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Abstract: We investigate the kinetic model of the relativistic Vlasov–Maxwell–Chern–Simons sys-
tem, which originates from gauge theory. This system can be seen as an electromagnetic fields
(i.e., Maxwell–Chern–Simons fields) perturbation for the classical Vlasov equation. By virtue of a
nondecreasing function and an iteration method, the uniqueness and existence of the global solutions
for the 1.5D case are obtained.
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1. Introduction

In this paper, we focus on the relativistic Vlasov–Maxwell–Chern–Simons (RVMCS)
system [1,2]

∂t f + v̂1∂w f + (E1 + v̂2B, E2 − v̂1B) · ∇v f = 0, (1)

∂tE1 = −E2 − j1, ∂wE1 = B + ρ, (2)

∂tE2 = −∂wB + E1 − j2, ∂tB = −∂wE2, (3)

B(0, w) = B0(w), E(0, w) = E0(w), f (0, w, v) = f0(w, v), (4)

on the whole space (w, v) ∈ R×R2 (all physical constants are normalized to unity), where
at position w ∈ R and time t ≥ 0, f (t, w, v) is the density of the particles, moving with
velocity v = (v1, v2) ∈ R2. The functions B(t, w) and E(t, w) = (E1(t, w), E2(t, w)) stand
for the magnetic and electric fields by the Chern–Simons theory, respectively. In addition,
the current and charge densities are defined by

j = (
∫

v̂ f dv)4π, ρ = (
∫

f dv)4π,

where v̂1, v̂2, v̂ denote the relativistic velocity, respectively:

v̂1 =
v1√
|v|2 + 1

, v̂2 =
v2√
|v|2 + 1

, v̂ =
v√
|v|2 + 1

.

In fact, the RVMCS system is derived from gauge theory and can be described as the
interaction between Vlasov matter and Maxwell–Chern–Simons fields. The Chern–Simons
theory could explain many interesting phenomena, such as high-Tc superconductivity [3]
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and the quantum Hall effect [4]. If there is no Chern–Simons term, the corresponding
system is known as the relativistic Vlasov–Maxwell system, i.e., the RVM system, which
has received a lot of attention in the past decades (see, e.g., Refs. [5–9] and the refer-
ences therein).

Although a great deal of mathematical results for the Chern–Simons theory (such
as [10,11]) have been established, as the authors know, there are few results for the RVMCS
system. In two dimensions, [12] obtained global classical solutions for the RVMCS system
and deduced that the RVMCS system converges to the Vlasov–Yukawa equations by
using the similar method of [8,13]. By virtue of the moment estimate and inhomogeneous
Strichartz estimates (see [14]), ref. [2] established the global existence of a classical solution
for the RVMCS system without compact momentum support.

Our main interest in this paper concerns the one-and-one-half-dimensional RVMCS
system. A pioneer result by Glassey and Schaeffer [6] showed the global existence of
the one-and-one-half-dimensional RVM system. When considering a fixed background
η(w) ∈ C1

0(R) which is neutralizing in the way∫ ∞

−∞
ρ(0, w)dw =

∫ ∞

−∞
(
∫

f0(p, v)dv− n(p))dp = 0,

from ∂wE1 = ρ, ref. [6] proved that E1(t, w) has compact support; thus, it is clear to
deduce that

sup
t∈[0,T],w∈R

|E1(t, w)| < ∞,

which is the key point to obtain the existence result.
However, for the RVMCS system, we could not obtain the formula of E1(t, w) directly

from ∂wE1 = B + ρ. It is well-known that Maxwell fields can be considered as wave
equations, while the Maxwell–Chern–Simons fields may be supposed to be Klein–Gordon-
type equations. Therefore, we briefly review the solution of the one-dimensional Klein–
Gordon equations [15]:

∂ttu− ∂wwu + u = g(t, w),

u(0, w) = u0(w), ∂tu(0) = u0
1(w).

The fundamental solution of the above equations could be written as

1
2

J0(
√

t2 − |w|2),

where J0 is the second kind of modified Bessel function of order zero. The interested readers
are referred to [16] for a more detailed discussion about Bessel functions. In the present
paper, we only give the following properties and asymptotic estimate:

Jn(z) =

{ √
2

πz cos(z− nπ
2 −

π
4 ), z� 1,

zn

2nn! , z� 1.

and

(J0(z))′ = −J1(z), (z−1 J1(z))′ = −z−1 J2(z), J0(0) = 1, J1(0) = 0. (5)

Combining function Jn(z) and (5), one can show that

|J0(z)|,
∣∣∣∣ J1(z)

z

∣∣∣∣, ∣∣∣∣ J2(z)
|z|2

∣∣∣∣ ≤ C. (6)

Using the fundamental solution J0(z), one can easily write the solution of the one-
dimensional classical Klein–Gordon equation as follows:
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u(t, w) =
1
2
(
∫ w+t

w−t
J0(
√

t2 − |w− p|2)u0
1(p)dp +

∂

∂t

∫ w+t

w−t
J0(
√

t2 − |w− p|2)u0(p)dp)

+
1
2

∫ t

0

∫ w+(t−s)

w−(t−s)
J0(
√
−|p− w|2 + (s− t)2)g(s, p)dsdp. (7)

Moreover, as for the Vlasov Equation (1), similarly with the RVM system, we can
denote characteristic equations:

Ẋ(s) = V̂1(s),
V̇(s) = (E1(s, X(s)) + V̂2(s)B(s, X(s)), E2(s, X(s))− V̂1(s)B(s, X(s))),
X(t) = w, V(t) = v,

(8)

wherein X(s) = X(s, t, w, v), V(s) = V(s, t, w, v). Along the characteristic curves, f (t, w, v)
is a constant, i.e.,

f (t, w, v) = f0(X(0), V(0)).

In the rest of this paper, C shows a positive scalar that varies from line to line and only
depends on the initial inputs. C(t) stands for a positive nondecreasing function, which may
vary from line to line. For the sake of simplicity,

∫
R2 f dv will be written as

∫
f dv. Moreover,

‖ f (t)‖ and ‖B(t)‖ are, respectively, denoted by

‖ f (t)‖ = sup
(w,v)∈R×R2

{| f (t, w, v)|},

‖|B(t)|‖ = sup
0≤s≤t

{‖B(s)‖}, ‖B(t)‖ = sup
w∈R
{|B(t, w)|}.

Now, we summarize the major results of this work.

Theorem 1. Let f0(w, v) be a nonnegative C1 function with compact support. E0(w) and B0(w)
are two C2 functions and satisfy

∂wE0
1 = B0 +

∫
f0(w, v)dv,

and the initial data satisfy

‖∇α
(w,v) f0‖+ ‖∇

β
wE0‖+ ‖∇β

wB0‖ < ∞, (|α| ≤ 1, |β| ≤ 2).

Then, with the RVMCS system exists a unique global classical solution f (t, w, v), (t, w, v) ∈
[0,+∞)×R×R2. Furthermore, f , E, B ∈ C1, having initial data f0, E0, B0 satisfy

f (t, w, v) = 0 f or C(t) ≤ |v|,

and
‖∇α

(t,w,v) f (t)‖+ ‖∇α
(t,w)E(t)‖+ ‖∇

α
(t,w)B(t)‖ < C(t), (|α| ≤ 1),

wherein C(t) is a nondecreasing function.

The outline of the remainder of this work is structured as comes next. In Section 2,
we give the representation of E(t, w) and B(t, w). By view of the Bessel function and the
Gronwall inequality, the derivatives of E(t, w) and B(t, w) are controlled by∇ f . In Section 3,
we obtain our main results by constructing the iteration scheme and estimating the fields
more precisely.
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2. Estimates of the Fields B(t, w) and E(t, w)

In this section, combining the method given in [6,17] with the solution of Klein–Gordon
Equation (7), we deduce the representations of E(t, w) and B(t, w) firstly.

Lemma 1. Assume ( f , E, B) is a classical resolution of the system RVMCS in (1)–(4). Assume
that f (t, w, v) has compact support in (w, v) for each t. Then, the fields E(t, w) and B(t, w) have
representations (k = 1, 2):

Ek = Ẽ0
k + ET

k + ES
k + EM

k + EN
k ,

B = B̃0 + BT + BS + BM + BN ,

where

Ẽ0
1 =

1
2

(∫ w+t

w−t
J0(
√

t2 − | − p + w|2)∂tE0
1(p)dp +

∂

∂t

∫ w+t

w−t
J0(
√

t2 − | − p + w|2)E0
1(p)dp

)
+2π

∫ w+t

w−t

∫
J0(
√

t2 − | − p + w|2)(1 + v̂1) f0(p, v)dvdp,

Ẽ0
2 =

1
2

(∫ w+t

w−t
J0(
√

t2 − | − p + w|2)∂tE0
2(p)dp +

∂

∂t

∫ w+t

w−t
J0(
√

t2 − | − p + w|2)E0
2(p)dp

)
−2π

∫ w+t

w−t

∫
J0(
√

t2 − | − p + w|2) v̂1v̂2

1− v̂1
f0(p, v)dvdp,

B̃0 =
1
2

(∫ w+t

w−t
J0(
√

t2 − | − p + w|2)∂tB0(p)dp +
∂

∂t

∫ w+t

w−t
J0(
√

t2 − | − p + w|2)B0(p)dp
)

−2π
∫ w+t

w−t

∫
J0(
√

t2 − | − p + w|2) v̂2

v̂1 − 1
f0(p, v)dvdp,

ES
1 = 0,

ES
2 = BS = 2π

∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫
J0(
√
(−ς + t)2 − | − p + w|2)∇v(−

v̂2

1− v̂1
)(F f )(ς, p, v)dvdpdς,

ET
1 = 2π

∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫ J1(
√
(−ς + t)2 − | − p + w|2)√
(−ς + t)2 − | − p + w|2

[(−ς + t)− (−p + w)](1 + v̂1) f (ς, p, v)dvdpdς,

ET
2 = 2π

∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫ J1(
√
(−ς + t)2 − | − p + w|2)√
(−ς + t)2 − | − p + w|2

[(−p + w)− (−ς + t)]
v̂1v̂2

1− v̂1
f (ς, p, v)dvdpdς,

BT = 2π
∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫ J1(
√
(−ς + t)2 − | − p + w|2)√
(−ς + t)2 − | − p + w|2

[(−p + w)− (−ς + t)]
v̂2

1− v̂1
f (ς, p, v)dvdpdς.

Furthermore, the others are defined by

EM
1 = −4π

∫ t

0

∫
(1 + v̂1) f (ς, w + (−ς + t), v)dvdς,

EM
2 = 4π

∫ t

0

∫ v̂1v̂2

1− v̂1
f (ς, w + (−ς + t), v)dvdς,

BM = 4π
∫ t

0

∫ v̂2

1− v̂1
f (ς, w + (−ς + t), v)dvdς,

EN
1 = 2π

∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫
J0(
√
(−ς + t)2 − |w− p|2)v̂2 f (ς, p, v)dvdpdς,

EN
2 = −2π

∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫
J0(
√
(−ς + t)2 − |w− p|2)v̂1 f (ς, p, v)dvdpdς,

BN = −2π
∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫
J0(
√
(−ς + t)2 − |w− p|2) f (ς, p, v)dvdpdς,

where F = (E1 + v̂2B, E2 − v̂1B).
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Proof. As in [6], we define two operators as comes next:

S = ∂t + v̂1∂w, T = ∂t + ∂w.

Applying the calculations of [7,8,17], we can rewrite time and spatial derivatives below:

∂t =
S− v̂1T
1− v̂1

, ∂w =
T− S
1− v̂1

. (9)

From (2) and (3), we obtain that

∂ttE1 − ∂wwE1 + E1 = −∂wρ + j2 − ∂t j1,

∂ttE2 − ∂wwE2 + E2 = −j1 − ∂t j2,

∂ttB− ∂wwB + B = −ρ + ∂w j2.

Because of the calculation process of the representation of E1, E2 and B are almost
similar, we just only calculate E2.

Actually, using (7), the E2 field could be written as follows:

E2 =
1
2
(

∂

∂t

∫ w+t

w−t
J0(
√

t2 − | − p + w|2)E0
2(p)dp +

∫ w+t

w−t
J0(
√

t2 − | − p + w|2)∂tE0
2(p)dp) + Ẽ2, (10)

where

Ẽ2 =
1
2

∫ t

0

∫ w+(−ς+t)

w−(−ς+t)
J0(
√
(−ς + t)2 − |w− p|2)(−j1 − ∂ς j2)(ς, p)dpdς,

and in view of (9), Ẽ2 can be rewritten as

Ẽ2 =
∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫
J0(
√
(−ς + t)2 − | − p + w|2)(−2πv̂1 f )(ς, p, v)dvdpdς

+
∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫
J0(
√
(−ς + t)2 − | − p + w|2)(−2πv̂2∂ς f )(ς, p, v)dvdpdς

= EN
2 − 2π

∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫
J0(
√
(−ς + t)2 − | − p + w|2)v̂2(

S− v̂1T
1− v̂1

) f (ς, p, v)dvdpdς

= EN
2 − 2π

∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫
J0(
√
(−ς + t)2 − | − p + w|2) v̂2

1− v̂1
S f (ς, p, v)dvdpdς

+2π
∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫
J0(
√
(−ς + t)2 − | − p + w|2) v̂1v̂2

1− v̂1
T f (ς, p, v)dvdpdς

= EN
2 + Ẽ2S + Ẽ2T. (11)

By virtue of (1), we obtain

S f = −F · ∇v f = −∇v(F f ).

It is now deduced that
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Ẽ2S = 2π
∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫
J0(
√
(−ς + t)2 − | − p + w|2) v̂2

1− v̂1
∇v(F f )(ς, p, v)dvdpdς

= 2π
∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫
J0(
√
(−ς + t)2 − | − p + w|2)∇v(−

v̂2

1− v̂1
)(F f )(ς, p, v)dvdpdς

= ES
2 . (12)

For the Ẽ2T term, using the definition of T, we obtain

Ẽ2T = 2π
∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫
J0(
√
(ς− t)2 − | − p + w|2) v̂1v̂2

1− v̂1
(∂ς + ∂p) f (ς, p, v)dvdpdς.

Set ε ∈ (0, 1), by invoking integration by parts and (5), and we obtain

∫ t

0

∫ w+(1−ε)(−ς+t)

w−(1−ε)(−ς+t)

∫
J0(
√
(−ς + t)2 − |w− p|2)(∂ς + ∂p) f (ς, p, v)dvdpdς

=
∫ t

0

∫ w+(1−ε)(−ς+t)

w−(1−ε)(−ς+t)

∫ J1(
√
(−ς + t)2 − |w− p|2)√
(−ς + t)2 − |w− p|2

[(w− p)− (−ς + t)] f (ς, p, v)dvdpdς

+
∫ t

0

d
dς

(∫ w+(1−ε)(−ς+t)

w−(1−ε)(−ς+t)
J0(
√
(−ς + t)2 − |w− p|2) f dp

)
dς

+(2− ε)
∫ t

0

∫
J0(
√

ε(2− ε)(−ς + t)) f (ς, w + (1− ε)(−ς + t), v)dvdς

−ε
∫ t

0

∫
J0(
√

ε(2− ε)(−ς + t)) f (ς, w− (1− ε)(−ς + t), v)dvdς. (13)

As ε→ 0, it is easy to deduce that

Ẽ2T = −2π
∫ w+t

w−t

∫
J0(
√

t2 − | − p + w|2) v̂1v̂2

1− v̂1
f0(p, v)dvdp + ET

2 + EM
2 . (14)

Inserting inequalities (11)–(14) into (10), we obtain the representation of E2.

Remark 1. Because of the different fundamental function between the Klein–Gordon equations with
wave equations, the representations of fields E and B for the RVMCS system have some different
points from the RVM system [6]. For example, we have additional terms ES

k , ET
k , BS and BT .

Nevertheless, these additional terms can be controlled by (5) and (6).

Now, we are devoted to estimating the fields E(t, w) and B(t, w).

Lemma 2. Suppose that ( f (t, w, v), E(t, w), B(t, w)) satisfy the same conditions as in Lemma 1 and

‖ f0‖, ‖E0‖, ‖B0‖, ‖∂wE0‖, ‖∂wB0‖

are finite. If there is a nondecreasing function C(t) yielding

f (t, w, v) = 0 i f C(t) ≤ |v|,

then
‖|B(t)|‖+ ‖|E(t)|‖ ≤ C(t).
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Proof. Because of |v| < C(t) when f 6= 0, it is easy to show that∣∣∣∣ v̂1v̂2

1− v̂1

∣∣∣∣ ≤
∣∣∣∣∣ v1v̂2√
|v|2 + 1− v1

∣∣∣∣∣ =
∣∣∣∣∣v1v̂2(

√
|v|2 + 1 + v1)

1 + |v2|2

∣∣∣∣∣
≤ 2|v2|

√
1 + |v|2 (15)

≤ C(t),∣∣∣∣∂v1(−
v̂2

1− v̂1
)

∣∣∣∣ =

∣∣∣∣∂v1

(
v2

1 + |v2|2
(
√

1 + |v|2 + v1)

)∣∣∣∣
=

∣∣∣∣v2(v̂1 + 1)
|v2|2 + 1

∣∣∣∣ ≤ 2, (16)∣∣∣∣∂v2(−
v̂2

1− v̂1
)

∣∣∣∣ =

∣∣∣∣∣ 1 + |v1|2

(1 + |v|2) 3
2 (1− v̂1)

− v̂1|v̂2|2

(1− v̂1)2
√
|v|2 + 1

∣∣∣∣∣
≤

√
1 + |v|2 + 2|v1| (17)

≤ C(t),

where we have used
√

1 + |v|2 − v1 ≥ v̂2. Hence, for 0 ≤ t ≤ T, using (6) and in
consideration of Lemma 1, we obtain that

‖E(t)‖+ ‖B(t)‖ ≤ C(t) + C(t)
∫ t

0
(‖E(ς)‖+ ‖B(ς)‖)dς

≤ C(T) + C(T)
∫ t

0
(‖E(ς)‖+ ‖B(ς)‖)dς.

The Gronwall’s inequality implies that ‖E(t)‖+ ‖B(t)‖ ≤ C(T), for 0 ≤ t ≤ T. This is
the desired result.

Next, we show that the derivatives of the fields are also bounded.

Lemma 3. Assume that ( f , E, B) are as in Lemma 1, and ‖∇(w,v) f0‖, ‖∇2
wE0‖ and ‖∇2

wB0‖ are
finite. Then,

‖|∇wB(t)|‖+ ‖|∇wE(t)|‖ ≤ C(t)(1 + ‖|∇w f (t)|‖).

Proof. Firstly, we calculate every term of ∂wE2. For ∂wES
2 , using the definition of operators

S and T, together with (1) and (9), we have

∂wES
2 =2π

∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫
J0(
√
(−ς + t)2 − | − p + w|2)∇v(−

v̂2

1− v̂1
)∇p(F f )(ς, p, v)dvdpdς

=2π
∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫
J0(
√
(−ς + t)2 − | − p + w|2)∇v

(
∇v(

v̂2

1− v̂1
) · F

1− v̂1

)
· F f dvdpdς

+ 2π
∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫
J0(
√
(−ς + t)2 − | − p + w|2)∇v(−

v̂2

1− v̂1
) · F T f

1− v̂1
dvdpdς

+ 2π
∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫
J0(
√
(−ς + t)2 − | − p + w|2)∇v(−

v̂2

1− v̂1
) · ∂pF · f dvdpdς

=∂wES1
2 + ∂wES2

2 + ∂wES3
2 . (18)

On the set {v : |v| < C(t)}, by an elementary computation as well as Lemma 1, this
yields that ∣∣∣∣∇v

(
∇v(

v̂2

1− v̂1
) · F

1− v̂1

)
· F f

∣∣∣∣ ≤ C(t).
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Consequently, we obtain

|∂wES1
2 | ≤ C(t)

∫ t

0

∫ w+(−ς+t)

w−(−ς+t)
J0(
√
(−ς + t)2 − | − p + w|2)dpdς ≤ C(t). (19)

Similar to the estimate of (13), we have

∂wES2
2 =2π

∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫
∂ς(−J0(

√
(−ς + t)2 − | − p + w|2)F)∇v(−

v̂2

1− v̂1
)

f
1− v̂1

dvdpdς

+ 2π
∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫
∂p(−J0(

√
(−ς + t)2 − | − p + w|2)F)∇v(−

v̂2

1− v̂1
)

f
1− v̂1

dvdpdς

+ 2π
∫ w+t

w−t

∫ J0(
√

t2 − | − p + w|2)
1− v̂1

∇v(−
v̂2

1− v̂1
) · (−F f )|ς=0dvdp

+ 4π
∫ t

0

∫
∇v(−

v̂2

1− v̂1
) · F f

1− v̂1
|(ς,w+(−ς+t),v)dvdς.

By (2) and (3) and Lemma 1, for 0 ≤ ς ≤ t, we have

|∂ςF| ≤ C(t) + ‖∇wE(ς)‖+ ‖∇wB(ς)‖.

Then, combining the properties of Bessel functions (5) and (6) with the support of f ,
we observe that

|∂wES2
2 | ≤ C(t)

(
1 +

∫ t

0
(‖∇wE(ς)‖+ ‖∇wB(ς)‖)dς

)
. (20)

Similarly, we have

|∂wES3
2 | ≤ C(t)

∫ t

0
(‖∇wE(ς)‖+ ‖∇wB(ς)‖)dς.

Finally, by virtue of the above inequality and (18)–(20), we obtain

|∂wES
2 | ≤ C(t)

(
1 +

∫ t

0
(‖∇wE(ς)‖+ ‖∇wB(ς)‖)dς

)
.

Next, using equality (9), we can estimate ∂wET
2 ,

∂wET
2 =2π

∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫ J1(
√
(−ς + t)2 − | − p + w|2)√
(−ς + t)2 − | − p + w|2

[(−p + w)− (−ς + t)]
v̂1v̂2

1− v̂1
∂p f (ς, p, v)dvdpdς

=− 2π
∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫ J1(
√
(−ς + t)2 − | − p + w|2)√
(−ς + t)2 − | − p + w|2

[(−p + w)− (−ς + t)]
v̂1v̂2

(1− v̂1)2 S f dvdpdς

+ 2π
∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫ J1(
√
(−ς + t)2 − | − p + w|2)√
(−ς + t)2 − | − p + w|2

[(−p + w)− (−ς + t)]
v̂1v̂2

(1− v̂1)2 T f dvdpdς,

=∂wET
2 S + ∂wET

2 T.

Then, we estimate each term in the above equality separately. For ∂wET
2 S, using (1),

Lemma 2 and |v| ≤ C(t), we show that

|∂wET
2 S| ≤ 2π

∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫
|(−p + w)− (−ς + t)|∇v

(
v̂1v̂2

(1− v̂1)2

)
· F f dvdpdς

≤ C(t)
∫ t

0

∫ w+(−ς+t)

w−(−ς+t)
(−ς + t)dpdς ≤ C(t).
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For ∂wET
2 T, similar to the estimate of (13), in view of (5), (6) and (9), we have

|∂wET
2 T| ≤2π

∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫ ∣∣∣ J2(
√
(−ς + t)2 − | − p + w|2)

(−ς + t)2 − | − p + w|2 [(−p + w)− (−ς + t)]2
v̂1v̂2

(1− v̂1)2 f
∣∣∣dvdp

+
∫ w+t

w−t

∫ ∣∣∣ J1(
√

t2 − | − p + w|2)√
t2 − | − p + w|2

(t− (−p + w))
v̂1v̂2

(1− v̂1)2 f0dvdp
∣∣∣

≤C(t)|
∫ t

0

∫ w+(−ς+t)

w−(−ς+t)
(−ς + t)2dpdς +

∫ w+t

w−t
(t− (−p + w))dp| ≤ C(t).

Hence, combining the above estimate, we obtain |∂wET
2 | ≤ C(t).

For ∂wEM
2 , we could compute it directly:

|∂wEM
2 | ≤ 4π‖|∇w f (t)|‖

∫ t

0

∫ ∣∣∣∣ v̂1v̂2

1− v̂1

∣∣∣∣dvdς ≤ C(t)‖|∇w f (t)|‖.

Then, for ∂wEN
2 , similar to the estimates of ∂wET

2 , it is easy to show

|∂wEN
2 | ≤ C(t).

Lastly, for ∂wẼ0
2, we can obtain |∂wẼ0

2 | ≤ C(t) by integration by parts. Thus, from the
above estimates and Lemma 1, we have

|∂wE2| ≤ C(t)
(

1 + ‖|∇w f (t)|‖+
∫ t

0
(‖∇wE(ς)‖+ ‖∇wB(ς)‖)dς

)
.

Again, in the same way, we can estimate ∂wE1 and ∂wB. Consequently, for 0 ≤ t ≤ T,
we have

|∂wE|+ |∂wB| ≤ C(t)
(

1 + ‖|∇w f (t)|‖+
∫ t

0
(‖∇wE(ς)‖+ ‖∇wB(ς)‖)dς

)
≤ C(T)

(
1 + ‖|∇w f (T)|‖+

∫ t

0
(‖∇wE(ς)‖+ ‖∇wB(ς)‖)dς

)
This, together with Gronwall’s inequality, completes the proof.

Lemma 4. Assume that ( f (t, w, v), E(t, w), B(t, w)) are as in Lemmas 1–3 and the conditions of
Lemmas 1–3 hold. Then,

‖ f (t)‖+ ‖E(t)‖+ ‖B(t)‖+ ‖∇(w,v) f (t)‖+ ‖∇wE(t)‖+ ‖∇wB(t)‖ ≤ C(t).

Proof. It is similar to [7] (Theorem 4) and [12] (Lemma 3.2), so we omit it.

3. Proof of the Main Results

This section is furnished to investigate the existence and uniqueness of classical solu-
tions for the RVMCS system. First of all, we will give a conditional existence proposition.

Proposition 1. Let f0(w, v) be nonnegative C1 functions. Suppose that E0(w) and B0(w) are two
C2 functions, such that

∂wE0
1 = B0 + 4π

∫
f0(w, v)dv.

If the data satisfy

‖∇α
(w,v) f0‖+ ‖∇

β
wE0‖+ ‖∇β

wB0‖ < ∞, (|α| ≤ 1, |β| ≤ 2),
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and furthermore, if there is a non-decreasing function C(t) such that

f (t, w, v) = 0 f or |v| ≥ C(t).

Then, there exists a unique C1 global classical solution for the RVMCS system.

Proof. In this work, we use a well-known iteration scheme method ([6,7,12,17,18]) which may
be well used to prove the existence theorem. Denote

{
f (n)(t, w, v), E(n)(t, w), B(n)(t, w)

}
the iteration functions. We also take smooth initial data

f (0)(t, w, v) = f0(w, v) ∈ C2, E(0)(t, w) = E0(w) ∈ C3, B(0)(t, w) = B0(w) ∈ C3.

After the (n − 1)st iteration, we set that f (n) is the solution of the following
Vlasov problem:

∂t f (n) + v̂1∂w f (n) + (E(n−1)
1 + v̂2B(n−1), E(n−1)

2 − v̂1B(n−1)) · ∇v f (n) = 0. (21)

Hence, f (n) is a C2 function if E(n−1) and B(n−1) are C2 functions. By the theory of
ordinary differential equations, along the characteristics equations in (21)

ẇ = v̂1, v̇ = (E(n−1)
1 + v̂2B(n−1), E(n−1)

2 − v̂1B(n−1))

f (n)(t, w, v) is a constant. Therefore, f (n)(t, w, v) also has compact support in v. In addition,

ρ(n)(t, w) = 4π
∫

f (n)(t, w, v)dv ∈ C2, j(n)(t, w) = 4π
∫

v̂ f (n)(t, w, v)dv ∈ C2

are well-defined. Then, we obtain E(n) and B(n) by solving the following equations

∂ttE
(n)
1 − ∂wwE(n)

1 + E(n)
1 = −∂wρ(n) + j(n)2 − ∂t j(n)1 ,

∂ttE
(n)
2 − ∂wwE(n)

2 + E(n)
2 = −j(n)1 − ∂t j(n)2 ,

∂ttB(n) − ∂wwB(n) + B(n) = −ρ(n) + ∂w j(n)2

with initial data E0(w), B0(w). Furthermore, with Lemma 4, we can prove easily that
these sequences are Cauchy in the C1-norm and obtain the existence from Proposition 1 as
in [17].

To prove Theorem 1, we will show that the nondecreasing function in Proposition 1
exists on [0, ∞). To this end, we establish a lemma for energy conservation.

Lemma 5. Suppose ( f (t, w, v), E(t, w), B(t, w)) are the solutions stated in Proposition 1. Then,
the energy identity

∂te +∇w

(
4π
∫

v1 f dv + E2B
)
= 0 (22)

holds, where

e = 4π
∫ √

1 + |v|2 f dv +
1
2
|E|2 + 1

2
|B|2.
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Moreover, ∫ w+(−ς+t)

w−(−ς+t)
e(ς, p)dp ≤ C, (23)

sup
|w|<C+t,0<t<T

∫ t

0

∫ |v2|√
1 + |v|2

f (ς, w + (−ς + t), v)dvdς ≤ C, (24)

sup
|w|<C+t

∫ w+(−ς+t)

w−(−ς+t)
ρ

3
2 (ς, p)dp ≤ C(−ς + t), (25)

sup
|w|<C+t

∫ w+(−ς+t)

w−(−ς+t)

(∫ f√
1 + |v|2

dv

)3

dp ≤ C(−ς + t). (26)

Proof. The energy identity (22) is similar to [12] (Lemma 3.3), and its certification process
is omitted (see [12] for details). It is obvious that f (t, w, v) = 0 if |w| ≥ C + t because
of ẇ = v̂ and |v̂| < 1. So, we have the total energy identity by (22), i.e., (23). Similar
with [8] (Lemma 1), we can obtain (24).

To prove (25), note that for each R > 0, we use the usual manner,

ρ ≤
∫
|v|≤R

f dv +
∫
|v|>R

f dv ≤ C(R2 +
e
R
).

Taking R = e1/3, we have ρ3/2 ≤ Ce and hence

sup
w∈R

∫ w+(−ς+t)

w−(−ς+t)
ρ

3
2 (ς, p)dp ≤ C(−ς + t).

Similarly, we can prove (26).

Next, our goal is to deduce that P(t) ≤ C(t) where

P(t) = 1 + sup{|v| : f (ς, w, v) 6= 0 f or some (ς, w) ∈ [0, t]×R}.

As the similar method in [6–8,12], by virtue of the estimate of P(t), Proposition 1 can be
extended to Theorem 1.

To this end, following from Lemma 5, we give more precise estimates of the fields
than Lemma 2.

Lemma 6. Let ( f , E, B) be the solution furnished in Proposition 1, 0 < T̃ < T, and then
the estimate

‖E(t)‖+ ‖B(t)‖ ≤ C(T̃)(1 + P2(T̃))

holds for t ∈ [0, T̃].

Proof. Combining (16) with (17), we obtain∣∣∣∣F · ∇v(−
v̂2

1− v̂1
)

∣∣∣∣ ≤ C(|E|+ |B|)(1 + (1 + |v|2)
1
2 ).

Then, using (6) and (15) and Lemma 1, we obtain
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‖E(t)‖+ ‖B(t)‖

≤ C(t) + C
( ∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫
(|E|+ |B|)(1 + |v|2)

1
2 f dvdpdς +

∫ t

0

∫ w+(−ς+t)

w−(−ς+t)
ρdpdς

+
∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫
(|E|+ |B|) f dvdpdς +

∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

∫ √
1 + |v|2 f dvdpdς

+
∫ t

0

∫
|v2|
√

1 + |v|2 f (ς, w + (−ς + t), v)dvdς
)

, C(t) + I1 + I2 + I3 + I4 + I5. (27)

Then, we calculate Ii (1 ≤ i ≤ 5), respectively. For I1, using the Hölder inequality,
(22) and (26), we have

|I1| ≤C(1 + P2(T̃))
∫ t

0

(∫ w+(−ς+t)

w−(−ς+t)
(|E|+ |B|)2dp

) 1
2

∫ w+(−ς+t)

w−(−ς+t)

(∫ f√
1 + |v|2

dv

)2

dp

 1
2

dς

≤C(T̃)(1 + P2(T̃))
∫ t

0

∫ w+(−ς+t)

w−(−ς+t)

(∫ f√
1 + |v|2

dv

)3

dp

 1
3(∫ w+(−ς+t)

w−(−ς+t)
dp
) 1

6

dς

≤C(T̃)(P2(T̃) + 1)
∫ t

0
(−ς + t)

1
2 dς ≤ C(T̃)(P2(T̃) + 1).

By (25) and the Hölder inequality again, it gives that

|I2| ≤ C
∫ t

0

(∫ w+(−ς+t)

w−(−ς+t)
ρ

3
2 dp

) 2
3
(∫ w+(−ς+t)

w−(−ς+t)
dp
) 1

3

dς ≤ C
∫ t

0
(−ς + t)dς ≤ CT̃2.

With the above inequality, it is easy to deduce that

|I3| ≤ C
∫ t

0
(‖E(ς)‖+ ‖B(ς)‖)

(∫ w+(−ς+t)

w−(−ς+t)
ρdp

)
dς ≤ C

∫ t

0
(−ς + t)(‖E(ς)‖+ ‖B(ς)‖)dς

≤ CT̃
∫ t

0
(‖E(ς)‖+ ‖B(ς)‖)dς.

Similar to the estimate of I1, we also obtain

|I4| ≤ C(T̃)(1 + P2(T̃)).

For I5, by (24), it yields that

|I5| ≤ C(1 + P2(T̃)).

Combining the above inequalities with (27), we obtain

‖E(t)‖+ ‖B(t)‖ ≤ C(T̃)(1 + P2(T̃)) + CT̃
∫ t

0
(‖E(ς)‖+ ‖B(ς)‖)dς.

Thus, by the inequality of the Gronwall, it implies that

‖E(t)‖+ ‖B(t)‖ ≤ C(T̃)(1 + P2(T̃)) exp{CT̃t} ≤ C(T̃)(1 + P2(T̃)).
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Employing the characteristic curves (8) and Lemma 6, we have

|V(0, t, w, v)| ≤ |v|+ C
∫ t

0
(‖E(ς)‖+ ‖B(ς)‖)dς ≤ C +

∫ t

0
C(ς)(1 + P2(ς))dς.

It follows that

P(t) ≤ C + C(t)
∫ t

0
(1 + P2(ς))2dς ≤ C + C(T̃)

∫ t

0
(1 + P2(ς))dς,

wherein P(t) is bounded via Q(t) on [0, T], and also Q(t) satisfies

Q(t) = tan(C(T̃)t + arctan C).

So, choosing t = T̃, for each T̃ ∈ (0, T), one obtains

P(T̃) ≤ tan(C(T̃)T̃ + arctan C) = C(T̃).

This completes the proof of the theorem.

4. Conclusions

In this manuscript, we have considered the relativistic Vlasov–Maxwell–Chern–Simons
system in the 1.5D case. Different from the well-known Vlasov–Maxwell equations,
the RVMCS system could be seen as a set of the Klein–Gordon-type equations and Vlasov
equation. However, the Vlasov–Maxwell system could be considered as a system of the
linear wave equation. The fundamental solution of the one-dimensional Klein–Gordon
PDE has some decaying and bounded properties; hence, we can control B(t, w) and E(t, w).
By view of the iteration method and a nondecreasing function condition, we establish the
global uniqueness and existence of the RVMCS system. In a forthcoming work, inspired
by the work of [19–23], we may study two questions. On the one hand, we will consider
establishing the well-posedness of the RVMCS system in Besov space with large Maxwell
fields. On the other hand, we will consider the behavior of the RVMCS system, when the
speed of light tends to infinity.
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