E Sandy mudstone Fsc

LBS-07 Longbaoshan,
Kunming

24◦57′20′′ N
102◦48′41′′ E

Medium-to-coarse
sandstone St
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Figure 2. Outcrops of Hongjingshao Formation in eastern Yunnan, showing lithology and sedimentary
characteristics. Sample positions were marked in the outcrop sections. (A) Thick layer of medium-
to-coarse, light brown to light grey sandstone (WLC-40) located near the boundary between the
Lower Cambrian Yuanshan Formation and Hongjingshao Formaiton. Wulongcun, Wuding County.
(B) Thick layer of medium-to-coarse, light grey sandstone (WLC-42). Parallel bedding and cross
bedding. Wulongcun, Wuding County. (C) Light gray, medium-thin-bedded coarse sandstone
(XES-33) located near the boundary between the Lower Cambrian Hongjingshao Formation and
Wulongqing Formation. Xiershao, Luquan County. (D) Greyish-green sandy mudstone (GLC-01)
located near the boundary between the Lower Cambrian Yuanshan Formation and Hongjingshao
Formation. Guliancun, Kunming. (E) Light brown siltstone and sandstone interbedded with grey
silty mudstone (GLC-03). Brownish-red muddy siltstone (GLC-05) interbedded with light grey
to brownish fine sandstone. Guliancun, Kunming. (F) Brownish-red siltstone and fine sandstone
(GLC-12). Guliancun, Kunming. (G) Brownish-red muddy siltstone (GLC-14). Guliancun, Kunming.
(H) Brownish-red muddy siltstone (GLC-20). Guliancun, Kunming. (I) Brownish-red to light grey
siltstone, fine sandstone (GLC-22). Light grey mudstone and silty mudstone (GLC-26). Guliancun,
Kunming. (J) Grey muddy sandstone, siltstone (FZQ-13 and FZQ-14). Fengziqing, Huize County.
(K) Medium-coarse sandstone with muddy gravel (HT-01). Heite, Luquan County. (L) Outcrop of the
Hongjingshao Formation composed of medium-bedded coarse sandstone (LBS-1 and LBS-07) and a
thin layer of sandy mudstone (LBS-05).

The samples for geochemical analysis were crushed to a size of less than 200 mesh.
Major element data were collected using scanning X-ray fluorescence (XRF), using an
RIX2100 (RiGAKU) spectrometer (Akishima-shi, Tokyo, Japan) in the Key Laboratory of
Continental Dynamics, Northwest University, China. The analytical uncertainty is usually
<5%.



Minerals 2024, 14, 445 5 of 21

The concentrations of trace elements and REEs (rare earth elements) were determined
using an Agilent 7900 Inductively Coupled Plasma Mass Spectrometer (ICP-MS) (Agilent
Technologies Inc., Santa Clara, CA, USA) in the State Key Laboratory of Continental
Dynamics, Northwest University, China. The analytical precision is generally within 5%.

The identification of the mineral composition in sandstone is mainly based on thin
sections. The composition of source rocks is primarily based on the elemental composition
of trace elements and discriminate diagrams, such as Cr/V vs. Y/Ni provenance discrimi-
nation diagrams, La/Yb vs. ∑REEs provenance discrimination diagrams [21], La/Th vs.
Hf discrimination diagrams [22], and F1 vs. F2 discrimination diagrams [23].

4. Results
4.1. Lithofacies and Facies Associations

Lithofacies and facies association in this paper are based on color, lithology, erosional
(scour, etc.), and depositional structures (bedding, cross stratification, etc.). A modified
version of Miall’s lithofacies analysis was employed (1985) and the lithofacies’ classification
utilizes a letter-coding system [24]. The lithofacies codes consist of the following two parts:
a capital letter indicating the modal grain size (G for gravel, S for sand, and F for fine-
grained particles) and a lowercase letter or letters chosen to represent a distinctive texture
or structure of each lithofacies [24]. Ten lithofacies (LFs) were recognized according to
outcrops and hand-sample observations (Table 2). These lithofacies were identified and
delineated into three principal facies associations (FAs) in the HJS Formation, combining
lithofacies of similar depositional environments.

Table 2. Description and interpretation of 10 lithofacies of the HJS Formation in eastern Yunnan.
Lithofacies were mainly divided by color, sedimentary structure, and grain size characteristics.

Facies Code * Lithology Facies
Association Descriptions Interpretation

Gm Bedded gravel FA1 Massive bedding. Poorly stratified conglomerate with
sub-rounded-to-rounded clasts

Longitudinal bars
Lag deposits

St
Medium-to-coarse
sandstone, maybe

pebbly
FA1 Trough cross-beds. Medium-to-coarse grain size,

occasionally pebbly. Beds average 30 to 50 cm thick
3D dune migration, lower

flow regime, scour fills

Sp
Sandstone,

medium-to-coarse,
maybe pebbly

FA1
Solitary or grouped planar cross-beds. Fine-to-coarse
grain size, occasionally pebbly. Commonly overlap

mud/mudstone

Scour fills or lateral
accretion of bars

Sr Sandstone, current
ripple sandstone FA1 Ripple marks. Fine-to-medium grain size. Ripple height

and length are 2 cm and 6 cm, respectively
Ripples (lower flow

regime)

Sh Sandstone,
fine-to-coarse FA1

Horizontal lamination. Fine-to-coarse-grained,
occasionally containing pebbles. Beds typically range

from 5 to 20 cm in thickness.
Planar bed flow

Se Erosional scours with
intraclasts FA1 Cross-bedding. Medium-to-coarse-grained sandstone,

occasionally with pebbles. Scour surface Scour fills

Sm Sandstone, maybe
pebbly FA1

Massive bedding. Sandstone ranges in grain size from
fine to coarse, with a pebbly texture and poor to

moderate sorting, lacking distinct structures.

Rapid deposition of debris
flow.

Fl Sand, silt, mud FA2
Fine lamination with very small ripples.

Fine-to-medium sandstone with thin bed grey muddy
siltstone, flaser bedding

Waning flood deposits,
tidal deposits

Fsc Silt, mud FA2 Laminated to massive bedding. Muddy siltstone with
thin bed fine sandstone, lenticular bedding

Backswamp deposits, tidal
deposits

Fm Mudstone FA3 Massive bedding. Mudstone, muddy siltstone,
structureless, occasionally with desiccation cracks

Suspension deposits
during the standing pool

of water, over-bank
deposits

* The uppercase letter in the facies code denotes the predominant grain size (G for gravel, S for sand, and F for
fine-grained facies, encompassing very fine sand, silt, and mud). The lowercase letter functions as a mnemonic for
the distinctive texture or structure of lithofacies.
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4.1.1. FA 1: Fluvial-Dominated Channel Facies Association

Gravel lithofacies, denoted as Gm, comprise massive and crudely bedded gravel,
supported by coarse sandstone and they occurred commonly at the base of FA1. The
gravels exhibit a sub-rounded-to-rounded shape and are primarily composed of clasts of
reddish-brown mudstone. They are poorly sorted within a matrix of fine-to-coarse sands
(Figure 3A). Typically, these beds have a lenticular shape with a thickness ranging from
20 to 50 cm. They display sharp and erosional contacts with the underlying medium-
to-coarse sandstone beds and are overlain by sandstone, which exhibits trough cross-
bedding (St) (Figure 3B). Imbrication is commonly observed, with tabular gravel displaying
approximately horizontal orientations.
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Figure 3. Overview and examples of key features for FA 1. (A) Lithofacies Gm, massive and
crudely bedded gravel, supported by coarse sandstone. Wulong village, Wuding; (B) lithofacies
St, medium-to-coarse sandstone and the sandstone bodies are lenticularly stacked with each other,
showing erosional surface structures. Wulong village, Wuding; (C) under crossed polarized light
(XPL). The clastic grains are primarily composed of quartz and feldspar, along with lithic fragments
including both quartz and mudstone fragments. Wulong village, Wuding; (D) lithofacies Sp and
Sh, medium-to-coarse sandstone with planar cross-bedding and parallel bedding. Wulong village,
Wuding; (E) lithofacies Se, sandstone ranging from fine to coarse texture, potentially containing
pebbles, along with erosional scours interspersed with muddy gravel. Wulong village, Wuding;
(F) lithofacies Sm, fine-to-coarse sandstone with little gravel. Gulian village, Kunming; (G) lithofacies
Sh, fine-to-coarse-grained sandstone, occasionally containing fine conglomerate and plant debris.
Heite village, Luquan; (H) under XPL from sandstone (Lithofacies Sh). The clastic grains are primarily
composed of lithic fragments, quartz, and feldspar. Heite village, Luquan; and (I) lithofacies Sm,
fine-to-coarse sandstone, with little muddy gravel. Heite village, Luquan.
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The sandstone lithofacies of FA1 in the HJS Formation include six main sand lithofacies,
primarily distinguished by their dominant primary sedimentary structure. These include
trough cross-bedded sand (lithofacies St), planar cross-bedded sandstone (lithofacies Sp),
ripple cross-laminated sandstone (lithofacies Sr), horizontally bedded sandstone (lithofacies
Sh), scour-fill sandstone (lithofacies Se), and massive sandstone (lithofacies Sm) (Table 2).

Lithofacies St comprises approximately 30% of the sandstone lithofacies. The sand-
stone beds, ranging from 30 cm to 50 cm thick, exhibit a broad lenticular-to-wedge-shaped
geometry and extend laterally for tens of meters (Figure 3B). Lithofacies St is primarily
composed of quartz and feldspar, along with lithic fragments including both quartz and
mudstone fragments (Figure 3C). The abundance of lithic fragments indicates a proximal
sedimentary environment. They consistently display erosional contacts with underlying
fine-grained stratification and are frequently overlain by massive sandstone (Figure 3B).
These beds predominantly consist of medium-to-coarse-grained sandstone and are char-
acterized by trough cross-bedding. Thin lag deposits of small mudstone intraclasts are
observed within the sandstone beds.

Lithofacies Sh occurred throughout this FA and is characterized by horizontal thin-
laminated sandstones, often interbedded with planar cross-bedded sandstones (Lithofacies
Sp) (see Figure 3D). It consists of fine-to-coarse-grained sandstone, occasionally containing
fine conglomerate and plant debris (Figure 3G), with a thickness ranging from 5 to 20 cm.
It is primarily composed of lithic fragments, quartz, and feldspar (Figure 3H). Individual
laminae within this lithofacies vary in thickness from 5 to 10 cm. Lower contacts with
subjacent sandstones are typically sharp.

Lithofacies Se is composed of medium-to-coarse sandstone, occasionally with some
muddy conglomerate (Figure 3E), and is characterized by erosional scours. The sandstone
beds have a thickness ranging from 10 cm to 50 cm and exhibit a broadly lenticular-to-
wedge-shaped geometry, extending laterally for tens of meters. Lithofacies Sm occur in
FA 1 and exhibit no obvious lamination in their outcrop (Figure 3F,I). These sandstone
beds have a broadly sheet-like geometry and display sharp and erosional contacts with the
underlying medium-to-coarse sandstone beds (Figure 3I). They range in thickness from 20
to 80 cm and are composed of durable light grey to brown, fine-to-coarse-grained sandstone
in sheet-like beds.

4.1.2. FA 2: Tide-Influenced Shallow Shelf Facies Association

This FA is predominantly composed of fine-to-medium-grained sandstone, muddy
siltstone, and a thin layer of mudstone. FA 2 contains mainly five lithofacies types. Litho-
facies Sr is composed of fine-to-medium-grained sandstone and is distinguished by the
presence of ripple trains (Figure 4A). Lithofacies Sr is primarily composed of quartz, with
minor amounts of siliceous matrix (Figure 4B,C). The sandstone grains are well sorted,
rounded-to-sub-rounded, reflecting an intense reworking by waves or tidal action. The
sandstone beds typically range from 10 to 20 cm in thickness and exhibit a lenticular
shape, extending laterally for tens of meters. The ripples within this lithofacies measure
1 to 3 cm in height, with a ripple length of approximately 6 cm (Figure 4A). Lithofacies Fm
is primarily interbedded with thin-bedded lithofacies Sm (Figure 4D).

Lithofacies Fsc varies in thickness from 30 to 150 cm and comprises dark grey mud-
stone and sandstone, arranged in lenticular beds. Its predominant lithology is mudstone
and muddy siltstone (Figure 4E,F).

Lithofacies Fl commonly consists of light grey sandstone with a thin layer of mudstone.
This flaser-bedded sandstone has discontinuous and irregular mudstone beds, as well as a
few scour surfaces with mud lining (Figure 4G). Thin layers of irregular grey mudstone are
usually distributed in a banded or lenticular manner within medium-to-thick sandstone
sequences. The thickness of lithofacies Fl ranges from 20 cm to 1 m. The bed exhibits an
erosional relationship with the underlying fine-grained stratification (Figure 4G).
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Figure 4. Overview and examples of key features for FA 2 and FA 3. (A) Lithofacies Sr, fine-to-medium
sandstone with ripples. Longbaoshan, Kunming; (B) under crossed polarized light (XPL). The clastic
grains are primarily composed of quartz, with minor amounts of siliceous matrix. Longbaoshan,
Kunming; (C) under plane-polarized light (PPL). The clastic grains are primarily composed of quartz.
The sandstone grains are well sorted and are rounded-to-sub-rounded. Guliancun village, Kunming;
(D) Thin bed sandstone interbedded with silty mudstone. Longbaoshan, Kunming; (E,F) lithofacies
Fsc, muddy siltstone with thin bed fine sandstone, lenticular bedding. Longbaoshan, Kuning;
(G) lithofacies Fl, fine-to-medium sandstone with thin bed grey muddy siltstone, flaser bedding,
Zhuajiaqing, Huize; and (H,I) lithofacies Fm and St, reddish mudstone with massive bedding,
interbedded with a thin layer of sandstone. Shangershao, Luquan.

4.1.3. FA 3: Floodplain Facies Association

FA 3 is mainly composed of lithofacies Fm and St (Figure 4H,I). Lithofacies Fm is
primarily composed of mudstone, characterized by its reddish-brown and grey color
(Figure 4H,I). Thin-bedded sandstone is primarily interbedded with reddish and grey
mudstones. Mudstones are predominantly found in the upper portion of the field sections.
The thickness of lithofacies Fm ranges from a few meters to 10 m.

4.2. Major Element Geochemistry

Table 3 displays the major element concentrations of the HJS Formation, where SiO2
emerges as the predominant oxide across all analyzed samples (57.54 wt.%–96.39 wt.%,
average 76.52 wt.%). Other major elements vary in a narrow range. The HJS Formation con-
sists of 1.08–18.99 wt.% Al2O3, 0.34–7.03 wt.% Fe2O3, 0.32–5.72 wt.% K2O, 0.11–6.13 wt.%
MgO, 0.02–6.83 wt.% CaO, 0.05–0.89 wt.% TiO2, 0.02–1.77 wt.% Na2O, 0.02–0.31 wt.% P2O5,
and 0.01–0.16 wt.% MnO. The average SiO2 content in the samples from the HJS Formation
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is 76.52 wt.%, exceeding that of the upper continental crust (UCC: 66.62 wt.% [25]) and the
late Archean Australian shale (PAAS: 62.80 wt.% [25]).

The abundance of major elements (TiO2, P2O5, TFe2O3, MgO, K2O, and Al2O3) exhibits
strong correlations with SiO2 (Figure 5). Negative linear relationships between TiO2, P2O5,
TFe2O3, MgO, K2O, and Al2O3 in the HJS Formation (Figure 5) are likely due to the majority
of Si being present in quartz, rather than as a clay component [26].
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Figure 5. Harker variation diagrams illustrate the compositional characteristics of samples from the
HJS Formation.

To assess the relative enrichments of elements within the HJS Formation, major metal
concentrations are presented as “enrichment factors” (EFs), calculated using the formula
EF = (X/Al)sample/(X/Al)NASC, where X and Al represent the weight concentrations of ele-
ment X and Al, respectively [27]. Samples were normalized using the North American shale
composite (NASC) [28]. The EF results for elements indicate that, in the HJS Formation,
Fe2O3 and MgO are relatively enriched, compared to North American shale. SiO2, TiO2,
MnO, CaO, and P2O5 show both enrichment and depletion tendencies, whereas K2O and
Na2O are mainly depleted (Figure 6).
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Table 3. Major element concentrations in weight % of samples from the HJS Formation, eastern Yunnan.

Sample No. Location SiO2 TiO2 Al2O3 TFe2O3 MnO MgO CaO Na2O K2O P2O5 CIA PIA CIW

WLC-40 Wulong, Wuding 92.2 0.13 3 1.35 0.03 0.73 0.13 0.04 1.28 0.07 66.41 92.46 95.80

WLC-42 Wulong, Wuding 78.17 0.1 2.58 1.41 0.03 4.03 5.48 0.03 1.11 0.05 66.49 93.32 96.32

XES-33 Xiaershao, Luquan 63.61 0.79 16.78 5.28 0.04 2.57 0.37 0.18 5.72 0.23 71.21 94.70 96.59

GLC-01 Guliancun, Kunming 57.54 0.74 18.99 7.03 0.04 3.38 0.31 0.09 5.03 0.22 76.79 97.86 98.46

GLC-03 Guliancun, Kunming 77.21 0.34 8.67 4.61 0.16 1.72 0.35 0.09 2.96 0.26 71.24 94.86 96.70

GLC-05 Guliancun, Kunming 60.84 0.78 17.69 5.92 0.07 3.3 0.34 0.1 4.89 0.31 75.88 97.41 98.17

GLC-12 Guliancun, Kunming 83.13 0.29 7.99 2.74 0.04 0.71 0.04 0.08 2.35 0.08 74.11 95.65 96.99

GLC-14 Guliancun, Kunming 85.54 0.26 6.79 2.47 0.03 0.56 0.03 0.05 1.97 0.06 74.82 96.82 97.80

GLC-20 Guliancun, Kunming 86.1 0.54 6.38 2.74 <0.01 0.34 0.03 0.05 1.33 0.07 79.95 96.86 97.55

GLC-22 Guliancun, Kunming 92.27 0.24 4.24 0.34 <0.01 0.18 0.04 0.04 0.45 0.02 88.33 98.09 98.30

GLC-26 Guliancun, Kunming 64.64 0.89 18.46 4.33 0.01 1.48 0.02 0.09 4.93 0.13 76.44 97.38 98.12

FZQ-13 Fengziqing, Huize 61.48 0.66 13.37 4.91 0.09 2.85 4.55 1.76 3.57 0.23 58.07 62.14 69.78

FZQ-14 Fengziqing, Huize 61.32 0.73 13.29 4.89 0.06 3.37 3.77 1.77 3.75 0.26 57.35 61.32 69.53

HT-01 Heite, Luquan 63.6 0.27 6.96 1.86 0.06 6.13 6.83 0.04 2.07 0.12 74.58 97.29 98.14

LBS-01 Longbaoshan, Kunming 92.6 0.22 2.74 1.48 <0.01 0.23 0.04 0.07 1.27 0.04 63.71 88.00 93.64

LBS-05 Longbaoshan, Kunming 84.21 0.31 6.82 2.53 0.04 0.52 0.04 0.07 3.74 0.07 61.57 93.03 97.04
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NASC—North American shale composite, from [28].

4.3. Trace Elements Geochemistry

The trace element concentrations of the examined samples are presented in Table 4.
Overall, the trace element contents of the analyzed samples exhibit a broad spectrum. Most
trace element concentrations are below those of the Post-Archaean average Australian
sedimentary rock (PAAS, [29]). However, some elements, e.g., Co, Y, and W show variable
contents with average values of 50.2 × 10−6, 25.2 × 10−6, and 209 × 10−6, respectively.
These values are mostly lower than the average values of PAAS (Figure 7A). The PAAS-
normalized abundance [28] for the samples from the HJS Formation is shown in Figure 7A.
The UCC-normalized abundance [29] for the samples from the HJS Formation is shown in
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Figure 7B. The samples show enrichment in Co and W, compared to UCC. This discrepancy
can be attributed to the reduction in acidic fragments and the increased prevalence of mafic
fragments throughout sedimentary processes [6,30].

Table 4. Trace element concentrations (in µg/g) of samples from the HJS Formation, eastern Yunnan.

Sample No. Location Li Be Sc V Cr Co Ni Cu Zn Ga Rb Sr Y Mo Cd

WLC-40 WW 27.70 0.58 2.89 21.90 10.50 94.40 7.67 2.10 12.20 3.61 25.10 15.90 18.60 0.31 0.02

WLC-42 WW 22.70 0.21 1.99 21.80 10.20 65.50 7.52 2.06 10.10 3.14 24.70 23.80 17.20 0.41 0.02

XES-33 XL 54.40 4.87 15.20 106.00 70.60 40.60 39.90 11.70 81.00 25.30 188.00 67.30 39.00 0.26 0.09

GLC-01 GK 73.40 3.36 16.60 79.20 52.60 17.10 46.60 53.20 109.00 23.60 159.00 81.30 35.60 0.47 0.06

GLC-03 GK 107.00 1.97 5.92 51.00 25.40 26.90 26.20 7.87 48.50 10.50 72.10 52.20 27.20 0.63 0.08

GLC-05 GK 77.60 4.66 15.80 115.00 69.00 35.90 78.00 26.20 125.00 24.90 157.00 91.70 41.30 0.69 0.11

GLC-12 GK 33.10 1.35 5.88 42.50 16.50 73.00 15.80 7.93 28.30 8.20 53.70 43.80 25.40 0.35 0.04

GLC-14 GK 29.20 1.30 4.17 40.10 18.10 56.30 9.86 7.33 19.70 8.38 46.70 33.30 20.30 0.41 0.04

GLC-20 GK 18.90 1.18 5.97 36.10 27.50 43.60 18.60 7.86 26.70 10.20 38.10 29.50 29.40 0.45 0.08

GLC-22 GK 9.24 0.56 2.71 25.30 16.40 108.00 10.50 3.51 8.30 4.70 12.60 22.40 9.74 0.30 0.04

GLC-26 GK 34.60 6.78 19.60 115.00 92.40 12.00 21.00 13.60 53.50 27.70 171.00 95.50 46.90 0.31 0.13

FZQ-13 FH 37.70 2.38 12.10 66.40 70.50 23.50 35.40 47.10 73.70 16.00 91.50 90.30 32.80 0.52 0.21

FZQ-14 FH 34.20 2.66 12.40 77.20 73.70 21.30 32.00 28.10 69.30 15.20 95.30 74.20 25.90 0.39 0.23

HT-01 HL 58.80 0.88 3.19 33.80 17.70 23.30 15.40 3.99 23.60 6.74 50.10 44.90 16.50 0.32 0.03

LBS-07 LK 19.77 0.64 1.64 14.04 5.36 103.44 11.54 16.85 10.17 1.90 7.88 48.20 10.01 / /

LBS-05 LK 42.87 1.38 4.56 38.34 19.47 37.91 20.43 10.86 36.78 6.95 62.04 38.10 21.62 / /

LBS-01 LK 31.59 0.76 2.19 17.79 22.54 71.13 9.90 5.47 15.13 3.37 28.86 22.49 11.32 / /

UCC 20.00 3.00 11.00 60.00 35.00 10.00 20.00 25.00 71.00 17.00 112.00 350.00 22.00 1.50 98.00

PAAS 75.00 16.00 150.00 110.00 23.00 55.00 50.00 85.00 20.00 160.00 200.00 27.00 1.00

Sample No. Location In Sb Cs Ba W Re Tl Pb Bi Th U Nb Ta Zr Hf

WLC-40 WW 0.02 0.30 0.60 164.00 384.00 0.00 0.12 1.54 0.35 1.92 0.50 1.22 0.23 44.20 0.97

WLC-42 WW 0.03 0.33 0.63 141.00 363.00 <0.002 0.10 1.58 0.33 1.97 0.45 1.11 0.11 38.50 0.82

XES-33 XL 0.07 0.57 8.08 461.00 89.00 <0.002 0.59 5.06 0.29 14.40 2.10 18.70 1.19 190.00 4.44

GLC-01 GK 0.07 0.25 9.95 488.00 5.70 <0.002 0.64 3.20 0.13 12.30 3.11 15.80 1.08 175.00 4.30

GLC-03 GK 0.12 0.52 3.98 584.00 139.00 <0.002 0.41 4.21 0.16 4.00 1.75 6.60 0.53 85.40 2.06

GLC-05 GK 0.07 0.87 7.38 654.00 20.80 <0.002 0.67 5.00 0.32 13.40 3.01 17.50 1.15 177.00 4.29

GLC-12 GK 0.02 0.59 1.53 334.00 325.00 0.00 0.21 5.40 1.09 3.86 0.84 2.30 0.33 84.60 1.90

GLC-14 GK 0.02 0.47 1.56 235.00 325.00 0.00 0.19 4.71 1.07 4.00 0.95 2.55 0.30 70.80 1.76

GLC-20 GK 0.02 0.61 0.95 252.00 309.00 0.00 0.12 8.84 1.85 7.21 1.84 10.00 0.90 262.00 5.31

GLC-22 GK 0.01 0.25 0.60 36.50 645.00 0.00 0.04 2.78 0.58 3.55 0.89 2.64 0.28 123.00 2.84

GLC-26 GK 0.07 0.47 11.00 358.00 51.60 <0.002 0.65 7.47 0.17 16.20 3.09 21.80 1.26 201.00 5.05

FZQ-13 FH 0.06 0.41 3.82 630.00 66.20 <0.002 0.52 6.66 0.16 9.06 1.94 12.10 0.78 126.00 3.27

FZQ-14 FH 0.05 0.32 3.32 521.00 66.60 <0.002 0.36 6.66 0.13 8.26 1.87 12.60 0.89 135.00 3.42

HT-01 HL 0.03 0.33 1.80 215.00 133.00 0.00 0.21 2.95 0.70 3.67 0.92 4.45 0.45 74.80 1.80

LBS-07 LK / / 0.34 217.24 / / / 5.70 / 3.98 2.51 0.96 0.27 50.87 1.34

LBS-05 LK / / 1.70 473.16 / / / 5.14 / 5.87 2.30 5.66 0.54 233.68 5.97

LBS-01 LK / / 0.56 184.72 / / / 5.70 / 3.43 0.95 2.92 0.37 167.04 4.25

UCC 50.00 0.20 3.70 550.00 2.00 0.40 750.00 20.00 127.00 10.70 2.80 25.00 2.20 190.00 5.80

PAAS 15.00 650.00 2.70 2.70 20.00 20.00 14.60 3.10 19.00 210.00 5.00

The upper continental crust (UCC) values are from [29]; Post-Archaen average Australian sedimentary rock
(PAAS) values from [25]; WW—Wulong, Wuding. XL—Xiaershao, Wu Luquan. GK—Guliancun, Kunming.
FH—Fengziqing, Huize. HL—Heite, Luquan. LK—Longbaoshan, Kunming.
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mation, eastern Yunnan. (A) The PAAS-normalized pattern (PAAS values are from [29]); (B) UCC-
normalized abundances pattern (UCC values are from [29]).

4.4. Rare Earth Elements Geochemistry

The concentration of REEs of 17 samples from the HJS Formation is presented in Table 5.
The total rare earth elements (ΣREEs) in the HJS sandstone samples exhibit significant
variation, with concentrations ranging from 54.2 to 260.8 µg/g (Table 5). The weighted
mean value is 128.1 µg/g, close to those of the NASC (136.3 µg/g, the North American shale
composite [28]), but lower than those of Post-Archaen average Australian sedimentary rock
(PAAS, 184.8 µg/g [29]) and the upper continental crust (UCC, 146.4 µg/g [29]).

The concentration of light rare earth elements (LREEs) surpasses that of heavy rare earth
elements (HREEs), consistent with the typical distribution pattern of REEs in shales [28,31].
The LREE/HREE ratios of the HJS sandstone samples from eastern Yunnan vary greatly,
ranging from 4.6 to 10.8 (Table 5). The HJS sandstone samples display a negative Eu
anomaly (Table 5), with an average δEu value of 0.69. The δCe values of all samples vary
from 0.81 to 1.26, with a mean δCe value of 0.97.

All the HJS sandstone samples exhibit similar chondrite-normalized REE patterns,
with clearly fractionated LREEs, relative to HREEs, as well as a distinct negative Eu anomaly
(Figure 8A). When normalized to UCC, these sandstone samples generally show no or
slightly LREE-rich patterns (Figure 8B), suggesting that the REEs in these lithological
samples may have originated from a similar terrigenous source [32].
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Table 5. Rare earth element contents (in µg/g) in samples and associated geochemical parameters.

Sample No. Location La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ΣREE LREE HREE L/H (La/Yb)N Ce/Ce * Eu/Eu *

WLC-40 WW 11.60 21.70 2.82 10.80 2.20 0.59 2.23 0.46 2.36 0.54 1.41 0.22 1.29 0.18 58.41 49.71 8.70 5.72 6.06 0.91 0.82

WLC-42 WW 10.70 19.10 2.51 9.64 2.51 0.50 2.40 0.49 2.47 0.57 1.56 0.23 1.36 0.18 54.21 44.96 9.25 4.86 5.30 0.89 0.62

XES-33 XL 55.10 103.00 12.60 48.40 7.59 1.28 6.23 1.12 5.47 1.15 3.27 0.55 3.34 0.51 249.61 227.97 21.64 10.54 11.11 0.94 0.57

GLC-01 GK 50.50 88.90 10.50 39.00 6.03 1.21 6.06 1.05 5.32 1.12 3.08 0.50 4.00 0.56 217.83 196.14 21.69 9.04 8.50 0.93 0.61

GLC-03 GK 14.60 32.80 3.94 15.50 3.96 1.33 4.88 0.90 4.41 0.84 2.08 0.33 2.06 0.29 87.93 72.13 15.80 4.57 4.77 1.04 0.92

GLC-05 GK 50.90 101.00 13.70 50.60 9.76 1.82 8.84 1.47 7.44 1.56 4.16 0.57 4.16 0.56 256.54 227.78 28.76 7.92 8.24 0.92 0.60

GLC-12 GK 17.00 30.90 3.78 13.60 3.01 0.87 3.23 0.58 3.12 0.74 1.86 0.26 2.06 0.27 81.29 69.16 12.12 5.71 5.56 0.93 0.86

GLC-14 GK 15.80 29.50 3.70 13.80 2.59 0.66 2.94 0.54 3.01 0.68 1.85 0.30 1.91 0.27 77.54 66.05 11.49 5.75 5.57 0.93 0.73

GLC-20 GK 31.60 51.00 6.46 25.20 5.28 1.07 5.14 0.97 4.99 1.00 2.71 0.41 2.58 0.41 138.81 120.61 18.20 6.63 8.25 0.86 0.63

GLC-22 GK 14.40 31.50 3.25 12.00 1.75 0.28 1.52 0.25 1.48 0.31 0.85 0.18 1.09 0.15 69.02 63.18 5.84 10.83 8.90 1.11 0.53

GLC-26 GK 57.00 107.00 12.40 47.70 8.07 1.38 7.68 1.42 6.72 1.50 4.38 0.64 4.29 0.62 260.80 233.55 27.25 8.57 8.95 0.97 0.54

FZQ-13 FH 31.10 52.10 7.71 32.10 5.90 1.26 5.04 0.98 4.68 1.06 2.69 0.41 2.95 0.41 148.40 130.17 18.23 7.14 7.10 0.81 0.71

FZQ-14 FH 32.40 56.30 7.21 26.10 4.46 1.10 4.42 0.75 3.81 0.83 2.24 0.36 2.53 0.43 142.94 127.57 15.37 8.30 8.62 0.89 0.76

HT-01 HL 12.50 26.00 3.05 11.80 2.73 0.60 2.61 0.52 2.73 0.58 1.55 0.22 1.49 0.22 66.60 56.68 9.92 5.71 5.65 1.01 0.69

LBS-07 LK 10.72 43.08 6.33 35.36 11.55 2.42 8.94 1.00 3.99 0.51 1.06 0.13 0.77 0.11 125.97 109.47 16.50 6.64 9.39 1.26 0.73

LBS-05 LK 14.96 32.68 3.75 14.89 2.98 0.68 3.17 0.54 3.44 0.72 2.14 0.32 2.06 0.32 82.66 69.94 12.71 5.50 4.89 1.05 0.68

LBS-01 LK 11.16 23.20 2.92 11.45 2.13 0.49 2.09 0.33 2.02 0.41 1.20 0.18 1.16 0.18 58.91 51.35 7.56 6.79 6.46 0.98 0.71

UCC 30.00 64.00 7.10 26.00 4.50 0.88 3.80 0.64 3.50 0.80 2.30 0.33 2.20 0.32 146.37 132.48 13.89 9.54 0.97

NASC 31.10 66.70 / 27.40 5.59 1.18 / 0.85 / / / / 3.06 0.46 136.34 131.97 4.37 30.23 1.26

PAAS 38.20 79.60 8.83 33.90 5.55 1.08 4.66 0.77 4.68 0.99 2.85 0.41 2.82 0.43 184.77 167.16 17.61 9.49 0.81

Chondrite 0.24 0.61 0.10 0.47 0.15 0.06 0.21 0.04 0.25 0.06 0.17 0.03 0.17 0.03 2.56 1.62 0.94 1.73

UCC—upper continental crust values are from [29]. NASC—North American shale composite values are from [28]. PAAS—Post-Archaen average Australian sedimentary rock
values are from [33]. Chondrite values are from [34]. L/H = LREE/HREE; (La/Yb)N, subscript N stands for CI-chondrite-normalized value; Ce/Ce * = CeN/(LaN × PrN)0.5;
Eu/Eu * = EuN/(SmN × GdN)0.5, subscript N stands for CI-chondrite-normalized value. WW—Wulong, Wuding. XL—Xiaershao, Wu Luquan. GK—Guliancun, Kunming.
FH—Fengziqing, Huize. HL—Heite, Luquan. LK—Longbaoshan, Kunming.
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5. Discussion
5.1. Sedimentary Facies of Each Facies Association

The correlation and mapping of these facies across the different field sections rely
on identifying surfaces marked by variations in lithology, texture, rock color, and strata
terminations. Strata are divided by surfaces characterized by changes in structures, lithol-
ogy, strata architecture, and terminations. In this study, different lithofacies associations
represent the distinct sedimentary facies associated with individual sedimentary mecha-
nisms. These lithofacies can be grouped into “sedimentary facies”, characterized by their
lithofacies assemblage. Recognizing sedimentary facies enables the interpretation of the
local and regional fluvial evolution processes in the basin [24]. The 10 lithofacies identified
in the HJS Formation in eastern Yunnan are classified into three sedimentary facies, as
follows: channel fill deposits in delta, over-bank deposits, and shallow shelf.

5.1.1. FA 1

FA 1 is mainly fluvial-dominated channel fill deposits; they are mainly composed of
sandstone with some reddish-brown muddy gravel and mudstone and are characterized
by erosion surfaces and parallel bedding. Lithofacies developed in this facies include Gm,
St, Sh, Sr, Se, and Sm.

Lithofacies Gm is characterized by clasts of reddish-brown mudstone within coarse
sandstones (Figure 3A,B). The lithofacies Gm type is formed by hyper-concentrated stream
flows, followed by rapid sediment deposition, suggesting that these deposits represent
channel lag deposits [6,35]. Lithofacies St represents bedform “lag” deposits, indicating
that the structure was not in equilibrium with flow conditions during its formation [36].
Low-angle cross-beds may have been deposited under high-energy conditions, particularly
at the base of channel intersections [6,37]. Lithofacies Sh is often interbedded with planar
cross-bedded sandstones (Figure 3D), representing channel fill or channel bar deposits.
Their structure suggests a strong hydrodynamic condition of the upper plane bed, likely
transitioning from a subcritical to a supercritical flow [38]. Lithofacies Sp often exhibit
sharp contacts with the overlying sandstone (Figure 3D). These sandstone bodies were
deposited during the initial stage of channel development, characterized by high water
levels and sediment loads [6]. The thin sheet-like geometry and relatively fine-grained
lithology suggest deposition as bar-top sandstone or as in-channel deposits during stages
of seasonal flood events [37]. Lithofacies Se are commonly interbedded with lithofacies Gm
and are characterized by scour and erosion surfaces (Figure 3E). They are representative
channel fill deposits. The structure’s form indicates a strong hydrodynamic condition of the
upper plane bed, likely occurring during the transition from a subcritical to a supercritical
flow [38]. Lithofacies Sm primarily comprises durable light grey to reddish-brown coarse-
grained sandstone in sheet-like beds. The beds exhibit an erosional relationship with the
underlying fine-grained stratification (Figure 3F). The formation of lithofacies Sm appears
to result from rapid sediment deposition, indicating they are channel lag deposits [6,35].

5.1.2. FA 2

FA 2 is mainly tide-influenced shallow shelf deposits, which are mainly composed of
sandstone and mudstone. FA 2 are characterized by lenticular bedding and flaser bedding.
Lithofacies developed in FA 2 include Sr, Fm, Sm, Fsc, and Fl.

These ripple structures in lithofacies Sr indicate relatively strong flow conditions [6].
Lithofacies Fl is characterized by tidal bedding (mainly flaser and wavy bedding). Thin
layers of grey mudstone are usually distributed in a banded or lenticular manner within
light grey sandstone sequences (Figure 4G). These structures are commonly associated with
environments influenced by tides [39]. The formation of tidal bedding is attributed to the
interplay between currents or wave action and periods of slack water [40,41]. Currents
or wave action create sand formations like current or oscillation ripples, while mud is
deposited during periods of slack water. Reineck and Wunderlich (1968) proposed that
tidal bedding originates from the tidal rhythm, specifically tidal currents and slack water
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periods [40]. Lithofacies Fsc is also characterized by lenticular bedding. Lenticular bedding
is characterized by isolated lenses and ripples of sandstone embedded within a mud matrix
(Figure 4E,F). These structures are typically associated with environments influenced by
tides [39].

5.1.3. FA 3

FA 3 is mainly floodplain deposits and consists of of reddish-brown mudstone with
thin-bedded sandstone. Lithofacies associated with this environment include Fm and St.
Sediment bodies in the floodplain typically exhibit a sheet-like geometry, but vary consider-
ably in thickness. The lower boundaries of these facies suites display sharp or gradational
transitions with channel fill facies (Figure 4H). Lenticular sandstone, approximately 0.2 m
thick, appearing within grey and reddish-brown mudstone, likely represents minor over-
bank flood channel deposits (Figure 4I). The close association between reddish-brown to
grey mudstones and sheet sandstone bodies suggests a floodplain environment.

5.2. Provenance

Previous research has established that the chemical composition of siliciclastic sed-
imentary rocks reflects their source regions and can help to characterize the rocks from
which the sediments originated (e.g., [22]). Discriminant function analysis of major el-
ements suggests that the sediments are predominantly quartzose and originate from a
mature continental provenance (Figure 9A). There is no significant difference observed in
the provenance between the sedimentary units of the HJS Formation, indicating a consistent
detrital input of siliciclastic material during the Cambrian Stage 3 period and no significant
changes in the source area(s).

Trace elements such as La, Sc, Cr, V, Co, Ni, Nb, Hf, Y, Th, Zr, and REEs play a
crucial role in interpreting provenance and source area composition, due to their low
mobility during post-depositional processes [12,42]. Bivariate plot diagrams of Cr/V vs.
Y/Ni [43], La/Yb vs. ∑REEs [21], and La/Th vs. Hf [22] indicate a felsic source rock for
the studied sandstones [43] (Figure 9). The distribution pattern of rare earth elements and
the presence of Eu anomalies in sediments provides further insights into the characteristics
of the source area [15]. Felsic source rocks exhibit higher LREE/HREE ratios and negative
Eu anomalies, whereas mafic source rocks typically have lower LREE/HREE ratios and
lack Eu anomalies [15,44].
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Figure 9. Source rock discrimination diagram for the HJS sandstones. (A) Provenance discriminant
function diagram using major elements (after [23]), F1 = (−1.773 × TiO2) + (0.607 × Al2O3) + (0.760 ×
TFe2O3) + (−1.500 × MgO) + (0.616 × CaO) + (0.509 × Na2O) + (−1.224 × K2O) − 9.090; F2 = (0.445
× TiO2) + (0.070 × Al2O3) + (−0.250 × TFe2O3) + (−1.142 × MgO) + (0.438 × CaO) + (1.475 × Na2O)
+ (1.426 × K2O) − 6.861. (B) Cr/V versus Y/Ni bivariate diagram (after [43]). (C) La/Yb versus
ΣREEs bivariate diagram (after [45,46]). (D) La/Th versus Hf (after [22]). Average compositions of
basalt, andesite, dacite, rhyodacite, rhyolite, and granite, respectively, from [47].

Plotting on the detrital minerals-based Q-F-L discrimination diagram in [48] showed
that most sandstone samples fall within the recycled orogen provenance and continental
block provenance (Figure 10A). This is supported by the plotting of the Qm-F-Lt discrimi-
nation diagram in [48].
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Figure 10. Source rock discrimination diagram for the HJS sandstones. (A) Triangular Q-F-L plot for
provenance discrimination (after [48]). (B) Triangular Qm-F-Lt plot for provenance discrimination
(after [48]). Q represents the total of quartzose grains, comprising both monocrystalline Qm and poly-
crystalline Qp varieties. F denotes the total feldspar grains, all of which are monocrystalline. L stands
for the total amount of unstable lithic fragments, all of which are polycrystalline. Qm specifically
refers to monocrystalline quartz grains. Lt encompasses the total amount of polycrystalline lithic
fragments, incorporating stable quartzose, Qp, as well as unstable L varieties.

5.3. Source Area Paleoweathering and Paleoclimate

Chemical weathering is predominant in humid climates and significantly influences
the major element geochemistry and mineralogy of siliciclastic sediments (e.g., refer-
ences [15,49]). Quantitative indices, such as the chemical index of alteration (CIA [1]),
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Plagioclase Index of Alteration (PIA [49]), and Chemical Index of Weathering (CIW [50]),
are, hence, valuable tools for assessing the degree of chemical weathering. The CIA of
sandstones is commonly used to assess the degree of weathering in rocks, where higher
values indicate stronger weathering. While the CIA can provide information about the
degree of weathering, relying solely on the CIA for paleoweathering reconstruction may
have some limitations. This is because the CIA is influenced by various factors, including
rock composition, climatic conditions, sedimentary environment, etc., and, therefore, it may
not provide detailed information about paleoweathering processes. The samples studied
in this research are mainly sandstones with similar rock mineral compositions. The HJS
Formation is primarily deposited in a deltaic environment, with sediment derived mainly
from felsic source rocks. Therefore, the Chemical Index of Alteration (CIA) can be used to
reconstruct paleoweathering processes.

Fedo et al. (1995) proposed a systematic progression in alteration minerals, indicating
incipient (CIA = 50–60), intermediate (CIA = 60–80), and extreme (CIA > 80) stages of
chemical weathering. A high degree of chemical weathering (CIA > 80) reflects the removal
of labile cations (e.g., Ca2+, Na+, and K+) relative to stable residual constituents (Al3+ and
Ti4+) during weathering [1] and is suggestive of weathering in humid, possibly tropical,
conditions [15,49]. A moderate degree of chemical weathering (CIA = 60–80) indicates a
semi-humid climate [15].

A low degree of chemical weathering (CIA = 50–60) suggests minimal chemical alter-
ation, possibly indicating cool and/or arid conditions, such as in a glacial environment [49].
Similarly, PIA values near 50 for fresh rocks and close to 100 for clay minerals, like kaolinite,
illite, and gibbsite, align with values derived from the CIA equation. Low PIA values
also imply minimal chemical alteration, suggesting cool and/or arid conditions [49]. The
equations for the indices mentioned above are as follows:

CIA =
Al2O3

Al2O3 + CaO* + Na2O + K2O
× 100 (1)

PIA =
Al2O3 − K2O

Al2O3 + CaO* + Na2O − K2O
× 100 (2)

CIW =
Al2O3

Al2O3 + CaO* + Na2O
× 100 (3)

In the above equations, CaO* represents the content of CaO incorporated in the silicate
fraction, and all major oxides are expressed in molar proportions.

There is no direct method available to distinguish and quantify the contents of CaO
belonging to the silicate fraction from those in the non-silicate fraction (carbonates and
apatite) [51]. An indirect method was proposed to quantify the CaO content of the silicate
fraction, by assuming reasonable values for the Ca/Na ratios of silicate materials [43]. The
procedure involves subtracting the molar proportion of P2O5 from the molar proportion
of the total amount of CaO. If the resulting “remaining number of moles” is less than
the molar proportion of Na2O, then this value is considered as the molar proportion of
CaO in the silicate fraction. However, if the “remaining number of moles” is greater than
the molar proportion of Na2O, then the molar proportion of Na2O is taken as the molar
proportion of CaO in the silicate fraction. Since Ca is typically lost more rapidly than Na
during weathering, this calculation method for CIA values is likely to yield minimum CIA
values, possibly underestimating them by up to about 3 units [52].

Following the procedure of [43], the CIA, PIA, and CIW values were calculated; the
results are presented in Table 3. The CIA values range from 57.35 to 88.33 (average = 71.14),
indicating variability in the degree of source weathering. The PIA values indicate that the
intensity of the alteration of source material varies from 61.32 to 98.09 (average = 91.12).
The CIW values suggest a range in the degree of source weathering from 69.53 to 98.46
(average = 93.72). The average PIA and CIW values (91.12 and 93.72, respectively) indicate
a higher degree of weathering than the degree of weathering inferred from CIA values
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(71.14). Based on the CIA, PIA, and CIW values, which range from 71.29 to 93.72, it can be
argued that the litho-components of the HJS sandstones underwent intermediate-to-intense
chemical weathering.

The A-CN-K ternary diagram, which plots the molar proportions of Al2O3, Na2O,
and CaO* (CaO in silicate fraction), allows for the evaluation of element mobility during
the chemical weathering of source material and post-depositional modifications of the
sandstones [49,53]. In the A-CN-K diagram (A = Al2O3; CN = CaO* + Na2O; K = K2O,
molar proportions), the HJS sandstones primarily define a narrow linear trend, with the
trend line running slightly angled to A-K, trending towards the K apex (Figure 11A), and
exhibit an inclination towards the K apex, indicating that the sandstones were probably
subjected to potash metasomatism during diagenesis. The K metasomatism of sandstones
can take two different paths, representing (1) conversion of aluminous clay minerals
(e.g., kaolinite as matrix) to illite, and/or (2) conversion of plagioclase to K-feldspar [49].
Both of these processes result in the sample being enriched in K2O. The conversion of
secondary aluminous clay minerals, such as kaolinite to illite, via K addition results in a
CIA value lower than the premetasomatized one, while in the conversion of plagioclase to
K-feldspar, the CIA value does not change, because the process involves the mole-for-mole
substitution of K2 for Ca or Na [49]. The straight-line pattern of weathering indicates a state
of equilibrium where the removal of material balances with the production of weathered
material [54].

The weathering indices of sedimentary rocks offer valuable insights into the climatic
conditions prevailing in the source area [51]. An increase in the degree of chemical weath-
ering may signify a decrease in tectonic activity and/or a change in climate towards warm
and humid conditions (e.g., [51,55]). A binary SiO2 wt.% versus (Al2O3 + K2O + Na2O)
wt.% diagram was proposed to constrain the climatic condition during the sedimentation of
siliciclastic rocks [56]. In this diagram, the HJS sandstones are situated within the semiarid
to humid climate zone (Figure 11B), suggesting that the sandstones studied here were
deposited under conditions ranging from semiarid to humid.
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Figure 11. Diagrams illustrating the impact of weathering and climatic conditions on the HJS
sandstones. (A) Al2O3–(CaO* + Na2O)–K2O ternary diagram (after [53]). The black arrow indicates a
diagenetic K-metasomatism trend [49]. (B) Al2O3 + K2O + Na2O% versus SiO2% bivariate diagram,
for distinguishing the climatic conditions of the HJS sandstones (after [56]).

6. Conclusions

The lithofacies identified in the Hongjingshao Formation include massive and crudely
bedded gravel, supported by coarse sandstone (Gm), trough cross-bedded sandstone (St),
planar cross-bedded sandstone (Sp), ripple cross-laminated sandstone (Sr), horizontal
bedded sandstone (Sh), scour-fill sandstone (Se), massive sandstone (Sm), fine-to-medium
sandstone with thin bed muddy siltstone (Fl), muddy siltstone (Fsc), and mudstone (Fm).
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These lithofacies suggest the deposition of channel fill and over-bank deposits in a deltaic
and shallow shelf depositional environment for the Hongjingshao Formation.

Provenance analysis based on major elements discriminant function diagram, Cr/V
versus Y/Ni bivariate diagram, La/Yb versus ΣREEs bivariate diagram, and La/Th versus
Hf indicates that the sandstones in the study area originate from felsic rocks. Additionally,
the ternary diagram of the Q-F-L and Qm-F-Lt plots suggests a provenance characterized
by recycled orogen and continental block sources.

The CIA, PIA, and CIW values, ranging from 71.29 to 93.72, suggest intermediate-
to-intense chemical weathering of the litho-components of the sandstones during source
weathering, fluvial transport, sedimentation, and diagenesis. The SiO2 wt.% versus (Al2O3
+ K2O + Na2O) wt.% binary diagram indicates semiarid to humid climate conditions,
consistent with the observed intermediate-to-intense chemical weathering.
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