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Abstract: The distributed training of federated machine learning, referred to as federated learning (FL),
is discussed in models by multiple participants using local data without compromising data privacy and
violating laws. In this paper, we consider the training of federated machine models with uncertain partic-
ipation attitudes and uncertain benefits of each federated participant, and to encourage all participants
to train the desired FL models, we design a fuzzy Shapley value incentive mechanism with supervision.
In this incentive mechanism, if the supervision of the supervised mechanism detects that the payoffs of a
federated participant reach a value that satisfies the Pareto optimality condition, the federated participant
receives a distribution of federated payoffs. The results of numerical experiments demonstrate that the
mechanism successfully achieves a fair and Pareto optimal distribution of payoffs. The contradiction
between fairness and Pareto-efficient optimization is solved by introducing a supervised mechanism.

Keywords: federated learning; fuzzy Shapley value; supervised mechanism; Pareto optimality

MSC: 91A12

1. Introduction

The swift progression of Artificial Intelligence (AI) has caused a considerable surge in
the generation of large and diverse datasets. These datasets encompass valuable informa-
tion and sensitive privacy details from various domains. Notably, data islands and privacy
concerns pose significant challenges in harnessing the full potential of these datasets. To
address the challenges associated with data islands and data privacy, a distributed machine
learning technique known as federated learning (FL) [1–3] was introduced by Google
in 2016.

Cicceri et al. [4] put forth a proposal for the utilization of FL in healthcare, which is
called “DILoCC” and built on the concept of FL and adopts the Distributed Incremental
Learning (DIL) methodology to leverage the cooperation between sensing devices to build
advanced ICT systems with predictive capabilities, which are capable of saving lives
and avoiding economic losses. Furthermore, in realistic heterogeneous data distribution
scenarios, the performance of FL applied on non-independent identically distributed (Non-
IID) data degrades. Therefore, Zhang et al. [5] proposed federated continual learning
(FCL) and Bidirectional Compression and Error Compensation (BCEC) algorithms to
enhance the performance of non-IID data as well as to reduce communication overheads by
introducing knowledge from other local models. FL enables model training to be performed
locally at each node, ensuring that sensitive data remains secure and confidential without
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being transmitted or leaked. This approach not only maximizes the utilization of data for
preferring the safeguarding of delicate data privacy, model training is given precedence [6].

Establishing a robust incentive mechanism is crucial in the FL system to encourage
data owners to contribute their data and enhance model accuracy. Addressing free-riding
behavior among participants, which can significantly impact the accuracy of the feder-
ated model, is a key research topic. Therefore, the development of an effective incentive
mechanism holds great value in the FL system. Currently, most of the research work [7–10]
assumes the completion of federated model training in the context of determining the atti-
tudes of federated participants’ participation [11–13]. However, in actual model training,
due to a variety of reasons, such as limited computational resources, weak economic base,
limited energy, etc., it can lead to the participants’ participation attitude being uncertain
and not being fully committed to the model training, i.e., the participation attitude is
ambiguous.

Building upon the aforementioned points, our objective is to devise an incentive struc-
ture that guarantees fair allocation of rewards amidst uncertainty regarding the attitudes
of federated participants. Consequently, we construct fuzzy Shapley-valued incentives
with a supervisory mechanism under fuzzy conditions, which takes into account both
fairness and Pareto efficiency considerations. However, this mechanism will increase the
complexity, were the mechanism to be applied to a genuine FL situation, how would one
acquire and process information about the attitudes of participants towards participation
and how to design and implement the supervision mechanism. Summarizing the paper’s
main contributions, they can be expressed thus:

(1) Amidst the ambiguity and doubt of the participants’ involvement outlooks in FL,
this paper proposes a fuzzy Shapley value method that can more accurately assess
the degree of participants’ contribution and payoff distribution;

(2) The clash between equity and Pareto effectiveness must be deliberated, as equity
necessitates a fair distribution of payoffs among participants, while Pareto efficiency
seeks that no participant’s payoff could increase without jeopardizing the payoffs of
other participants;

(3) This paper guarantees fairness and optimization of Pareto efficiency with consistency
and introduces a supervisory mechanism that monitors and adjusts the behavior
of participants. To guarantee that participants are treated justly, the allotment of
advantages is essential in FL and to maximize the overall payoffs.

The paper is organized in the following way: An overview of the related work in the
field is presented in Section 2. Preliminaries, providing necessary background information,
are presented in Section 3. The FL incentive mechanism and its design are outlined
in Section 4.Verification of the incentive mechanism proposal by means of numerical
experiments is carried out in Section 5. A comprehensive discussion of the findings are
provided in Section 6. The conclusions of this paper are described in Section 7. Proving the
Theorem is given in Appendix A.

2. Related Work

The current landscape of FL incentive mechanism research comprises several promi-
nent theoretical approaches. These include the application of the Stackelberg game [14],
contract theory’s tenets [15], auctioning techniques [16], and the incorporation of the Shap-
ley value [17]. This paper provides a comprehensive review of the research literature
focusing on the design of incentive mechanisms for FL using the Shapley value. In [18], to
evaluate the individual contributions of participants who own the data in training the FL
model, a novel Shapley value was introduced, which is based on the contribution metric.
In [19], a novel formulation for the Shapley value in FL was suggested, which eliminates
the need for extra communication costs, incorporates the value of FL data, and offers
incentives to the participants. In their work [20], Wang et al. employed the Shapley value
to accurately assess the contribution of each participant in FL. To incentivize data owners
to actively participate in federated model training and contribute their data, Liu et al.
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proposed a blockchain-based peer-to-peer payment system for FL in [21]. In this study [21],
a blockchain-based peer-to-peer payment system was introduced for FL with the aim of
providing incentives to data owners and promoting their active participation in model
training. The main objective of this system is to provide a fair and practical mechanism
for allocating payoffs, utilizing the principles of the Shapley value. The paper [22] pre-
sented an incentive mechanism derived from the Shapley value, aiming to promote greater
participation and data sharing among participants by offering them a fair compensation.
Liu et al. proposed the bootstrap-truncated gradient Shapley approach in their work [23],
which focuses on the fair valuation of participants’ contributions in FL. This strategy entails
reconstructing the FL model by utilizing gradient updates for computing the Shapley value.
In the work [24], Nagalapattiet et al. presented a collaborative game framework in which
participants exchange gradients and calculate Shapley values to identify individuals with
pertinent data. The work [24] presented a cooperative game framework that facilitates the
sharing of gradients among participants and utilizes Shapley values to identify individuals
with relevant data. Acknowledging the disparities in computing the Shapley value for
FL, Fan et al. [25] introduced an innovative comprehensive mechanism for calculating
the FL Shapley value, aiming to promote fairness. Additionally, in order to mitigate the
communication overhead involved in computing the Shapley value in FL, Fan et al. [26]
introduced a federated Shapley value mechanism to evaluate participants’ contributions.

In [27], the authors conducted an investigation into different factors that impact FL.
Additionally, they proposed an FL incentive mechanism that leverages an improved Shapley
value method. In [28], an incentive design called heterogeneous client selection (IHCS)
was proposed to enhance performance and mitigate security risks in FL, an approach
that involves assigning a recognition value to each client using the Shapley value and
is subsequently utilized to aggregate the probability of participation level. In [29], an
incentive mechanism is introduced that combines the Shapley value and Pareto efficiency
optimization. This approach entails incorporating a third-party entity to oversee the
distribution of federated payoffs. If the payoffs can attain Pareto optimality, they are
allocated utilizing the Shapley value methodology.

3. Preliminaries
3.1. Federated Learning Framework

FL is a decentralized machine learning framework designed to address data frag-
mentation and promote cooperation within the field of AI. The primary goal of FL is to
facilitate the training of models without the need for participants’ data to leave their local
environments. According to adopt this approach, collaborative model development is
achieved while also ensuring the preservation of data privacy, security, and legal compli-
ance. By breaking down barriers and allowing for decentralized training, FL promotes the
sharing of knowledge and insights while preserving the confidentiality of individual data
sources [1,6].

Let N = {1, 2, . . . , n} represent a set of n data participants who participate in the
FL process denoted as {F1, F2, F3, . . . , Fn} . Each participant possesses their local dataset
{D1, D2, . . . , Dn}. The shared model required for FL is denoted as MFED, while MSUM
represents the traditional machine learning model. The model accuracy of MFED and MSUM
is denoted as VFED and VSUM, respectively. We can state that there exists a non-negative
number δ ≥ 0 such that

|VFED − VSUM| < δ, (1)

which represents the δ-accuracy loss of the FL algorithm [6].
Figure 1 illustrates the FL framework’s schematic diagram, and training is included

can be summarized as follows:

Step 1: Individual federated participants retrieve the initial global model from the aggrega-
tion server.

Step 2: Each participant trains their local model using the received initial global model.
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Step 3: Upon completing the local model training, participants upload the updated model
and associated parameters to the aggregation server.

Step 4: The aggregation server consolidates the models and parameters uploaded by each
participant for the subsequent round of updates.

……
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Figure 1. Federated learning framework.

The widely adopted aggregation approach is the Federated Averaging (FedAvg) algo-
rithm [30], and Steps 2–3 are iteratively performed until the local model reaches convergence.

3.2. Cooperative Games

Consider a cooperative game denoted as G(N, v), which satisfies the following condi-
tions [31]:

v(S1) + v(S2) ≤ v(S1 ∪ S2), (2)

S1 ∩ S2 = ∅, v(∅) = 0. (3)

Here, N denotes a finite group of participants, S1, S2 ∈ 2N , and v : 2N → R as a game-
characteristic function, 2N denotes the set of all subsets of N, v(S) as the payoff function
for participants and v(N) as the coalition payoff. Additionally, φi(v) represents the payoff
of participant i in v(N) and satisfies two specific conditions:

v(N) = ∑ φi(v) and v(i) ≤ φi(v), ∀i ∈ N, i = 1, 2, . . . , n, (4)

v(S) ≤ ∑
i∈S

φi(v), ∀S ⊂ N, S ̸= ∅. (5)

Within this context, Equations (4) and (5) are widely recognized as the criteria for individual
rationality and coalition rationality, respectively.

3.3. Shapley Value

The Shapley value was the originator of Shapley in cooperative game theory [31],
addresses the problem of fair allocation of payoffs in cooperative settings, which defined
as follows:

φi(v) = ∑
i∈S

w(|S|)
[
v(S)− v(S \ i)

]
, (6)

w(|S|) = (n − |S|)!(|S| − 1)!
n!

. (7)
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Let S be a subset of participants, with i being equal to i = 1, 2, . . . , n, and S ⊂ N, the value
|S| represents the number of subset S. The weight coefficient w(|S|) is associated with the
size of |S|. The profit of subset S is denoted as v(S), while v(S)− v(S \ i) quantifies the
participant i′s contribution to coalition S was marginal. Additionally, v(S \ i) represents
the payoff of participants other than i within subset |S|.

3.4. Fuzzy Coalition of FL

Let N = {1, 2, · · · , n} denote the set consisting of coalition participants in FL , and
any subset of the coalition formed by the participants be S,using the fuzzy number Lχ =
(χ1, χ2, · · · , χn) ∈ [0, 1]N to denote the degree of participation of a participant i in a subset
of the coalition S, i.e., S(i) : L(N) → [0, 1]N , where S(i) = 0 denotes that the participant i
does not participate in the coalition subset S at all, and S(i) = 1 denotes that the participant
i does participate in the coalition subset S, then S = (S1, S2, · · · , Sn) is said to be a fuzzy
coalition in FL.

Fuzzy coalitions can help solve the problem of non-cooperativeness in FL, where
participants may have selfish motives and tend to keep their data and models. Establish-
ing a fuzzy coalition can lead to the establishment of trust and cooperation among the
participants to reach the training goal together. Further, under the fuzzy coalition, the
stability and efficiency of the FL system are ensured by designing incentive and punishment
mechanisms to motivate the cooperation of the participants.

3.5. Choquet Integral

Let f : X → [0,+∞), µ is a fuzzy measure defined on X, then the Choquet integral [32,33]
of f with respect to µ is defined as follows:∫

X
f (χ) ◦ g(·) =

∫ ∞

0
g(Fα)dα (8)

When X is a finite set and f : X → [0, 1], the formula for the Choquet integral is
redefined as follows:

(c)
∫

f dµ =
n

∑
i=1

( f (χi)− f (χi−1))µ(Ai) (9)

where Fα = {χ | f (χ) ≥ α, χ ∈ X}, Ai = {χi, χi+1, · · · χn}, α is any number belonging
to the group between (0,1], g(·) is the fuzzy density function. In general, assume that
0 = f (χ0) ≤ f (χ1) ≤ f (χ2) ≤ · · · ≤ f (χn) ≤ 1 . If this relationship is not satisfied, it
needs to be readjusted to satisfy the relationship.

In addition, the importance of Choquet integral in FL is reflected in its ability to
deal with uncertainty and ambiguity information, integrate and weigh the data, and be
able to solve the problem of fair benefit distribution in FL in the case of ambiguity of
participants’ attitudes, etc., which can greatly help to improve the accuracy and robustness
of federated models.

3.6. Pareto Optimality

Considering π̃ = (π̃1, π̃2, . . . , π̃N) : x → RN as a target vector. For any two solutions
xi and x∗i in x, then Pareto optimality [34] is considered and the following condition holds:

π̃i(x∗1 , · · · , x∗i , · · · , x∗N) ≥ π̃i(x1, · · · , xi, · · · , xN), ∀i ∈ N. (10)

This concept aligns with the notion of Pareto optimality, where an allocation is deemed
Pareto optimal if there is no alternative allocation that can improve the well-being of one
participant without simultaneously worsening the well-being of another participant [35].
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3.7. Nash Equilibrium

The participant i’s payoff function is π̃i(x), where x = [x1, x2, · · · , xN]
T ∈ RN represents

the vector of actions taken by all participants, and xi ∈ Rn represents the action specifically
taken by participant i. A Nash equilibrium is a state in which no participant can improve
By unilaterally altering their behavior, they increased their income. More specifically, an
action profile x∗i (i = 1, · · · , n) is defined as a Nash equilibrium [36,37], if

π̃i(x∗1 , · · · , x∗i , · · · , x∗N) ≥ π̃i(x∗1 , · · · , xi, · · · , x∗N), ∀i ∈ N. (11)

4. FL System Incentive Mechanism
4.1. The FL Incentive Model

In establishing the FL incentive model, we base our analysis on the following assumptions:

(1) Economic Participation: All participants in the FL framework are capable of making
financial contributions towards the FL process.

(2) Participant Satisfaction: The final distribution of payoffs is designed to satisfy all
participants.

(3) Trustworthiness and Integrity: It is assumed that all participants in the FL system
are entirely trustworthy and exhibit no instances of cheating or dishonest behavior.

(4) Multi-Party Agreement: To ensure seamless execution of the FL strategy, it is essential
to establish a multi-party agreement.

Drawing upon the principles of FL, we put forth a FL incentive model, illustrated in
Figure 2. The FL incentive mechanism can be delineated through a sequence of essential
steps as follows:

……

Local model training 1

Local model training 2

Local model training 

Federated 
participant 1

Federated 
participant 2

Federated 
participant 

Data set 1

……

Data set 2

Data set 

……

nn

n

n

Federated 
aggregation           

model

Supervision 
organization

Download initialization 
model

Upload local model 2

1( )v

2 ( )v

( )n v

Figure 2. Federated learning incentive model

Step 1: Considering n participants in federated model training, each participant possesses
its own local dataset, denoted as Di;

Step 2: Each participant downloads the initialized model from the aggregation server, they
independently train the model using their respective local dataset Di, and upload
their trained model mi to the federated aggregation server:

Step 3: To acquire a fresh global model, the federated aggregation server assumes the
responsibility of gathering the model parameters mi, and subsequently employs the
federated aggregation algorithm to consolidate these parameters.
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Step 4: The fuzzy Shapley values method is employed to assess the individual contributions
of each participant to the global model. This approach allows for the quantification
of individual contributions, considering the uncertainty and fuzziness inherent in
the participants’ involvement.

Step 5: The supervising organization assesses the attainment of Pareto optimality for each
participant’s payoff. If Pareto optimality is achieved, the fuzzy Shapley value for-
mula is utilized to allocate the payoff. Conversely, the supervising organization im-
poses penalties on the participant, resulting in the forfeiture of a predetermined fine.

Step 6: Rewards are allocated to participants who achieve Pareto optimality, as determined
by the payoff allocation formula.

4.2. Federated Cost Utility Function

The federated participant Pi needs to take up computational resources such as memory
and CPU when performing local model training, and the performance of the participant set
P training model w∗

G is defined as F = {F1, F2, F3, . . . , Fn} , where Fi denotes the participant
Pi’s local data model training at the CPU clock frequency. In addition, the device of
participant Pi has a baseline memory θi with an average consumption ratio of βt

i ∈ [0, 1], i.e.,
the actual memory consumption of βt

iθi, in the tth round of local iterations. Assuming the
same sample size of input data for each local model iteration and based on the processor
quadratic energy model, the computational cost function [13] of the participant Pi in the
local model iteration is represented by the following equation:

ccom(Pi) = αζeiγi f 2
i + (1 − α)βt

iθi (12)

Then, define the federated cost utility function of the participant Pi ∈ P after the rth round
of model aggregation as

cr
i (ccom(Pi)) = ln ccom(Pi) (13)

where α denotes the tuning factor used to adjust the computational cost of the participant Pi,
ζ denotes the performance of Pi’s hardware device used to compute the effective capacitance
parameter of the chipset [38], ei comes to denote the number of CPU cycles required to
process a batch of data, and γi denotes the size of data batch samples required for each
round of local iteration.

4.3. Model Quality Utility Function

In this paper, the utility assessment of federated participants is defined as two metrics,
model quality and freshness [39], and in the classification prediction problem, since the
cross-entropy loss function [40,41] outperforms the mean-square error in terms of effec-
tiveness, the cross-entropy loss function H( f (yi), zi) = −∑n

i=1 zi log f (yi), the labeled data
information (yi, zi)can be processed efficiently to improve the accuracy and reliability of
the data. To quantify the freshness of the model, the concept of trusted time is introduced,
and to ensure the verifiability of the timestamps, the federation participants need to re-
quest a timer Tk

i

(
wk

i

)
from the content container [42] in the Trusted Hardware SGX, after

completing the iteration of the local model wk
i . The freshness F

(
wk

i

)
of the model wk

i can be

defined as F
(

wk
i

)
= lg Tk

i

(
wk

i

)
. Based on this, the quality assessment function Q

(
wt

i
)

for

model wt
i is defined as

Q
(
wt

i
)
=

µ0F
(

wk
i

)
µ1 + H( f (xi), zi)

, (14)

where the model utility parameters µ0, µ1 ⩾ 0 are set according to the loss function,
the neural network structure, and the data distribution [43]. To assess the utility of the
participants, adaptive aggregation was used, where the difference between the quality of
the model of participant Pi after the rth round of aggregation, Q

(
wr

G(Pi)
)
, and the quality
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of the model of those who did not take part in the aggregation, Q
(
wr

G(P\{Pi})
)
, was

taken as the utility function [44]. Based on the strongly convex function property of the
model quality Q

(
wt

i
)

and the boundary Q
(
w0

i
)
of the initialized global model, define the

utility function of the participant Pi ∈ P boosted after the rth round of model aggregation
as follows:

vr
i (Q(Pi)) = ρr

i [Q(wr
G(Pi))− Q(wr

G(P\{Pi}))], (15)

where ρr
i then denotes the payoff reward that federated participant Pi receives in the rth

round of model aggregation, and if vi(r) < 0, it means that Pi needs to pay a price compen-
sation for obtaining a higher-quality model parameter to prevent federated participants
from engaging in free-riding behavior.

4.4. Federated Optimization Function

The FL optimization function is known from Formulas (13) and (15):

arg max
cr

i (ccom(Pi))

n

∑
i=1

[vr
i (Q(Pi))− cr

i (ccom(Pi))], cr
i (ccom(Pi)) ≤ vr

i (Q(Pi)). (16)

4.5. The Fuzzy Shapley Value

According to the fuzzy coalition of FL in Section 3.4, Choquet integral in Section 3.5
and Formulas (8) and (9). Given a fuzzy coalition S ∈ R(N), let H(S) = {S(i) | 0 < S(i) ≤
1, i ∈ N}, q(S) be the number of elements in H(S), and the elements in H(S) be sorted
into f1 ≤ f2 ≤ . . . ≤ fq(S) in an ascending sequence. The payoff function ṽ of the fuzzy
coalitional cooperation game (N, ṽ, χ) can be expressed as a Choquet integral:

ṽ(S) =
∫

Sdṽ =
q(S)

∑
l=1

v([S] fl
)( fl − fl−1) (17)

Then the fuzzy Shapley value φ̃i(ṽ) of the fuzzy coalitional cooperation game (N, ṽ)
can be expressed as follows:

φ̃i(ṽ) =
q(S)

∑
l=1

φi(v([S] fl
))( fl − fl−1), i ∈ [S] fl

⊆ N (18)

where, f0 = 0, l = 1, 2, . . . , q(S), [S] fl
= {i ∈ N | S(i) ≥ fl} denotes the payoff function

for a clear coalition of all participants with participation level S(i) ≥ fl , v([S] fl
) denotes

the payoff function of a clear coalition of all participants with participation level S(i) ≥
fl , φi(v([S] fl

)) denotes the payoff function of a clear coalition of all participants with
participation level S(i) ≥ fl , and φi(v([S] fl

)) denotes a clear coalition of all participants
with participation level S(i) ≥ fl of the classical Shapley value, v([S] fl

) calculated from
Formula (15). As with the classical Shapley value, the fuzzy Shapley value satisfies the
following theorem:

Theorem 1 (Validity). ∑
i∈N

φ̃i(ṽ) = ṽ(N) .

Theorem 2 (Symmetry). If participants i, j ∈ N have ṽ(S ∪ {i}) = ṽ(S ∪ {j}) for any fuzzy
coalition S ∈ P(N\{i, j}), then φ̃i(ṽ) = φ̃j(ṽ).

Theorem 3 (Additivity). For any two fuzzy cooperative games < N, ṽ1 > and < N, ṽ2 >, if
there exists a fuzzy cooperative game < N, ṽ1 + ṽ2 >, for any fuzzy coalition S ∈ P(N), it will
always satisfy (ṽ1 + ṽ2)(S) = ṽ1(S) + ṽ2(S), then φ̃i(ṽ1 + ṽ2) = φ̃i(ṽ1) + φ̃i(ṽ2).

Theorem 4 (Dumbness). If for all fuzzy coalitions S containing participant i, if ṽ(S) = ṽ(S\{i})
is satisfied, then φ̃i(ṽ) = 0.
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Proof. The proofs of Theorems 1–4 are given in Appendixs A.1–A.4 of the Appendix A.

4.6. The Conflict of Fairness and Pareto Optimality

Consider a scenario involving n participants, where each participant i has a fuzzy
coalition investment denoted as xi. The investment of participant i satisfies xi ∈ (0, ∞),
i = 1, 2, . . . , n. The fuzzy coalition investments of all participants can be represented as an
n-dimensional vector x = (x1, x2, . . . , xn). Furthermore, the fuzzy coalition cost investment
for participant i is denoted as c̃i(xi),which calculated from Formula (13). The function c̃i(xi)
is assumed to be differentiable, convex, and strictly monotone increasing. It satisfies the fol-

lowing conditions: ∂ṽi(x)
xi

> 0, ∂2 ṽi(x)
∂x2

i
> 0, c̃i(0) = 0. The federated return ṽ(x1, x2, . . . , xn)

calculated from Formulas (8), (9) and (15) , which determined by the federated investment
decisions made by the n participants. The function is strictly monotonically increasing,

differentiable, and concave. It also satisfies the specified conditions: ∂ṽi(x)
xi

> 0, ∂2 ṽi(x)
∂x2

i
< 0,

ṽ(0, 0, . . . , 0) = 0. The allocation of federated payoffs to the n participants follows a specific
formula, as described by Equations (17) to (18).

While the fuzzy Shapley value is capable of quantifying the contribution of each
participant, it fails to consider the inherent trade-off between fairness and Pareto opti-
mality. Specifically, it overlooks the requirement of achieving Pareto optimization before
to the allocation of payoffs. Consequently, it does not effectively address the issue of
free-riding behavior among federated participants. Consequently, we put forward the
following theorem:

Theorem 5. While the fuzzy Shapley value method effectively promotes fairness in the distribution
of payoffs after FL, it does not sufficiently tackle the problem of optimizing incentives for participants’
investments prior to FL. In other words, it does not achieve Pareto efficiency optimization prior to
the commencement of FL.

Proof. The proof of this theorem can be found in Appendix A.5 of Appendix A.

4.7. Introducing Supervisory Organization

The Establishment of Supervised Mechanism

4.7.1. The Implementation of a Supervisory System

The introduction of supervisors to mitigate free riding in the FL process by requiring
federated participants to pay a fee to the supervisor proposed in [45]. Holmstrom [46]
further emphasized the use of incentive mechanisms to address free riding, with the
supervisor playing a crucial role in breaking equilibrium and creating incentives.

Assuming that the supervisor is cognizant of the fact that the federated payoff is such
that it exceeds or equals the Pareto optimal payoff, they can distribute this payoff to the
participants using the fuzzy Shapley value Formulas (17)–(18). However, if the federated
payoffs fall short of the Pareto optimal value, the federated participants will be obligated to
pay a specified fee k̃i in the following manner:

r̃i(x) =
{

φ̃i(ṽ(x)),
φ̃i(ṽ(x))− k̃i,

if ṽ(x) ≥ ṽ(x∗)
if ṽ(x) < ṽ(x∗)

(19)

where we let x∗ = (x∗1 , x∗2 , . . . , x∗n) be the federated investment vector that satisfies Formula (A4).

4.7.2. Penalty Conditions

Theorem 6. In the case where the federated investment mechanism x∗ = (x∗1 , x∗2 , . . . , x∗n) meets
the criteria of Pareto efficiency and the penalty k̃i to serve as a Nash equilibrium, it must meet the
following conditions:
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(1) If the individual investment xi of participant i is less than the Pareto optimal federated
investment x∗i , i.e., e.g., xi < x∗i , and ṽ(x) is a monotonically increasing function (i.e.,
ṽ(xi, x∗n−i) < ṽ(x∗i , x∗n−i)), participant i is fined. The remaining payoff after deducting the
fine is denoted as r̃i[ṽ(xi, x∗n − i)] = φ̃i(ṽ(x))− k̃i, and the profit of participant i can be
expressed as follows:

π̃i[ṽ(xi, x∗n−i)] = φ̃i(ṽ(x))− k̃i − c̃i(xi), i = 1, 2, . . . , n. (20)

(2) If the individual investment xi of participant i is equal to the Pareto optimal federated
investment x∗i , i.e.,xi = x∗i , then ṽ(x) = ṽ(x∗). The remaining payoff after the penalty is
r̃i[ṽ(x∗i , x∗n−i)] = φ̃i(ṽ(x∗)), and the profit of participant i can be expressed as follows:

π̃i[ṽ(x∗i , x∗n−i)] = φ̃i(ṽ(x∗)− c̃i(x∗i ), i = 1, 2, . . . , n. (21)

In this context, x∗n−i = (x∗1 , . . . x∗i−1, x∗i+1, . . . , x∗n) denotes the Pareto optimal federated
investment vector consisting of n − i participants.

Proof. The proof of this theorem can be found in Appendix A.6 of Appendix A.

5. Illustrative Examples and Simulations

Within this section, we validate the reasonableness of the fuzzy Shapley value method
through a numerical arithmetic example and achieve the effectiveness of this method
through numerical simulations and experimental comparisons.

5.1. Illustrative Examples

Assuming that there are three federated participants jointly training the FL model,
the payment function denoted as v(x1, x2, x3) = 10x1 + 8x2 + 4x3 + x1x2, exhibits a strictly
increasing linear behavior in the deterministic federation scenario. Furthermore, the cost
functions c̃(x1) =

1
2 x2

1 , c̃(x2) = x2
2, and c̃(x3) =

1
4 x2

3 are strictly monotonically increasing
and convex. Now, due to the limitations of the energy, ability and resources of the federated
participants, the levels of these three federated participants are 40%, 60% and 80%, i.e.,
consider the distribution of benefits of each federated participant under the fuzzy coalition
s = ( 2

5 , 3
5 , 4

5 ).
Since v(0) = 0, v(x1) = 10x1, v(x2) = 8x2, v(x3) = 4x3, v(x1, x2) = x1x2, v(x1, x3) =

v(x2, x3) = 0 and v(x1, x2, x3) = 10x1 +8x2 +4x3 + x1x2,and according to Equations (6) and (7),
the deterministic case computes the federated participant 1, 2, and 3 in the deterministic
coalition with the fuzzy Shapley values, and then based on the derived revenue sharing
ratio, the revenue sharing values of each federated participant under different cooperation
strategies can be derived, as shown in Table 1.

Table 1. Calculated value of benefits to federated participants under the defined coalition φi(v([S] fl
)).

Benefits under Different Coalitions

[S] fl
{1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

1 10x1 0 0 40x2
1 x2+8x1x2

2+4x1x2x3+3x2
1 x2

2
50x1+40x2+8x3+6x1x2

0 0 20
3 x1 +

4
3 x2 +

2
3 x3 +

1
2 x1x2

2 0 8x2 0 10x2
1 x2+32x1x2

2+4x1x2x3+3x2
1 x2

2
50x1+40x2+8x3+6x1x2

0 0 5
3 x1 +

16
3 x2 +

2
3 x3 +

1
2 x1x2

3 0 0 4x3 0 0 0 5
3 x1 +

4
3 x2 +

8
3 x3
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Due to the fuzzy participation attitudes of the three federated participants, the ele-
ments in Q(S) are ordered in increasing sequence as f0 = 0, f1 = 2

5 , f2 = 3
5 , f3 = 4

5 , and
according to the Formula (17), the fuzzy coalition under the federation payoff is

ṽ(x1, x2, x3) = v(x1, x2, x3)( f1 − f0) + v(x2, x3)( f2 − f1) + v(x3)( f3 − f2)

= 4x1 +
16
5

x2 +
12
5

x3 +
2
5

x1x2,

Similarly, ṽ(0) = 0, ṽ(x1) = 4x1, ṽ(x2) = 24
5 x2,ṽ(x3) = 16

5 x3, ṽ(x1, x2) = 8
5 x2 +

2
5 x1x2,

ṽ(x1, x3) =
8
5 x3, ṽ(x2, x3) =

4
5 x3.

When the federated investments are x∗ = (x∗1 , x∗2 , x∗3), the fuzzy case maximizes the
federated profit

max R̃ = ṽ(x1, x2, x3)−
3

∑
i=1

c̃i(xi) = 4x1 +
16
5

x2 +
12
5

x3 +
2
5

x1x2 −
1
2

x2
1 − x2

2 −
1
4

x2
3

while satisfying Pareto optimality. This is achieved by ensuring that the first-order condition
is met: 

4 − x∗1 +
1
5 x∗2 = 0

16
5 + 1

5 x∗1 − 2x∗2 = 0
12
5 − 1

2 x∗3 = 0

The Pareto optimal federated investments are determined as follows: x∗1 = 5.04, x∗2 = 2.61 ,
and x∗3 = 4.80. The corresponding federal payment is ṽ(x∗) = 45.29, and the maximum
profit under the given circumstances is max R̃∗ = 20.02 in the worst-case scenario. Using
Formula (18), the fuzzy case distributes benefits among federated participants as follows:

φ̃1(ṽ(x)) =
8
3

x1 +
8

15
x2 +

4
15

x3 +
1
5

x1x2

φ̃2(ṽ(x)) =
2
3

x1 +
32
15

x2 +
4
15

x3 +
1
5

x1x2

φ̃3(ṽ(x)) =
2
3

x1 +
8

15
x2 +

28
15

x3

Hence, the profit function for the three federated participants can be expressed as

π̃1(ṽ(x)) =
8
3

x1 +
8

15
x2 +

4
15

x3 +
1
5

x1x2 −
1
2

x2
1

π̃2(ṽ(x)) =
2
3

x1 +
32
15

x2 +
4
15

x3 +
1
5

x1x2 − x2
2

π̃3(ṽ(x)) =
2
3

x1 +
8

15
x2 +

28
15

x3 −
1
4

x2
3

To attain Nash equilibrium in the federation, participants have the autonomy to determine
their investments and aim to maximize their benefits. As a result, the first-order condition
for Nash equilibrium is expressed as follows:

8
3 − x1 +

1
5 x2 = 0

32
15 + 1

5 x1 − 2x2 = 0
28
15 − 1

2 x3 = 0.

Based on our analysis, we identify that the federated investments that meet the Nash equi-
librium conditions are x1 = 2.94, x2 = 1.36, and x3 = 3.73. The corresponding federated
profit is ṽ(x) = 26.66, and the maximum amount of benefit achievable is max R̃ = 17.01.

By comparing the Pareto efficiency value and the Nash equilibrium value presented
in Table 2, it becomes evident that while the fuzzy Shapley value method ensures fairness
in the aftermath, it lacks in optimizing incentives beforehand. In the Nash equilibrium, the
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individual investments are lower than the Pareto optimal level, resulting in suboptimal
federated profits.

Table 2. Federated investment and profit comparison.

Invest and Profit Comparison Invest x1 Invest x2 Invest x3
Federated

Payoff
Maximum

Profit

Pareto optimality 5.04 2.61 4.80 45.29 20.02
Nash equilibrium 2.94 1.36 3.73 26.66 17.01

For future research, we suggest incorporating a supervisory authority. In the event
that the supervisory authority acknowledges that the federated payoff is greater than or
equal to the Pareto optimal payoff of 45.29, it will distribute the payoff among the federated
participants using the fuzzy Shapley value method. However, if the federated payoff falls
below the Pareto optimal payoff of 45.29, the participants receive a payoff denoted by τ̃i.
When the participants’ investments reach the Pareto optimal values, specifically x∗1 = 5.04,
x∗2 = 2.61 and x∗3 = 4.80, then

φ̃1(ṽ(x∗)) =
8
3

x∗1 +
8
15

x∗2 +
4
15

x∗3 +
1
5

x∗1 x∗2 = 18.74

φ̃2(ṽ(x∗)) =
2
3

x∗1 +
32
15

x∗2 +
4
15

x∗3 +
1
5

x∗1 x∗2 = 12.84

φ̃3(ṽ(x∗)) =
2
3

x∗1 +
8
15

x∗2 +
28
15

x∗3 = 13.71

π̃1(ṽ(x∗)) =
8
3

x∗1 +
8
15

x∗2 +
4
15

x∗3 +
1
5

x∗1 x∗2 −
1
2

x∗1
2 = 6.04

π̃2(ṽ(x∗)) =
2
3

x∗1 +
32
15

x∗2 +
4
15

x∗3 +
1
5

x∗1 x∗2 − x∗2
2 = 6.03

π̃3(ṽ(x∗)) =
2
3

x∗1 +
8
15

x∗2 +
28
15

x∗3 −
1
4

x∗3
2 = 7.95.

As a result, the permissible intervals for τ̃1, τ̃2, and τ̃3 are 0 ≤ τ̃1 ≤ 6.04, 0 ≤ τ̃2 ≤ 6.03,
and 0 ≤ τ̃3 ≤ 7.95 correspondingly. The utilities φ̃1(ṽ(x)), φ̃2(ṽ(x)), and φ̃3(ṽ(x)) for
participants 1, 2, and 3 can be represented as follows:

φ̃1(ṽ(x)) =
{ 8

3 x1 +
8

15 x2 +
4

15 x3 +
1
5 x1x2,

τ̃1,
if ṽ(x) ≥ 45.29
if ṽ(x) < 45.29

φ̃2(ṽ(x)) =
{ 2

3 x1 +
32
15 x2 +

4
15 x3 +

1
5 x1x2,

τ̃2,
if ṽ(x) ≥ 45.29
if ṽ(x) < 45.29

φ̃3(ṽ(x)) =
{ 2

3 x1 +
8

15 x2 +
28
15 x3,

τ̃3,
if ṽ(x) ≥ 45.29
if ṽ(x) < 45.29.

In our subsequent examination, we will illustrate that the Nash equilibrium, serving as the
monitoring mechanism, meets the Pareto efficiency criterion as indicated by
x∗ = (x∗1 , x∗2 , x∗3) = (5.04, 2.61, 4.80).

(1) Examining the value of participant 1,when the value of x∗2 = 2.61 and x∗3 = 4.80, then

φ̃1(ṽ(x)) =
{

3.54x1 + 2.67,
τ̃1,

if x ≥ 5.04
if x < 5.04

For participant 1, if participant 1 invests x1 ≥ 5.04 (with 0 ≤ τ̃1 ≤ 6.04), who profit function
can be expressed as π̃1(x) = 3.54x1 + 2.67− 1

2 x2
1. It is observed that ∂π̃1(x1)

∂x1
= 3.54− x1 < 0,

indicating that the revenue function π̃1(x) for participant 1 consistently diminishes across
the range [5.04, ∞). Therefore, with an investment of x1 = 5.04, participant 1 can attain the
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utmost earnings of π̃1(x) = 6.04. However, should participant 1 allocate an investment of
x1 < 5.04, the return is τ̃1, while the earnings equate to π̃1(x) = τ̃1 − 1

2 x2
1. In this case, we

have π̃1(x) = τ̃1 − 1
2 x2

1 ≤ 6.04. Thus, with x∗2 = 2.61 and x∗3 = 4.8, participant 1 can attain
the maximum earning π̃1(x) = 6.04 through an investment of x∗1 = 5.04.

(2) Examining the value of participant 2 when the values of x1 = 5.04 and x3 = 4.80,
then

φ̃2(ṽ(x)) =
{

3.14x2 + 4.64,
τ̃2,

if x ≥ 2.61
if x < 2.61

For participant 2, when the investment is x2 ≥ 2.61 (with 0 ≤ τ̃2 ≤ 6.03), the profit function
can be expressed as π̃2(x) = 3.14x2 + 4.64 − x2

2. We observe that ∂π̃2(x2)
∂x2

= 3.14 − 2x2 < 0,
indicating that the revenue function π̃2(x) for participant 2 consistently diminishes across
the range [2.61, ∞). Therefore, by allocating x2 = 2.61 in investment, participant 2 can
attain the highest earnings of π̃2(x) = 6.03. However, should participant 2 allocate an
investment of x1 < 2.61 , the return is τ̃2, while the earnings equate to π̃2(x) = τ̃2 − x2

2. In
this case, we have π̃2(x) = τ̃2 − x2

2 ≤ 6.03. Thus, with x∗1 = 5.04 and x∗3 = 4.8, participant 2
can achieve the utmost earnings of π̃2(x) = 6.03 through an investment of x2 = 2.61.

(3) Examining the value of participant 3 when the values of x∗1 = 5.04 and x∗2 = 2.61,
then

φ̃3(ṽ(x)) =
{

1.87x3 + 4.75,
τ̃3,

if x ≥ 4.80
if x < 4.80

For participant 3, if the investment of participant 3 is x3 ≥ 4.80 (with 0 ≤ τ̃3 ≤ 7.95),
the profit function can be expressed as π̃3(x) = 1.87x3 + 4.75 − 1

4 x2
3. It is observed that

∂π̃3(x3)
∂x3

= 1.87 − 1
2 x3 < 0, indicating that the revenue functionπ̃3(x) for participant 3 con-

sistently diminishes across the range [4.80, ∞). Therefore, with an investment of x3 = 4.80,
participant 3 can attain the utmost earnings ofπ̃3(x) = 7.95. However, should partici-
pant 3 allocate an investment of x3 < 4.80, the return is τ̃3, while the earnings equate to
π̃3(x) = τ̃3 − 1

4 x2
3. In this case, we have π̃3(x) = τ̃3 − 1

4 x2
3 ≤ 4.80. Thus, with x∗1 = 5.04

and x∗2 = 2.61, participant 3 can achieve the peak earnings of π̃3(x) = 7.95 through an
investment of x3 = 4.80.

5.2. Illustrative Simulations

The results of the experimental simulation are shown in Figure 3 as follows: In
Figure 3a, we can observe that the federated participants’ investments are Pareto optimal,
however, the investments that satisfy the Nash equilibrium are not Pareto optimal.

(a) Participant invest (b) Participant payoff (c) Participant profit

Figure 3. Comparison of investments and payoffs.

In Figure 3b, we can see that the participants who satisfy the Pareto optimal in-
vestments receive higher payoffs than the participants who satisfy the Nash equilibrium
investments, while Figure 3c shows that federated participants receive higher maximum
profits in the case of satisfying Pareto optimal investments than in the case of satisfying
Nash equilibrium investments.
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In Table 3, refs. [9,19,27,28] do not take ambiguity and Pareto optimality into account,
although they do take fairness into account. In particular, ref. [27] only considers the
fairness of the distribution of gains under participant attitude certainty and does not
discuss in depth the issue of Pareto optimality in FL, which maximizes the gains for all
participants. Meanwhile, ref. [29] considers the fairness and Pareto optimality of benefit
distribution in the case of certainty of participants’ attitudes. Therefore, the method in this
paper is more consistent with the practical application scenario, and it can solve the fairness
and Pareto optimal consistency of gain distribution under uncertainty of participants’
attitudes, which can motivate more participants to join in the FL.

Table 3. Comparison of experimental results.

Research Methods Fuzziness Fairness Pareto Optimality

[9,19,27,28] ✗ ! ✗

[29] ✗ ! !
This paper ! ! !

With these experimental simulation results, we can conclude that for FL, the invest-
ment strategy without the introduction of the monitoring mechanism does not reach the
Nash equilibrium, and the investment strategy with the addition of the monitoring mecha-
nism reaches the Pareto optimality.

6. Discussions

Constructing a fuzzy Shapley value technique that can manage the ambiguity in the
uncertainty of participation attitudes in FL is achievable, and the extent of participants’
contributions and benefits can be assessed more accurately and through the introduction
of a supervised mechanism. The method, through its mechanism, guarantees that the
distribution of benefits is equitable and Pareto-efficient, which enhances the accuracy of
the distribution of benefits.

However, the incentive mechanism also has some disadvantages: it involves several
concepts and techniques such as fuzzy sets, fuzzy probabilities and supervision mech-
anisms, which increases the complexity of the mechanism, and the application of the
mechanism to a real FL scenario needs to consider how to obtain and process information
about the attitudes of participants towards participation and how to design and implement
the supervision mechanism. In addition, there may be a degree of subjectivity in developing
rules and standards for the supervised mechanism.

Therefore, the method has some advantages in dealing with the uncertainty of partici-
pants’ participation attitudes and achieving fairness and Pareto efficiency consistency in FL.
At the same time, it also brings disadvantages to FL in its application, such as complexity,
difficulty of implementation, and subjectivity of rule-making.

7. Conclusions

In the model training of FL, we considered the case of uncertain and ambiguous
attitudes toward federated participant engagement, i.e., participants are not necessarily
fully engaged in FL. To promote engagement among all participants in federated model
training, this paper devises an incentive system utilizing the fuzzy Shapley value approach
alongside supervised functions, which resolves the tension between equity and effective-
ness in the distribution of payoffs within the FL. By conducting numerical computation
validation and contrasting research findings, this paper constructs a fuzzy Shapley value
method with supervised functions that helps to improve the effectiveness of FL, ensures
the fairness and reasonableness of the participants in the distribution of payoffs.

Consequently, using this incentive mechanism guarantees the fairness of the distri-
bution of benefits and the Pareto optimal consistency of the federated participants in the
case of uncertainty and ambiguity in their attitude to participation, which offers theoretical
insights for practical implementations.
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Notations

N The set of n FL participants
D The set of FL participants’ local dataset
M The model trained jointly by all FL participants
MFED The FL sharing model
MSUM The traditional machine learning model
VFED The model accuracy of MFED
MSUM The model accuracy of MSUM
S The alliance subset of different participants
v(.) The characteristic function in the determining case
ṽ(.) The characteristic function in the fuzzy case
v(S) The participant’s payoff through the alliance S in the determining case
ṽ(S) The participant’s payoff through the alliance S in the fuzzy case
v(N) The overall federated payoff in the determining case
ṽ(N) The overall federated payoff in the fuzzy case
φi(v) The participant i’s payoff in the determining case
φ̃i(ṽ) The participant i’s payoff in the fuzzy case
x The set of feasible actions that can be taken
π̃(x) The federated participant’s payoff function in the fuzzy case
c̃(x) The coalition cost investment of participant in the fuzzy case

k̃i
To reach Pareto optimality in the fuzzy situation, the supervisor must
meet the penalty requirement

r̃i(x) The supervisor obtained fines in the fuzzy case
R̃ The federated participant’s profit in the fuzzy case
cr

i (ccom(Pi)) The computational cost function
cr

i (ccom(Pi)) The federated cost utility function
Q(wt

i ) The quality assessment function
vr

i (Q(Pi)) The federated utility function
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Appendix A

Appendix A.1. Proof of Theorem 1

Proof. The validity of the traditional Shapley value implies that

n

∑
i=1

φ̃i(ṽ) =
n

∑
i=1

q(S)

∑
l=1

φ̃i(v([S] fl
))( fl − fl−1)

=
q(S)

∑
l=1

n

∑
i=1

φ̃i(v([S] fl
))( fl − fl−1)

=
q(S)

∑
l=1

v([N] fl
)( fl − fl−1)

= ṽ(N)

Hence, the validity of fuzzy Shapley value is established.

Appendix A.2. Proof of Theorem 2

Proof. From the symmetry of classical Shapley values it follows that

ṽ(S ∪ {i}) =
q(S)

∑
l=1

v([S ∪ {i}] fl
)( fl − fl−1),

ṽ(S ∪ {j}) =
q(S)

∑
l=1

v([S ∪ {j}] fl
)( fl − fl−1),

φ̃i(ṽ) =
q(S)

∑
l=1

φ̃i(v([S ∪ {i}] fl
))( fl − fl−1),

φ̃j(ṽ) =
q(S)

∑
l=1

φ̃j(v([S ∪ {j}] fl
))( fl − fl−1),

due to the fact that ṽ(S ∪ {i}) = ṽ(S ∪ {j}), then

q(S)

∑
l=1

φ̃i(v([S ∪ {i}] fl
))( fl − fl−1) =

q(S)

∑
l=1

φ̃j(v([S ∪ {j}] fl
))( fl − fl−1)

and thus φ̃i(ṽ) = φ̃j(ṽ). Hence, the symmetry of fuzzy Shapley value is proved.

Appendix A.3. Proof of Theorem 3

Proof. The validity of the traditional Shapley value implies that

(ṽ1 + ṽ2)(S) =
q(S)

∑
l=1

(v1([S] fl
) + v2([S] fl

))( fl − fl−1)

=
q(S)

∑
l=1

v1([S] fl
)( fl − fl−1) +

q(S)

∑
l=1

v2([S] fl
)( fl − fl−1)

= ṽ1(S) + ṽ2(S)
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due to the fact that

φ̃i(ṽ1 + ṽ2)(S) =
q(S)

∑
l=1

φ̃i(v1([S] fl
) + v2([S] fl

))( fl − fl−1)

=
q(S)

∑
l=1

φ̃i(v1([S] fl
))( fl − fl−1) +

q(S)

∑
l=1

φ̃i(v2([S] fl
))( fl − fl−1)

= φ̃i(ṽ1) + φ̃i(ṽ2)

and thus φ̃i(ṽ1 + ṽ2) = φ̃i(ṽ1) + φ̃i(ṽ2) ,hence the additivity of fuzzy Shapley value is
proved.

Appendix A.4. Proof of Theorem 4

Proof. From the dummy of classical Shapley value it follows that

ṽ(S) =
q(S)

∑
l=1

v([S] fl
)( fl − fl−1),

ṽ(S\{i}) =
q(S)

∑
l=1

v([S\{i}] fl
)( fl − fl−1)

due to the fact that ṽ(S) = ṽ(S\{i}), hence

q(S)

∑
l=1

v([S] fl
)( fl − fl−1) =

q(S)

∑
l=1

v([S\{i}] fl
)( fl − fl−1)

and thus

φ̃i(ṽ) =
q(S)

∑
l=1

φ̃i(v([S] fl
))( fl − fl−1)

=
q(S)

∑
l=1

φ̃i(v([S\{i}] fl
)( fl − fl−1)

=
q(S)

∑
l=1

0( fl − fl−1)

= 0

Consequently, the dummy of fuzzy Shapley value is thus demonstrated.

Appendix A.5. Proof of Theorem 5

Proof. With the legitimacy of the fuzzy Shapley value established, we can derive that

n

∑
i=1

φ̃i(ṽ(x)) = ṽ(x), ∀ṽ(x). (A1)

By differentiating Formula (A1) with respect to x, we find that

n

∑
i=1

φ̃′
i(ṽ(x)) = 1. (A2)

Here, φ̃′
i(ṽ(x)) = ∂φ̃i/∂ṽ(x) represents the partial derivative of φ̃i with respect to ṽ(x). In

the context of the Nash equilibrium, each federated participant’s investment is denoted as
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xi, and their profit is given by π̃i(ṽ(x)) = φ̃i(ṽ(x))− c̃i(xi). The profit maximization for
participant i occurs at:

max π̃i(ṽ(x)) = φ̃i(ṽ(x))− c̃i(xi), i = 1, 2, . . . , n (A3)

The Nash equilibrium’s first-order condition is thus

φ̃′
i(ṽ(x)) = c̃′i(x), i = 1, 2, . . . , n. (A4)

where φ̃′
i(ṽ(x)) = ∂φ̃i/∂x, x′i = ∂x̃/∂xi, c̃′i(x) = ∂c̃i(x)/∂xi. To achieve maximum

federated profits, federated investments must satisfy Pareto efficiency:

x∗ = arg max
x

(
ṽ(x)−

n

∑
i=1

c̃i(xi)

)
. (A5)

The Pareto optimality’s first-order requirement is

x′i = c̃′i(x), i = 1, 2, . . . , n. (A6)

By considering Formulas (A4) and (A6), we observe that the Nash equilibrium corresponds
to Pareto optimality, requiring the fulfillment of the following conditions:

φ̃′
i(ṽ(x)) = 1, i = 1, 2, . . . , n (A7)

Yet, this is inconsistent with meeting the criterion of the fuzzy Shapley value requirement
n
∑

i=1
φ̃′

i(ṽ(x)) = 1.

Appendix A.6. Proof of Theorem 6

Proof. For the discussion to be meaningful, let us suppose that when the federated partici-
pants attain Pareto efficiency, the allocated federal revenues according to the fuzzy Shapley
value method for each participant i exceed their investment costs, i.e., ṽ(x∗i ) > c̃i(x∗i ). If
x∗ = (x∗1 , x∗2 , . . . , x∗n) represents the Nash equilibrium of this mechanism, the following
condition should hold: π̃i[ṽ(x∗i , x∗n−i)] ≥ π̃i[ṽ(xi, x∗n−i)] and

φ̃i(ṽ(x∗))− c̃i(x∗i ) ≥ φ̃i(ṽ(x))− k̃i − c̃i(xi)

k̃i ≥ [φ̃i(ṽ(x))− c̃i(xi)]− [φi(ṽ(x∗))− c̃i(x∗i )].
(A8)

In the FL process, the coalition’s invisible and non-unique investment cost c̃i(xi)
makes Formula (A8) unsuitable for formulating penalties. However, it is important to
note that c̃i(xi) ≥ 0, leading to φ̃i(ṽ(x)) − [φ̃i(ṽ(x∗)) − c̃i(x∗i )] ≥ [φ̃i(ṽ(x)) − c̃i(xi)] −
[φi(ṽ(x∗))− c̃i(x∗i )]. Hence, Equation (A8) holds true solely under the condition that k̃i ≥
φ̃i(ṽ(x))− [φi(ṽ(x∗))− c̃i(x∗i )], guaranteeing the realization of Pareto efficiency. Therefore,
the penalty requirement for the overseer to achieve Pareto efficiency is

k̃i ≥ φ̃i(ṽ(x))− [φ̃i(ṽ(x∗))− c̃i(x∗i )]. (A9)

To enhance participants’ enthusiasm, it is vital to ensure that penalties are not overly
steep and comply with the principles of restricted involvement and restricted liability.
Assuming that all participants in FL have limited liability, the penalty amount should
not exceed the participant’s payoff. Hence, if a participant’s payoff is zero, no penalty is
necessary. Consequently, based on Formula (19), we derive φ̃i(ṽ(x))− k̃i ≥ 0, leading to
the conclusion that

k̃i ≤ φ̃i(ṽ(x)). (A10)
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From Formulas (A9) and (A10), we establish the following expression:

φ̃i(ṽ(x))− [φ̃i(ṽ(x∗))− c̃i(x∗i )] ≤ k̃i ≤ φ̃i(ṽ(x)). (A11)

If we denote the net gain of participant i following the penalty as δ̃i, then δ̃i = φ̃i(ṽ(x))− k̃i.
By utilizing Formula (A11), we obtain the following expression:

0 ≤ δ̃i ≤ φi(ṽ(x∗))− c̃i(x∗i ) (A12)

Building upon the earlier analysis and taking into account the constraint of restricted
liability, the optimization of the Pareto value is accomplished. If the overseer’s penalty
conforms to Equation (A11), the optimal mechanism can be delineated as:

r̃i(x) =
{

φ̃i(ṽ(x)),
δ̃i,

if ṽ(x) ≥ ṽ(x∗)
if ṽ(x) < v(x∗)

(A13)

In this scenario, the value of δ̃i must comply with Equation (A13), where i = 1, 2, . . . , n. We
will now proceed to explain the mechanism under two different penalty value conditions
as specified in Formula (A13).

If k̃i = φ̃i(ṽ(x)), it indicates that the overseer recognizes that the federated reward
equals or exceeds the Pareto-efficient reward. Under such circumstances, the overseer will
distribute the federated reward among all participants according to the equation of fuzzy
Shapley value. Should the federated reward not reach the Pareto-efficient level, the entire
will be affected by the overseer. The equation is as follows:

r̃i(x) =
{

φ̃i(ṽ(x)),
0,

if ṽ(x) ≥ ṽ(x∗)
if ṽ(x) < v(x∗).

(A14)

Furthermore, we will illustrate that the federated investment x∗ = (x∗1 , x∗2 , . . . , x∗n)
leading to Pareto efficiency constitutes the Nash equilibrium of this mechanism. If we
assume that participant i invests xi < x∗ in the FL process, as the other participants allocate
x∗n−i, owing to the monotonic nature of the function ṽ(x), it follows that ṽ(xi, x∗n−i) <
ṽ(x∗i , x∗n−i). Moreover, r̃i(xi, x∗n−i) = 0, and participant i’s earnings amount to π̃i(xi) =
−c̃i(xi) ≤ 0. Consequently, a rational participant i would not invest xi < x∗. Given that
participant i invests xi ≥ x∗ in the FL process, and considering the monotonicity of the
function ṽ(x), the profit of participant i can be expressed as π̃i(xi) = φ̃i(xi)− c̃i(xi) > 0.
Consequently, a rational participant i would choose to invest xi ≥ x∗.
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