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Abstract: In the paper, we prove a limit theorem in the sense of the weak convergence of probability
measures for the modified Mellin transform Z(s), s = σ + it, with fixed 1/2 < σ < 1, of the
square |ζ(1/2 + it)|2 of the Riemann zeta-function. We consider probability measures defined by
means of Z(σ + iφ(t)), where φ(t), t ⩾ t0 > 0, is an increasing to +∞ differentiable function with
monotonically decreasing derivative φ′(t) satisfying a certain normalizing estimate related to the
mean square of the function Z(σ + iφ(t)). This allows us to extend the distribution laws for Z(s).

Keywords: modified Mellin transform; Riemann zeta-function; weak convergence of probability
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1. Introduction

Let s = σ + it be a complex variable. One of the most important objects of the classical
analytic number theory is the Riemann zeta-function ζ(s), which is defined, for σ > 1, by
the Dirichlet series

ζ(s) =
∞

∑
m=1

1
ms .

Moreover, the function ζ(s) has analytic continuation to the region C \ {1}, and the point
s = 1 is its simple pole with residue 1. The first value distribution results for ζ(s) with real
s were obtained by Euler. Riemann was the first mathematician who began to study [1]
ζ(s) with complex variables, proved the functional equation for ζ(s), obtained its analytic
continuation, proposed a means of using ζ(s) for the investigation of the asymptotic prime
number distribution law

π(x) = ∑
p⩽x

1, x → ∞,

and stated some hypotheses on ζ(s). The most important hypothesis, now called the
Riemann hypothesis, states that all zeros of ζ(s) in the region σ ⩾ 0 are located on the line
σ = 1/2. Riemann’s ideas concerning π(x) were correct, and Hadamard [2] and de la Vallée
Poussin [3], using them, independently proved that

lim
x→∞

π(x)

 x∫
2

du
log u

−1

= 1.
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However, the Riemann hypothesis remains open at present; it is among the seven Mil-
lennium Problems of mathematics [4]. In the theory of ζ(s), there are other important
problems. One of them is connected to the asymptotics of moments

Mk(σ, T) def
=

T∫
0

|ζ(σ + it)|2k dt, k > 0, σ ⩾
1
2

,

as T → ∞. For example, at the moment the asymptotics of Mk(σ, T), σ = 1/2 is known
only for k = 1 and k = 2; see [5]. For the investigation of Mk(σ, T), Motohashi proposed
(see [6,7]) to use the modified Mellin transforms

Zk(s) =
∞∫

1

∣∣∣∣ζ(1
2
+ ix

)∣∣∣∣2k
x−s dx, k ∈ N.

Let g(x) be a certain function, e.g., g(x)xσ−1 ∈ L(0, ∞), and

G(s) =
∞∫

0

g(x)xs−1 dx.

Then, using the Mellin inverse formula leads to the following equality (see [8]):

∞∫
1

g
( x

T

)∣∣∣∣ζ(1
2
+ ix

)∣∣∣∣2k
dx =

1
2πi

c+i∞∫
c−i∞

G(s)TsZk(s)ds

with a certain c > 1. This shows that a suitable choice of the function g(x) reduces
investigations of Mk(1/2, T) to those of properties of Zk(s). The latter assertion inspired
the creation of the analytic theory of the functions Zk(s).

In this paper, we limit ourselves to the probabilistic value distribution of the function

Z(s) def
= Z1(s) only. Before this, we recall some known results of the function Z(s).

Let γ = 0.577 . . . denote the Euler constant and E(T) be defined by

T∫
0

∣∣∣∣ζ((1
2
+ it

)∣∣∣∣2 dt = T log
T

2π
+ (2γ − 1)T + E(T).

Moreover, let

F(t) =
T∫

1

E(t)dt − πT and F1(T) =
T∫

1

F(t)dt.

The analytic behavior of the function Z(s) was described in [9] and forms the following
theorem.

Theorem 1 ([9]). The function Z(s) is analytically continuable to the region σ > −3/4, except
the point s = 1, which is a double pole, and

Z(s) =
1

(s − 1)2 +
2γ − log 2π

s − 1
− E(1) + π(s + 1) + s(s + 1)(s + 2)

∞∫
1

F1(x)x−s−3 dx.

Moreover, the estimates

Z(σ + it) ≪ε t1−σ+ε, 0 ⩽ σ ⩽ 1, t ⩾ t0 > 0,
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and

T∫
1

|Z(σ + it)|2 dt ≪ε

{
T3−4σ+ε if 0 ⩽ σ ⩽ 1/2,
T2−2σ+ε if 1/2 ⩽ σ ⩽ 1,

(1)

are valid.

Here and in what follows, ε is an arbitrary fixed positive number that is not always the
same, and the notation x ≪ε y, x ∈ C, y > 0, means that there is a constant c = c(ε) > 0
such that |x| ⩽ cy.

In [10], Bohr proposed to characterize the asymptotic behavior of the Riemann zeta-
function by using a probabilistic approach. This idea is acceptable because the value
distribution of ζ(s) is quite chaotic. Denote by JA the Jordan measure of the set A ⊂ R.
Then, Bohr, jointly with Jessen, roughly speaking, obtained in [11,12] that, for σ > 1/2 and
every rectangle R ⊂ C with edges parallel to the axes, there exists a limit

lim
T→∞

J{t ∈ [0, T] : ζ(σ + it) ∈ R}.

In modern terminology, the Bohr–Jessen theorem is stated as a limit theorem on weakly
convergent probability measures. Let B(X) stand for the Borel σ-field of the space X
(in general, topological), and let Pn, n ∈ N, and P be probability measures defined on
(X,B(X)). By this definition, Pn converges weakly to P as n → ∞ (Pn

w−−−→
n→∞

P) if

lim
n→∞

∫
X

g dPn =
∫
X

g dP

for every real continuous bounded function g on X. Let LA stand for the Lebesgue measure
of a measurable set A ⊂ R. Then, the modern version of the Bohr–Jessen theorem is of the
following form: for every fixed σ > 1/2, there exists a probability measure Pσ on (C,B(C))
such that

1
T

L{t ∈ [0, T] : ζ(σ + it) ∈ A}, A ∈ B(C),

converges weakly to Pσ as T → ∞.
The first probabilistic limit theorems for the function Z(s) were discussed in [13]. For

A ∈ B(C), set

QT,σ(A) =
1
T

L{t ∈ [0, T] : Z(σ + it) ∈ A}.

Assuming that σ > 1/2, it was obtained that there is a probability measure Qσ on (C,B(C))
such that QT,σ

w−−−→
T→∞

Qσ. On the other hand, for every κ > 0, we have

1
T

L{t ∈ [0, T] : |Z(σ + it)| ⩾ κ} ⩽
1

κT

T∫
0

|Z(σ + it)|dt ⩽
1
κ

 1
T

T∫
0

|Z(σ + it)|2 dt

1/2

.

This, together with Theorem 1, implies that, for 1/2 < σ < 1,

lim
T→∞

1
T

L{t ∈ [0, T] : |Z(σ + it)| ⩾ κ} = 0.

The latter equality remains valid also for σ > 1. Thus, the limit measure Qσ is degenerated
at the point s = 0. In order to avoid this situation, we propose to consider Z(σ + iφ(t))
with a certain function φ(t). Moreover, it is more convenient to deal with t ∈ [T, 2T]
because, in this case, additional restrictions for φ(t) with t = 0 are not needed.

Denote
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Iσ(T) =
T∫

1

|Z(σ + it)|2 dt.

We suppose that φ(t) is a positive increasing to +∞ differentiable function with a mono-
tonically decreasing derivative, such that

Iσ−ε(φ(T))
φ′(T)

≪ T, T → ∞.

The class of such functions φ(t) is denoted by Wσ. Consider the weak convergence for

PT,σ(A) =
1
T

L{t ∈ [T, 2T] : Z(σ + iφ(τ)) ∈ A}, A ∈ B(C).

In this case, we have, by ε → 0, that

Iσ(φ(T))
φ′(T)

≪ T,

and

1
T

2T∫
T

|Z(σ + iφ(t))|2 dt =
1
T

φ(2T)∫
φ(T)

1
φ′(t)

|Z(σ + iu)|2 du ⩽
1

Tφ′(2T)
Iσ(φ(2T)) ≪ 1 (2)

for φ(t) ∈ Wσ. Thus, we cannot claim that the limit measure for PT,σ is degenerated at zero.
Now, we state a limit theorem for PT,σ.

Theorem 2. Assume that σ ∈ (1/2, 1) is a given fixed number, and φ(t) ∈ Wσ. Then, on
(C,B(C)), there exists a probability measure Pσ such that PT,σ

w−−−→
T→∞

Pσ.

In virtue of Theorem 1, we see that

Iσ−ε(T) ≪ Tασ

with certain 0 < ασ < 1. Take φ(t) = (log t)βσ , t ⩾ 2, βσ > 0. Then, φ′(t) is decreasing,
and

Iσ−ε(φ(T))
φ′(T)

≪ T(log T)ασ βσ+1−βσ ≪ T

if we choose
βσ = (1 − ασ)

−1.

This shows that (log T)βσ is an element of the class Wσ.
Theorem 2 shows that the asymptotic behavior of the function Z(s) on vertical lines

is governed by a certain probabilistic law, and this confirms the chaos in its value distri-
bution. Moreover, Theorem 2 is an example of the application of probability methods
in analysis. Thus, it continues a tradition initiated in works [11,12] and developed by
Selberg [14], Joyner [15], Bagchi [16], Korolev [17,18], Kowalski [19], Lamzouri, Lester and
Radziwill [20,21], Steuding [22], and others; see also a survey paper [23]. We note that a
generalization of Theorem 2 for the functional spaces can be applied for approximation
problems of some classes of functions.

We divide the proof of Theorem 2 into several parts. First, we discuss weak con-
vergence on a certain group. The second part is devoted to the case related to a integral.
Further, we consider a measure defined by an absolutely convergent improper integral.
In the last part, Theorem 2 is proven. For proofs of all assertions on weak convergence,
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the notions of relative compactness as well as of tightness and convergence in distribution
are employed.

2. Fourier Transform Method

Let b > 1 be a fixed finite number, and

Ib = ∏
x∈[1,b]

{s ∈ C : |s| = 1}.

The Cartesian product Ib consists of all functions i : [1, b] → {s ∈ C : |s| = 1}. On Ib, the
product topology and operation of pointwise multiplication can be defined. This reduces
Ib to a compact topological group. We will give a limit lemma for probability measures on
(Ib,B(Ib)).

For A ∈ B(Ib), put

VT,b(A) =
1
T

L
{

t ∈ [T, 2T] :
(

x−iφ(t) : x ∈ [1, b]
)
∈ A

}
.

Lemma 1. Suppose that the function φ(t) has a monotonically decreasing derivative φ′(t) such that

(φ′(T))−1 = o(T), T → ∞. (3)

Then VT,b converges weakly to a certain probability measure Vb as T → ∞.

Proof. We use the Fourier transform approach. Denote the elements of Ib by i = {ix : x ∈
[1, b]}. Then, the Fourier transform fT,b(k), k = (kx : kx ∈ Z, x ∈ [1, b]) of the measure VT,b
is the integral

fT,b(k) =
∫
Ib

 ∏
x∈[1,b]

ikx
x

dVT,b,

where only a finite number of integers kx are not zeros. Therefore, the definition of
VT,b yields

fT,b(k) =
1
T

2T∫
T

 ∏
x∈[1,b]

x−ikx φ(t)

dt =
1
T

2T∫
T

exp

−iφ(t) ∑
x∈[1,b]

kx log x

dt. (4)

For brevity, let Ab(k) = ∑k∈[1,b] kx log x. Then, the second mean value theorem, (4), and
(3) give

Re fT,b(k) =
1
T

2T∫
T

cos(φ(t)Ab(k))dt =
1

Ab(k)T

2T∫
T

1
φ′(t)

d sin(φ(t)Ab(k))

≪ 1
|Ab(k)|

1
φ′(2T)T

= o(1), T → ∞,

provided that Ab(k) ̸= 0. Clearly, the same estimate holds for Im fT,b(k). Hence, for
Ab(k) ̸= 0,

lim
T→∞

fT,b(k) = 0. (5)

Obviously,
fT,b(k) = 1

if Ab(k) = 0. This and (5) show that

VT,b
w−−−→

T→∞
Vb,
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where Vb is a probability measure on (Ib,B(Ib)) defined by the Fourier transform

fb(k) =
{

1 if Ab(k) = 0,
0 if Ab(k) ̸= 0.

Now, we will apply Lemma 1 for the measure defined by means of a certain finite sum.
Let θ > 1/2 be a fixed number, and, for x, y ∈ [1, ∞),

u(x, y) = exp

{
−
(

x
y

)θ
}

.

Moreover, we use the notation ζ̂(t) = |ζ(1/2 + it)|2. Consider the nth integral sum

Un,b,y(σ + iφ(t)) =
b − 1

n

n

∑
l=1

ζ̂(al)u(al , y)a−σ−iφ(t)
l , n ∈ N,

where al ∈ [xl−1, xl ] and xl = 1 + ((b − 1)/n)l.
For A ∈ B(C), set

PT,n,b,y(A) =
1
T

L
{

t ∈ [T, 2T] : Un,b,y(σ + iφ(t)) ∈ A
}

.

For simplicity, here and in the following, we omit the dependence on σ of some objects.
Before the statement of the limit lemma for PT,n,b,y, we will present some lower estimates
for the mean square Iσ(T). For this, we will apply the following general lemma from [8].
Let F (s) be the modified Mellin transform of f (x), i.e.,

F (s) =
∞∫

1

f (x)x−s dx.

Lemma 2 ([8], Lemma 5). Let f (x) ∈ C∞[2, ∞] be a real-valued function such that
1◦

X∫
1

∣∣∣ f (k)(x)
∣∣∣dx ≪ε,k X1+ε, k ∈ N0;

2◦ F (s) has analytic continuation to the half-plane σ > 1/2, except for a pole of order l at the
point s = 1;

3◦ For σ > 1/2, F (s) is of polynomial growth in |t|.
Then, for 1/2 < σ < 1 and any fixed ε > 0,

2T∫
T

f 2(x)dx ≪ε logl−1 T
5T/2∫

T/2

| f (x)|dx + T2σ−1
T1+ε∫
0

|F (σ + it)|2 dt.

Lemma 3. For 1/2 < σ < 1, and any ε > 0, the estimate

Iσ(T) ≫ε T2−2σ−ε

holds.

Proof. As usual, denote by Z(t), t ∈ R, the Hardy function, i.e.,

Z(t) = ζ

(
1
2
+ it

)
χ−1/2

(
1
2
+ it

)
,
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where

χ(s) =
ζ(s)

ζ(1 − s)
.

It is well known that Z(t) is a real-valued function satisfying |Z(t)| = |ζ(1/2 + it)|. More-
over, the estimate [8]

Z(k)(t) ≪k t−1/4(log T)k+1 + ∑
m⩽

√
t/(2π)

m−1/2

(
log

√
t/(2π)

m

)k

(6)

holds. Take f (x) = Z2(x). Then, we have

F (s) =
∞∫

1

Z2(x)x−s dx =

∞∫
1

∣∣∣∣ζ(1
2
+ ix

)∣∣∣∣2x−s dx = Z(s).

In view of Theorem 1 and (6), the function satisfies the hypotheses of Lemma 1 with l = 2.
Thus, for 1/2 < σ < 1,

2T∫
T

f 2(t)dt =
2T∫

T

∣∣∣∣ζ(1
2
+ it

)∣∣∣∣4 dt ≪ε log T
5T/2∫

T/2

∣∣∣∣ζ(1
2
+ it

)∣∣∣∣2 dt + T2σ−1
T1+ε∫
0

|Z(σ + it)|2 dt.

Since [5]

T∫
0

∣∣∣∣ζ(1
2
+ it

)∣∣∣∣4 dt =
1

2π2 T log4 T + O(T log3 T)

and

T∫
0

∣∣∣∣ζ(1
2
+ it

)∣∣∣∣2 dt ≪ T log T,

this implies

T log4 T ≪ε T2σ−1
T1+ε∫
0

|Z(σ + it)|2 dt.

Consequently,

Iσ(T) ≫ε T(2−2σ)/(1+ε) ≫ε T2−2σ−ε.

Lemma 4. Assume that σ ∈ (1/2, 1) is a given fixed number, and φ(t) ∈ Wσ. Then, on
(C,B(C)), there exists a probability measure Pn,b,y such that PT,n,b,y

w−−−→
T→∞

Pn,b,y.

Proof. Lemma 3 implies that, for σ ∈ (1/2, 1) , Iσ(T) → ∞ as T → ∞. Therefore, if
φ(t) ∈ Wσ, then

1
φ′(T)

≪ TI−1
σ (φ(T)) = o(T)

as T → ∞. Thus, the application of Lemma 1 is possible.
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Consider the mapping vn,b : Ib → C defined by

vn,b(i) =
b − 1

n

n

∑
l=1

ζ̂(al)u(al , y)a−σ
l ial . (7)

Since the latter sum is finite, and Ib is equipped with the product topology, the mapping
vn,b is continuous. Moreover, in view of (7),

vn,b

(
x−iφ(t) : x ∈ [1, b]

)
=

b − 1
n

n

∑
l=1

ζ̂(al)u(al , y)a−σ−iφ(t)
l = Un,b,y(σ + iφ(t)).

Hence, for A ∈ B(C),

PT,n,b,y(A) =
1
T

L
{

t ∈ [T, 2T] : vn,b

(
x−iφ(t) : x ∈ [1, b]

)
∈ A

}
=

1
T

L
{

t ∈ [T, 2T] :
(

x−iφ(t) : x ∈ [1, b]
)
∈ v−1

n,b A
}
= VT,b

(
v−1

n,b A
)

, (8)

where VT,b is from Lemma 1. The continuity of the mapping vn,b implies its (B(Ib),B(C))-
measurability. Therefore, the mapping vn,b and any probability measure P on (Ib,B(Ib))

define the unique probability measure Pv−1
n,b on (C,B(C)) given by

Pv−1
n,b(A) = P(v−1

n,b A), A ∈ B(C).

See Section 2 of [24]. Thus, by (8), we have PT,n,b,y = VT,bv−1
n,b. Therefore, Lemma 1,

the continuity of vn,b, and the principle of the preservation of week convergence under
continuity mappings (Theorem 5.1 of [24]) show that

PT,n,b,y
w−−−→

T→∞
Pn,b,y,

where Pn,b,y = Vbv−1
n,b, and Vb is the limit measure in Lemma 1.

3. Limit Lemma for Integral

Denote

Zb,y(σ + iφ(t)) =
b∫

1

ζ̂(x)u(x, y)x−σ−iφ(t) dx,

and, for A ∈ B(C), set

PT,b,y(A) =
1
T

L
{

t ∈ [T, 2T] : Zb,y(σ + iφ(t)) ∈ A
}

.

In this section, we will prove the weak convergence for PT,b,y as T → ∞. Before this,
we recall some known probabilistic results. Let {Q} be a certain family of probability
measures on (X,B(X)). The family {Q} is called tight if, for every δ > 0, there is a compact
set K ⊂ X such that

Q(K) > 1 − δ

for all Q ∈ {Q}. The family {Q} is said to be relatively compact if every sequence contains
a subsequence weakly convergent to a certain probability measure on (X,B(X)). The
Prokhorov theorem connects two above notions, and, for convenience, we state it as the
following lemma.

Lemma 5. If a family of probability measures is tight, then it is relatively compact.

The proof of the lemma is given in [24], Theorem 5.1.
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Moreover, we recall one useful property on convergence in distribution. Let ξn and ξ
be X-valued random elements defined on the probability space (Ω,F , µ) with distributions

Pn and P, respectively. Then, ξn converges in distribution to ξ as n → ∞
(

D−−−→
n→∞

)
if

Pn
w−−−→

n→∞
P.

Now, we state a lemma on convergence in distribution.

Lemma 6. Assume that the metric space (X, d) is separable, and ξnk, ξn are X-valued random
elements defined on the same probability space (Ω,F , µ). Let

ξnk
D−−−→

n→∞
ξk

and
ξk

D−−−→
k→∞

ξ.

If, for every δ > 0,
lim
k→∞

lim sup
n→∞

µ{d(ξnk, ηk) ⩾ δ} = 0,

then
ηn

D−−−→
n→∞

ξ.

The lemma is proven in [24], Theorem 3.2.

Lemma 7. Assume that σ ∈ (1/2, 1) is a given fixed number, and φ(t) ∈ Wσ. Then, on
(C,B(C)), there exists a probability measure Pb,y such that PT,b,y

w−−−→
T→∞

Pb,y.

Proof. First, we will show that Zb,y(σ+ iφ(t)) is close in a certain sense to Un,b,y(σ+ iφ(t)).
Let

JT,n
def
=

1
T

2T∫
T

∣∣∣Zb,y(σ + iφ(t))− Un,b,y(σ + φ(t))
∣∣∣dt.

Clearly,

J2
T,n ⩽

1
T

2T∫
T

∣∣∣Zb,y(σ + iφ(t))− Un,b,y(σ + φ(t))
∣∣∣2 dt. (9)

We have

2T∫
T

∣∣∣Zb,y(σ + iφ(t))
∣∣∣2 dt

=

2T∫
T

 b∫
1

ζ̂(x)u(x, y)x−σ−iφ(t) dx

 b∫
1

ζ̂(x)u(x, y)x−σ+iφ(t) dx

dt

= T
b∫

1

b∫
1

x1=x2

ζ̂(x1)ζ̂(x2)u(x1, y)u(x2, y)x−σ
1 x−σ

2 dx1 dx2

+

b∫
1

b∫
1

x1 ̸=x2

ζ̂(x1)ζ̂(x2)u(x1, y)u(x2, y)x−σ
1 x−σ

2

 2T∫
T

(
x1
x2

)iφ(t)
dt

dx1 dx2. (10)
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Since

Re
2T∫

T

(
x1

x2

)iφ(t)
dt =

(
log
(

x1

x2

))−1 2T∫
T

1
φ′(t)

d sin
(

φ(t) log
(

x1

x2

))
≪
∣∣∣∣log

x1

x2

∣∣∣∣−1 1
φ′(2T)

,

and the same bound is true for the imaginary part of the latter integral, we obtain by (10)
that

2T∫
T

∣∣∣Zb,y(σ + iφ(t))
∣∣∣2 dt = o(T), T → ∞. (11)

Reasoning similarly, we find

2T∫
T

∣∣∣Un,b,y(σ + iφ(t))
∣∣∣2 dt = T

(
b − 1

n

)2 n

∑
l=1

ζ̂ 2(al)u2(al , y)a−2
l

+ O

( b − 1
n

)2 n

∑
l1=1

n

∑
l2=1

l1 ̸=l2

ζ̂(al1)ζ̂(al2)u(al1 , y)u(al2 , y)a−σ
l1

a−σ
l2

∣∣∣∣log
al1
al2

∣∣∣∣−1

. (12)

Thus,

lim
n→∞

lim sup
T→∞

1
T

2T∫
T

∣∣∣Un,b,y(σ + iφ(t))
∣∣∣2 dt = 0. (13)

By (9),

J2
T,n ≪ 1

T

 2T∫
T

∣∣∣Zb,y(σ + iφ(t))
∣∣∣2 dt +

 2T∫
T

∣∣∣Zb,y(σ + iφ(t))
∣∣∣2 dt

2T∫
T

∣∣∣Un,b,y(σ + iφ(t))
∣∣∣2 dt

1/2

+

2T∫
T

∣∣∣Un,b,y(σ + iφ(t))
∣∣∣2 dt

.

Therefore, (11) and (13) yield
lim

n→∞
lim sup

T→∞
JT,n = 0. (14)

Now, we will deal with the sequence {Pn,b,y : n ∈ N}. By (12), we have

sup
s∈N

lim sup
T→∞

1
T

2T∫
T

∣∣∣Un,b,y(σ + iφ(t))
∣∣∣dt

≪ sup
s∈N

lim sup
T→∞

 1
T

2T∫
T

∣∣∣Un,b,y(σ + iφ(t))
∣∣∣2 dt

1/2

≪ sup
n∈N

b − 1
n

(
n

∑
l=1

ζ̂ 2(al)u2(al , y)a−2σ
l

)1/2

⩽ Cb,y,σ < ∞ (15)

because

lim
n→∞

b − 1
n

n

∑
l=1

ζ̂ 2(al)u2(al , y)a−2σ
l =

b∫
1

ζ̂ 2(x)u2(x, y)x−2σ dx.
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Take a random variable θT given on the probability space (Ω,F , µ) that is uniformly
distributed on [T, 2T]. Consider the complex-valued random variables

xT,n.,b,y = xT,n,b,y(σ) = Un,b,y(σ + iφ(θT)),

and xn,b,y(σ) with the distribution Pn,b,y,σ. Then, rewrite the assertion of Lemma 4 in
the form

xT,n,b,y
D−−−→

T→∞
xn,b,y. (16)

Fix δ > 0. Then, in view of (15) and (16),

µ
{∣∣∣xn,b,y(σ)

∣∣∣ > δ−1Cb,y,σ

}
⩽ sup

n∈N
lim sup

T→∞
µ
{∣∣∣xT,n,b,y(σ)

∣∣∣ > δ−1Cb,y,σ

}

⩽ sup
n∈N

lim sup
T→∞

δ

Cb,y,σ

2T∫
T

∣∣∣Un,b,y(σ + iφ(t))
∣∣∣dt ⩽ δ. (17)

The set K = {s ∈ C : |s| ⩽ δ−1Cb,y,σ} is compact in C. Moreover, by (17),

µ
{

xn,b,y ∈ K
}
= 1 − µ

{
xn,b,y ̸∈ K

}
> 1 − δ

for all n ∈ N. This and the definition of xn,b,y show that, for all n ∈ N,

Pn,b,y,σ(K) > 1 − δ.

This means that the sequence {Pn,b,y,σ : n ∈ N} is tight. Therefore, by Lemma 5, it
is relatively compact. Hence, there exists a subsequence {Pnl ,b,y,σ} ⊂ {Pn,b,y,σ} and a

probability measure Pb,y,σ on (C,B(C)) such that Pnl ,b,y,σ
w−−→

l→∞
Pb,y,σ. In other words,

xnl ,b,y
D−−→

l→∞
Pb,y,σ.

This, (16), and (14) show that all hypotheses of Lemma 6 for xT,n,b,y, xnl ,b,y and

yT,b,y = yT,b,y(σ) = Zb,y(σ + iφ(θT))

are satisfied. Thus, we have
yT,b,y

D−−−→
T→∞

Pb,y,σ,

which proves the lemma.

4. Case of Improper Integral

This section is devoted to a limit lemma for the integral

Zy(σ + iφ(t)) =
∞∫

1

ζ̂(x)u(x, y)x−σ−iφ(t) dx.

It is well known that ζ(1/2 + ix) ≪ (1 + |x|)1/6. Therefore, the integral for Z(σ + iφ(t))
converges absolutely for σ > σ̂ with every finite σ̂.

For A ∈ B(C), let

PT,y,σ(A) =
1
T

L
{

t ∈ [T, 2T] : Zy(σ + iφ(t)) ∈ A
}

.
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Lemma 8. Assume that σ ∈ (1/2, 1) is a given fixed number, and φ(t) ∈ Wσ. Then, there is a
probability measure Py,σ on (C(B(C)) such that PT,y,σ

w−−−→
T→∞

Py,σ.

Proof. We use a similar method as in the proof of Lemma 7. We begin with a mean value

JT,y
def
=

1
T

T∫
0

∣∣∣Zy(σ + iφ(t))−Zb,y(σ + iφ(t))
∣∣∣dt.

Clearly, the absolute convergence of the integral for Zy(σ + iφ(t)) shows that, for every
fixed y > 0,

Zy(σ + iφ(t))−Zb,y(σ + iφ(t)) =
∞∫

b

ζ̂(x)u(x, y)x−σ−iφ(t) dx

≪
∞∫

b

ζ̂(x)u(x, y)x−σ dx = oy(1)

as b → ∞. Hence, we obtain

lim
b→∞

lim sup
T→∞

JT,y = 0. (18)

Let yb,y(σ) be the complex-valued random variable with distribution Pb,y,σ, and, in the
notation of Lemma 7,

yT,b,y = yT,b,y(σ) = Zb,y(σ + iφ(θT)).

Then, by Lemma 7,

yT,b,y
D−−−→

T→∞
yb,y. (19)

Moreover, in virtue of (11),

sup
b⩾1

lim sup
T→∞

1
T

2T∫
T

∣∣∣Zb,y(σ + iφ(t))
∣∣∣dt ⩽ Cy,σ < ∞.

This together with (19) gives, for δ > 0,

µ
{∣∣∣yb,y

∣∣∣ > δ−1Cy,σ

}
⩽ sup

b⩾1
lim sup

T→∞
µ
{∣∣∣yb,y

∣∣∣ > δ−1Cy,σ

}

⩽ sup
b⩾1

lim sup
T→∞

δ

Cy,σ

2T∫
T

∣∣∣Zb,y(σ + iφ(t))
∣∣∣dt ⩽ δ.

Taking a set K = {s ∈ C : |s| ⩽ δ−1Cy,σ}, from this, we deduce that

µ
{

yb,y ∈ K
}
> 1 − δ.

This implies that the family {Pb,y,σ : b ⩾ 1} is tight. Therefore, in view of Lemma 5, it is
relatively compact. Thus, there is a sequence {Pbl ,y,σ} and a probability measure Py,σ on
(C,B(C)) such that

ybl ,y,σ
D−−→

l→∞
Py,σ.

This, (19), (18), and the application of Lemma 6 complete the proof of the lemma.
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5. Proof of Theorem 2

We recall that

u(x, y) = exp

{
−
(

x
y

)θ
}

, x, y ∈ [1, ∞),

with a fixed θ > 1/2. For brevity, set

f (s, y) =
1
θ

Γ
( s

θ

)
ys,

where Γ(s) is the Euler gamma-function. For the approximation of Z(σ + iφ(t)) by Zy(σ +
φ(t)), we use the representation

Zy(s) =
1

2πi

θ+i∞∫
θ−i∞

Z(s + z) f (z, y)dz,
1
2
< σ < 1, (20)

obtained in [25], Lemma 9.

Lemma 9. Under the hypotheses of Theorem 2,

lim
y→∞

lim sup
T→∞

1
T

2T∫
T

∣∣Z(σ + iφ(t))−Zy(σ + iφ(t))
∣∣dt = 0.

Proof. Let θ1 = −ε and θ = 1/2 + ε. The integrand in (20) has a double pole z = 1 − s and
a simple pole z = 0 lying in θ1 < Rez < θ. Therefore, by the residue theorem and (20), we
have

Zy(s)−Z(s) =
1

2πi

θ1+i∞∫
θ1−i∞

Z(s + z) f (z, y)dz + ry(s),

where

ry(s) = Res
z=1−s

Z(s) f (s, y). (21)

From this, we obtain

Zy(σ + iφ(t))−Z(σ + iφ(t))

=
1

2π

∞∫
−∞

Z(σ − ε + iφ(t) + iτ) f (−ε + iτ, y)dτ + ry(σ + iφ(t))

≪
∞∫

−∞

|Z(σ − ε + iφ(t) + iτ)|| f (−ε + iτ, y)|dτ +
∣∣ry(σ + iφ(t))

∣∣.
Thus,

1
T

2T∫
T

∣∣Z(σ + iφ(t))−Zy(σ + iφ(t))
∣∣dt ≪ IT,y,
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where

IT,y
def
=

∞∫
−∞

 1
T

2T∫
T

|Z(σ − ε + iφ(t) + iτ)|dt

| f (−ε + iτ, y)|dτ

+
1
T

2T∫
T

∣∣ry(σ + iφ(t))
∣∣dt = I(1)T,y + I(2)T,y. (22)

To estimate I(1)T,y, we observe that

1
T

2T∫
T

|Z(σ − ε + iφ(t) + iτ)|dt ⩽

 1
T

2T∫
T

|Z(σ − ε + iφ(t) + iτ)|2 dt

1/2

=

 1
T

2T∫
T

|Z(σ − ε + iφ(t) + iτ)|2 φ′(t)dt
φ′(t)

1/2

≪

 1
Tφ′(2T + |τ|)

φ(2T+|τ|)∫
0

|Z(σ − ε + iu)|2du


≪
(

Iσ−ε φ(2T + |τ|)
Tφ′(2T + |τ|)

)1/2

≪
(

2T + |τ|
T

)1/2

≪ (1 + |τ|)1/2. (23)

For the gamma-function, the estimate

Γ(σ + it) ≪ exp{−c|t|}, c > 0, (24)

is valid. Therefore,

f (−ε + iτ, y) ≪ y−ε exp{−c1|τ|}, c1 > 0.

This together with (23) leads to the bound

I(1)T,y ≪ y−ε

∞∫
−∞

(1 + |τ|)1/2 exp{−c1|τ|}dτ ≪ y−ε. (25)

Let a = 2γ − log 2π. In view of the formula for Z(s) in Theorem 1,

ry(s) = f ′(1 − s, y) + a f (1 − s, y)

=
1
θ2 Γ′

(
1 − s

θ

)
y1−s +

1
θ

Γ
(

1 − s
θ

)
y1−s log y +

a
θ

Γ
(

1 − s
θ

)
y1−s

=
y1−s

θ
Γ
(

1 − s
θ

)(
1
θ

Γ′

Γ

(
1 − s

θ

)
+ log y + a

)
.

Hence, the estimates (24) and

Γ′

Γ
(σ + it) ≪ log(|t|+ 2)
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yield

I(2)T,y ≪θ y1−σ log y
1
T

2T∫
T

exp
{
− c

θ
φ(t)

}
log φ(t)dt

≪θ y1−σ log y exp
{
− c

2θ
φ(T)

}
.

This, (25), and (22) show that

IT,y ≪δ y−ε + y1−σ log y exp
{
− c

2θ
φ(T)

}
.

Therefore,

lim
y→∞

lim sup
T→∞

1
T

2T∫
T

∣∣Z(σ + iφ(t))−Zy(σ + iφ(t))
∣∣dt = 0 (26)

because φ(T) → ∞ as T → ∞.

Now, we return to the limit measure Py,σ of Lemma 8.

Lemma 10. Under the hypotheses of Theorem 2, the family {Py,σ : y ∈ [1, ∞)} is tight.

Proof. We have

1
T

2T∫
T

∣∣Zy(σ + iφ(t))
∣∣dt ⩽

1
T

2T∫
T

∣∣Z(σ + iφ(t))−Zy(σ + iφ(t))
∣∣dt +

1
T

2T∫
T

|Z(σ + iφ(t))|dt.

Therefore, by (2) and (26),

sup
y⩾1

lim sup
T→∞

1
T

2T∫
T

∣∣Zy(σ + iφ(t))
∣∣dt ⩽ C < ∞. (27)

Let

zT,y = zT,y(σ) = Zy(σ + iφ(θT)),

and zy = zy(σ) be the complex-valued random variable with the distribution Py,σ. Then,
the statement of Lemma 8 can be written as

zT,y
D−−−→

T→∞
zy. (28)

From this and (27), we obtain that, for every δ > 0,

µ
{∣∣zy

∣∣ > δ−1C
}
⩽ sup

y⩾1
lim sup

T→∞
µ
{∣∣zT,y

∣∣ > δ−1C
}
⩽

δ

TC

2T∫
T

∣∣Zy(σ + iφ(t))
∣∣dt ⩽ δ.

This shows that, for K = {s ∈ C : |s| ⩽ δ−1C},

Py,σ(K) ⩾ 1 − δ,

and the lemma is proven.
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Proof of Theorem 2. Lemma 10 together with Lemma 5 implies that the family {Py,σ} is
relatively compact. Therefore, there is a sequence {Pyk ,σ} ⊂ {Py,σ} weakly convergent to a
certain probability measure Pσ on (C,B(C) as k → ∞. This also can be written as

zyk ,σ
D−−−→

k→∞
Pσ. (29)

Define one more random variable,

zT = zT(σ) = Z(σ + iφ(θT)).

Then, Lemma 9 implies, for every δ > 0,

lim
k→∞

lim sup
T→∞

µ
{∣∣zT − zT,yk

∣∣ > δ
}

⩽ lim
k→∞

lim sup
T→∞

1
δT

2T∫
T

∣∣Z(σ + iφ(t))−Zyk (σ + iφ(t))
∣∣dt = 0.

This, (28), and (29) together with Lemma 6 prove that

zT
D−−−→

T→∞
Pσ.

The theorem is proven.

6. Conclusions

In the paper, we considered the asymptotic behavior of the modified Mellin trans-
form of the square of the Riemann zeta-function by using a probabilistic approach. We
proved a limit theorem on the weak convergence of probability measures defined by shifts
Z(σ + iφ(t)), 1/2 < σ < 1, where φ(t) is a differentiable increasing to infinity function
with a monotonically decreasing derivative φ′(t) satisfying a certain estimate connected to
the mean square of the function Z(s). We expect that such normalization of the function
Z(s) extends the class of limit distributions for Z(s). Our future plans are related to a
similar theorem in the space of analytic functions.
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