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Abstract: This contribution proposes a variational symplectic integrator aimed at linear systems
issued from the least action principle. An internal quadratic finite-element interpolation of the state
is performed at each time step. Then, the action is approximated by Simpson’s quadrature formula.
The implemented scheme is implicit, symplectic, and conditionally stable. It is applied to the time
integration of systems with quadratic Lagrangians. The example of the linearized double pendulum
is treated. Our method is compared with Newmark’s variational integrator. The exact solution of
the linearized double pendulum example is used for benchmarking. Simulation results illustrate the
precision and convergence of the proposed integrator.
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1. Introduction

Simpson’s quadrature is the name that is generally given to a numerical approximation
of definite integrals that is exact for polynomials up to the third degree:

∫ 1

0
ψ(θ)dθ ' 1

6

(
ψ(0) + 4ψ

(
1
2

)
+ ψ(1)

)
. (1)

It is well known that this rule was found by Bonaventura Cavalieri (1598–1647),
known to James Gregory (1638–1675) [1], and even used by Johannes Kepler (1571–1630) to
approximate the volume of barrels [2]. However, Thomas Simpson (1710–1761) is usually
credited for this rule. As such, Formula (1) is also widely known as Simpson’s 1/3 rule. It
corresponds to a special case of Newton–Cotes’s formula [1] and coincides with the classical
fourth-order Runge–Kutta method [1,3].

Generally, numerical methods involving Simpson’s quadrature estimate a definite
integral by using quadratic polynomials to approximate the integrand on a sequence
of intervals. This general idea is at the foundation of numerous methods that can be
applied to solve engineering problems such as the low-thrust orbit transfer problem [4]
or the gait optimization of a bipedal walking robot [5]. Recently, much attention has been
brought to fractional calculus, for which solvers based on Simpson’s quadrature (adapted
to the fractional form) have been developed [6]. Some applications involve solving initial-
value problems of fractional differential systems [7] or the solution of fractional equations
affected by noisy signals [8]. Another recent application of Simpson’s quadrature involves
the solution of partial integro-differential equations [9].
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Our contribution is aimed at solving differential equations characterizing the motions
of mechanical systems. It is well known that the motions of a mechanical system are
the extremals of the variational principle of least action [10]. This principle is one of the
most general laws of theoretical physics and is foundational for characterizing a system’s
evolution in the form of differential equations. It is valid across disciplines such as classical
and quantum mechanics, cosmology, electromagnetism, optics, and relativity [10–14]. As
such, this variational principle is closely involved in the development of the finite-element
method [15], which is used for the space and time integration of differential equations [16].

Numerical schemes for dynamical systems issued from the principle of least action
are typically referred to as variational [17–20]. The general idea resides in performing
a discretization at the least action principle level. As a result, the evolution equations
deriving from this discretized principle characterize the system evolution, but are also
a numerical scheme. It is well known that such numerical methods are endowed with
interesting characteristics; one characteristic is the property of being symplectic [18–21].
One remarkable example of such methods is Newmark’s integrator [17,19], which is very
popular for solving problems in the dynamics of structures [22,23] and has recently been
geometrized to solve the motion equations of sliding rods [24] and soft robots [25].

A symplectic scheme based on Simpson’s rule has been proposed by the authors
in [26], for the linear and scalar case of the harmonic oscillator. The scheme uses a quadratic
finite-element interpolation. The method was adapted to the monodimensional non-linear
pendulum system in [27]. In this work, Simpson’s symplectic scheme is further studied as
an alternative to Newmark’s method. It is generalized to the case of multiple-degrees of
freedom systems characterized by quadratic Lagrangians. The obtained results confirm
the convergence rate previously observed in [26]. The new stability condition on the step
size is revealed to be similar to the one previously obtained in [26]. A simplecticity analysis
that applies to the multi-degree of freedom case, along with the expression of a related
conserved quadratic form, is provided in this contribution.

We begin our study by detailing Newmark’s classical scheme, deriving it from varia-
tional principles in Section 2. Then, Simpson’s alternative scheme is detailed and derived
from variational principles in Section 3. Section 4 analyzes the symplectic property of
Simpson’s scheme. A proof that applies to both Newmark’s and Simpson’s schemes is
provided. To compare both methods in a case study, a two-degree of freedom system is
presented. Therefore, the exact solution to the linearized double pendulum is provided
in Section 5. This exact solution serves for benchmarking purposes in our comparisons.
Section 6 presents and comments on the obtained numerical results. Simpson’s scheme’s
convergence is revealed to be of the fourth order. The manuscript ends with a brief discus-
sion and concluding remarks in Section 7.

2. Newmark’s Scheme
2.1. Discrete Action

Let us derive the classical, symplectic variational integrator based on Newmark’s
scheme [17,19,22,23]. The continuous action is defined as

Sc =
∫ T

0
L
(

dq(t)
dt

, q(t)
)

dt (2)

where L is the system Lagrangian. We focus on dynamical systems for which the La-
grangian can be expressed quadratically as

L =
1
2

q̇T Mq̇− 1
2

qTKq, (3)

where M and K are symmetric, positive-definite n-dimensional matrices with constant
coefficients; q ∈ Rn.
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We can discretize Equation (2) by splitting the simulation interval [0, T] into N elements
using a time step h = T/N. An approximation qj of q(tj) is calculated at each instance tj = jh.
The following action Sd represents the discrete version of Equation (2):

Sd =
N−1

∑
j=1

Ld
(
qj, qj+1

)
, (4)

where Ld(q`, qr) is the discrete form of the Lagrangian (3). Subscripts ` and r stand for “left”
and “right” values, respectively. Let us consider a centered finite-difference approximation:

dq
dt
' qr − q`

h
,

and a midpoint quadrature:

∫ h

0
ϕ(q(t))dt ' hϕ

(
q` + qr

2

)
.

The discrete Lagrangian becomes

Ld(q`, qr) =
h
2

[(
qr − q`

h

)T
M
(

qr − q`

h

)]
− h

2

[(
q` + qr

2

)T
K
(

q` + qr

2

)]
.

2.2. Discrete Euler–Lagrange Equations

The discrete action (4) being a sum, only two terms contain the variables qj:

Sd = · · ·+ Ld
(
qj−1, qj

)
+ Ld

(
qj, qj+1

)
+ · · · .

So, when the discrete action is stationary (δSd = 0 for arbitrary variations δqj of the
states qj), only two terms remain. Necessarily,

∂Ld
∂qr

(
qj−1, qj

)
+

∂Ld
∂q`

(
qj, qj+1

)
= 0. (5)

The generalized momenta pj ∈ Rn are defined, on the right, as

pj =
∂Ld
∂qr

(q`, qr). (6)

Therefore, the first term of Equation (5) is identified as pj, so applying Equation (6) in
Equation (5) leads to

pj = −
∂Ld
∂q`

(
qj, qj+1

)
= M

(qj+1 − qj

h

)
+

h
2

K
(qj + qj+1

2

)
. (7)

Then, pj+1 is constructed following Equation (6):

pj+1 = M
(qj+1 − qj

h

)
− h

2
K
(qj + qj+1

2

)
. (8)

Using Equations (7) and (8), it can be established that

pj+1 − pj

h
= −K

(qj + qj+1

2

)
;

pj + pj+1

2
= M

(qj+1 − qj

h

)
. (9)

Equations (9) are consistent with dp
dt = −Kq and p = M dq

dt , respectively.
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2.3. Newmark’s Scheme

System (9) can then be arranged in linear form as

Anηj+1 = Bnηj, (10)

where η ∈ R2n, η = (p, q)T and

An =

(
In −Xn

In Yn

)
; Bn =

(
−In −Xn

In −Yn

)
; Xn =

2
h

M; Yn =
h
2

K; (11)

In is the n-dimensional identity matrix.
Newmark’s symplectic scheme is obtained by matrix inversion of Equation (10). We

can establish that
ηj+1 = Φn ηj, Φn = A−1

n B, (12)

where matrices A and B are defined in Equation (11) above. It has been observed that this partic-
ular variant of Newmark’s method is unconditionally stable and second-order convergent [19].

3. Simpson’s Scheme

Newmark’s scheme, presented in Section 2, uses a midpoint quadrature for the numer-
ical integration of a regular function. This quadrature is exact only for polynomials up to
the first degree. A better precision is obtained with Simpson’s quadrature (1), which is exact
for polynomials up to the third degree. Notice how Formula (1) introduces a midpoint. This
midpoint will be regarded as an additional degree of freedom in our proposed integrator.

Let us now derive a symplectic scheme based on this integration rule. As with
Newmark’s scheme, the continuous action is defined by Equation (2) and the Lagrangian
has the structure of Equation (3).

3.1. Quadratic Finite-Element Interpolation

An internal interpolation can be performed at each time step, for t ∈ [0, h], using
quadratic finite elements [16,28]. We use the following compact basis functions for 0 6 θ 6 1:

ϕ0(θ) = (1− θ)(1− 2θ), ϕ1/2(θ) = 4θ(1− θ), ϕ1(θ) = θ(2θ − 1). (13)

At t = hθ, the states q(t) ∈ P2 are approximated with the above basis functions as

q(t) = q`ϕ0(θ) + qm ϕ1/2(θ) + qr ϕ1(θ). (14)

Note that q(0) = q`, q
(

h
2

)
= qm and q(h) = qr; here, subscript m stands for “middle”.

This means that the finite-elements (13) are well adapted to the internal degree of
freedom at h/2. Then, by time differentiation,

dq
dt

=
1
h

(
q`

dϕ0

dθ
+ qm

dϕ1/2

dθ
+ qr

dϕ1

dθ

)

=
1
h
(q`(4θ − 3) + 4qm(1− 2θ) + qr(4θ − 1))

= g`(1− θ) + grθ

where derivatives g`, gr ∈ Rn are given by Gear’s scheme [29]. Gear’s scheme is used as
the differentiation approximation for q(t) ∈ P2 as
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g` =
dq
dt

(0) =
1
h
(−3q` + 4qm − qr),

gm =
dq
dt

(
h
2

)
=

g` + gr

2
=

qr − q`

h
,

gr =
dq
dt

(h) =
1
h
(q` − 4qm + 3qr),

(15)

where gm ∈ Rn. The above confirms that a first-order centered finite difference is recovered
by gm, which is the derivative at the middle of the discretization interval.

The interpolation is used within an interval of length h by splitting the range [0, T] into
N pieces, giving a fixed step size of h = T/N. At each discrete time instance tj = jh, we have

qj ' q(tj), ∀ 0 6 j 6 N;

qj+1/2 ' q
(

tj +
h
2

)
, ∀ 0 6 j 6 N − 1.

Taking Equation (14), q(t) is a quadratic polynomial vector function within the interval
[tj, tj+1] with

t = tj + θh, q` = qj, qm = qj+1/2, qr = qj+1.

3.2. Discrete Lagrangian

Let us recall that the continuous action is defined by Equation (2) and that the La-
grangian is defined by Equation (3). In the present case, the discrete action sum Σd for a
motion t 7→ q(t) between the initial time and a given final time T > 0 is discretized with N
regular intervals as

Σd =
N−1

∑
j=1

Lh

(
qj, qj+1/2, qj+1

)
, (16)

where Lh(q`, qm, qr) is the discrete form

Lh(q`, qm, qr) '
∫ h

0
Ldt,

of the Lagrangian (3). Using Simpson’s rule (1), the polynomial approximation (14) of the
states, and derivatives (15), the discrete Lagrangian of a linear system is expressed as

Lh(q`, qm, qr) =
h
2

[
1
6

gT
` Mg` +

2
3

gT
m Mgm +

1
6

gT
r Mgr

]

− h
2

[
1
6

qT
` Kq` +

2
3

qT
mKqm +

1
6

qT
r Kqr

]
.

3.3. Discrete Euler–Lagrange Equations

Recall that Simpson’s rule introduces an internal degree of freedom in the middle of
the interpolation interval. The discrete action (16) is a sum where only two terms contain
the variables qj and qj+1/2:

Σd = · · ·+ Lh

(
qj−1, qj−1/2, qj

)
+ Lh

(
qj, qj+1/2, qj+1

)
+ · · ·

Maupertuis’s stationary action principle [10] implies that δΣd = 0 for an arbitrary vari-
ation of the internal degree of freedom δqj+1/2 ∈ [tj, tj+1]. Considering Gear’s scheme (15),
we have

∂gi
`

∂qk
m

=
4
h

,
∂gi

m
∂qk

m
= 0,

∂gi
r

∂qk
m

= −4
h

, ∀i = k, 0 otherwise,

where gi is the i-th component of g and qk is the k-th component of q.
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When δΣd = 0, ∂Lh
∂qm

(
qj, qj+1/2, qj+1

)
= 0 by necessity. This conforms to the discrete

Euler–Lagrange equations at the middle of the interpolation interval:

4
3h

Mgj −
4

3h
Mgj+1 −

4
3

Kqj+1/2 = 0. (17)

However, gj − gj+1 = 1
h

(
−4qj + 8qj+1/2 − 4qj+1

)
, so Equation (17) becomes

M
(

4
qj − 2qj+1/2 + qj+1

h2

)
+ Kqj+1/2 = 0. (18)

This last equation is consistent with M d2q
dt2 + Kq = 0.

Additionally, for an arbitrary variation δqj, the Euler–Lagrange equations are given
by the necessary condition that

∂Ld
∂qr

(
qj−1, qj−1/2, qj

)
+

∂Ld
∂q`

(
qj, qj+1/2, qj+1

)
= 0. (19)

The generalized momenta pj are defined, on the right, as

pj =
∂Ld
∂qr

(q`, qm, qr). (20)

Therefore, the first term of Equation (19) is identified as pj, and it can established that

pj = −
∂Ld
∂q`

(
qj, qj+1/2, qj+1

)

= −h
2

[
− 3

3h
Mgj −

4
3h

Mgj+1/2 +
1

3h
Mgj+1

]
+

h
6

Kqj

= − 1
6h

M
(

14qj − 16qj+1/2 + 2qj+1

)
+

h
6

Kqj,

(21)

because −3gj − 4gj+1/2 + gj+1 = 1
h

(
14qj − 16qj+1/2 + 2qj+1

)
. Equation (18) is then multi-

plied by h/3, and the result is added to Equation (21). This eliminates qj+1/2 from the first
term of the right-hand side:

pj = M
(qj+1 − qj

h

)
− h

6
K
(
−2qj+1/2 − qj

)
. (22)

Then, pj+1 is calculated according to Equation (20)

pj+1 =
∂Ld
∂qr

(
qj, qj+1/2, qj+1

)

=
h
2

[
− 1

3h
Mgj +

4
3h

Mgj+1/2 +
3

3h
Mgj+1

]
− h

6
Kqj+1

=
1

6h
M
(

2qj − 16qj+1/2 + 14qj+1

)
− h

6
Kqj+1

(23)

because −gj + 4gj+1/2 + 3gj+1 = 1
h

(
2qj − 16qj+1/2 + 14qj+1

)
. Equation (18) is then multi-

plied by −h/3, and the result is added to Equation (23). This eliminates qj+1/2 from the first
term of the right-hand side:

pj+1 = M
(qj+1 − qj

h

)
− h

6
K
(

2qj+1/2 + qj+1

)
. (24)
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Using Equations (22) and (24), we can establish that




pj+1 − pj

h
= −K

(
1
6

qj +
2
3

qj+1/2 +
1
6

qj+1

)

pj + pj+1

2
=

(
M− h2

12
K
)(qj+1 − qj

h

)
.

(25)

Equations (25) are consistent with dp
dt = −Kq and p = M dq

dt , respectively. Note that

the term h2

12 K in the second equation above vanishes as h→ 0.

3.4. First Variant of Simpson’s Scheme

The system composed of Equations (18) and (25) can be rearranged as




L qj+1/2 −
1
2

qj+1 =
1
2

qj

pj+1 −
(

2
h

M− h
6

K
)

qj+1 = −pj −
(

2
h

M− h
6

K
)

qj

2h
3

Kqj+1/2 + pj+1 +
h
6

Kqj+1 = pj −
h
6

Kqj

(26)

where

L =

(
In −

h2

8
M−1K

)
.

System (26) can then be arranged in linear form:

Aσ

(
qj+1/2

ηj+1

)
= Bσ ηj+1, (27)

where η ∈ R2n, η = (p, q)T ;

A =




L 0 − 1
2In

0 In −
(

2
h M− h

6 K
)

2h
3 K In

h
6 K


; B =




0 1
2In

−In −
(

2
h M− h

6 K
)

In − h
6 K


. (28)

The first variant of Simpson’s scheme is obtained by matrix inversion of Equation (27).
We can establish that (

qj+1/2

ηj+1

)
= A−1

σ Bσ ηj, (29)

where matrices Aσ and Bσ are defined in Equation (28) above.

3.5. Second Variant of Simpson’s Scheme

Simpson’s scheme’s internal degree of freedom can be eliminated using the first
equation of System (26):

qj+1/2 =
1
2

L−1(qj+1 + qj
)
.

This equation approximates the middle point when h → 0, because then L → In.
Substituting this value into the third equation of System (26) leads to

pj+1 +
h
3

(
KL−1 +

1
2

K
)

qj+1 = pj −
h
3

(
KL−1 +

1
2

K
)

qj,

and the second equation of System (26) remains unchanged. Therefore, the internal degree
of freedom is successfully eliminated so that, now,
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Asηj+1 = Bsηj (30)

where η ∈ R2n; η = (p, q)T ;

As =

(
In −Xs

In Ys

)
; Bs =

(
−In −Xs

In −Ys

)
; Xs =

2
h

M− h
6

K ; Ys =
h
3

(
KL−1 +

1
2

K
)

. (31)

The second variant of Simpson’s symplectic scheme is obtained by matrix inversion of
Equation (30). We can establish that

ηj+1 = Φs ηj, Φs = A−1
s Bs, (32)

where matrices As and Bs are defined in Equation (31) above. Note that schemes (29) and (32)
are equivalent. However, this second variant eliminates the internal degree of freedom in the
middle of the interval.

The symplecticity of Simpson’s scheme (32) has not yet been proven. However, one
can appreciate the similarity with Newmark’s scheme by comparing Equation (11) and
Equation (31). The symplectic property of both schemes is analyzed in Section 4.

4. Symplecticity of Newmark’s and Simpson’s Schemes

The symplectic property of both Newmark’s scheme (12) and Simpson’s scheme (32)
is now analyzed.

4.1. Symplectic Property

A symplecticity proof is obtained by verifying that

ΦTJΦ = J; J =

(
0 −In
In 0

)
. (33)

Φ corresponds to the scheme transformation matrix and characterizes a discrete time
evolution of the system. J is sometimes referred to as the canonical matrix for Hamiltonian
systems [30] and has the property that J−1 = JT = −J. When Equation (33) holds, it means
that Φ is an area-preserving transformation and that the scheme (12) is symplectic (see,
e.g., [18–20,31] for more details on this demonstration).

Proposition 1. An implicit scheme of the type

ηj+1 = A−1B ηj ; η = (p, q)T ,

is symplectic if

A =

(
In −X

In Y

)
, B =

(
−In −X

In −Y

)
, (34)

are square, partitioned, invertible matrices and blocks X and Y are symmetric and positive-definite.

Proof of Proposition 1. Let us first make explicit the transformation A−1. Since A is square
and partitioned, its inversion is performed using auxiliary variables α and β. Let us
establish that

A
(

p
q

)
=

(
p− Xq

p + Yq

)
=

(
α
β

)
(35)

Subtracting both equations above gives

q = Z−1(β− α); Z = X + Y. (36)
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Since Z is the sum of two symmetric, positive-definite matrices, it is invertible.
Equation (36) is then substituted into the first equation of System (35):

p =
(
In − XZ−1

)
α + XZ−1β. (37)

Matrix A from Equation (34) is inverted in Equations (36) and (37) as:

A−1 =

(
In − XZ−1 XZ−1

−Z−1 Z−1

)
.

Then, it suffices to verify Equation (33) with Φ = A−1B. Thus,

ΦTJΦ = BT A−TJA−1B = BT

(
−Z−T −

(
In − Z−TXT)

Z−T −Z−TXT

)
A−1B

= BT

(
0 Z−1

−Z−1 0

)
B =

(
Z−1 Z−1

−YZ−1 XZ−1

)
B

=

(
−Z−1 + Z−1 −Z−1(X + Y)

(Y + X)Z−1 YZ−1X− XZ−1Y

)

=

(
0 −In

In
(
X−1ZY−1)−1 −

(
Y−1ZX−1)−1

)
=

(
0 −In

In 0

)
= J,

because X = XT , Y = YT , so Z−1 = Z−T .

4.2. Symplectic Property of Newmark’s Scheme

Proposition 2. Newmark’s scheme (12) is symplectic.

Proof of Proposition 2. In Newmark’s scheme’s formulation (12), matrices An and Bn from
Equation (11) are of the form of Equation (34), because Xn and Yn (11) are symmetric and
positive-definite. By Proposition 1, Newmark’s scheme is symplectic.

This confirms the classical result (e.g., [19]) on Newmark’s scheme’s symplecticity.

4.3. Symplectic Property of Simpson’s Scheme

To prove that Simpson’s scheme is symplectic, we first need to prove that As and Bs
have the structure of Equation (34). For this, blocks Xs and Ys are required to be symmetric
and positive-definite.

Proposition 3. Matrix Ys (31) is symmetric.

Proof of Proposition 3. Since M and K are symmetric, Ys is symmetric if and only if its
first term:

W = KL−1

is symmetric as well. W is symmetric if W−1 is symmetric. As

W−1 =

(
In −

h2

8
M−1K

)
K−1 = K−1 − h2

8
M−1,

is symmetric, Ys is also symmetric.
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For Ys to be positive-definite, the part KL−1 must be positive-definite. Since KL−1 is
symmetric by Proposition 3, a condition on the step size h is required.

Let us introduce the smallest and largest eigenvalues of matrices M and K:

0 < µ‖ϕ‖2 6 ϕT Mϕ 6 m‖ϕ‖2

0 < κ‖ϕ‖2 6 ϕTKϕ 6 k‖ϕ‖2
(38)

where (µ, κ) are the smallest and (m, k) are the largest eigenvalues of matrices M and
K, respectively; ϕ 6= 0 is an eigenvector. Taking M1/2 ϕ = ψ and then K1/2 ϕ = ψ,
Equation (38) becomes

1
m
‖ψ‖2 6 ψT Mψ 6

1
µ
‖ψ‖2

1
k
‖ψ‖2 6 ψTKψ 6

1
κ
‖ψ‖2,

and so,

ψT
(

LK−1
)

ψ >
(

1
k
− h2

8
1
µ

)
‖ψ‖2. (39)

The above expression is positive for

0 <
k
µ

h2 < 8. (40)

This inequality is a sufficient stability condition for Simpson’s scheme. Let us remark
that k/µ corresponds to the maximum eigenvalue of the dynamical matrix inverse M−1K and
is associated with the maximum characteristic eigenfrequency of the system (see [22]) by

k
µ
= ωmax

2.

The stability condition (40) can also be stated as

0 < ωmax h < 2
√

2.

This condition is similar to the stability condition characterizing the mono-dimensional
case for Simpson’s scheme [26].

Proposition 4. Matrix Ys from Equation (31) is positive-definite if 0 <
k
µ

h2 < 8.

Proof of Proposition 4. When the condition (40) is met, Equation (39) becomes

ψT
(

LK−1
)

ψ > 0, ∀ψ 6= 0,

and LK−1 is positive-definite. Therefore, KL−1 is also positive-definite, and recalling
Proposition 3, it is symmetric. Consequently,

ψTYs ψ > 0, ∀ψ 6= 0,

and Ys is positive-definite.

Now, only the positive-definiteness of block Xs from Equation (31) remains to
be proven.

Proposition 5. Matrix Xs from Equation (31) is positive-definite if 0 <
k
µ

h2 < 8.
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Proof of Proposition 5. From inequality (38),

ϕT Mϕ− h2

12
ϕTKϕ >

(
µ− h2

12
k
)
‖ϕ‖2,

and substituting the condition (40) for the first term of the right-hand side of the above inequality,

ϕT
(

M− h2

12
K
)

ϕ >
µ

3
‖ϕ‖2 > 0, ∀ϕ 6= 0.

Therefore, matrix Xs is positive-definite.

Proposition 6. Simpson’s scheme (32) is symplectic.

Proof of Proposition 6. For the second variant of Simpson’s scheme (32), matrices As and Bs
from Equation (31) are of the form of Equation (34), because Xs is symmetric and positive-definite
by Proposition 5 and Ys is symmetric and positive-definite by Propositions 3 and 4.

These results prove that the proposed Simpson’s scheme is symplectic.

4.4. Conservation of a Discrete Quadratic Form

Symplectic integrators usually do not preserve the energy quantity. This has been
summarized in [32] and outlined in [19]. The goal is to verify that Simpson’s scheme
preserves some quadratic form. It is required that some quadratic function φ(p, q) verifies

φ(pj+1, qj+1) = φ(pj, qj),

where (pj+1, qj+1) and (pj, qj) satisfy the dynamics of Simpson’s scheme, Equations (31) and (32).

Proposition 7. Given an implicit scheme of the type

ηj+1 = A−1B ηj ; η = (p, q)T , (41)

where

A =

(
In −X

In Y

)
, B =

(
−In −X

In −Y

)
,

are square, partitioned, invertible matrices and blocks X and Y are symmetric and positive-definite,
there exists a quadratic form:

φ(p, q) =
1
2

pTξp +
1
2

qTζq, (42)

which is conserved if
ξ = (X + Y)−1; ζ = (X−1 + Y−1)−1.

Proof of Proposition 7. Let us expand Equation (41):

pj+1 − Xqj+1 = −pj − Xqj,

pj+1 + Xqj+1 = pj −Yqj.

The above can also be written as

pj+1 + pj = X
(
qj+1 − qj

)

pj+1 − pj = −Y
(
qj+1 + qj

)
.

Therefore, by multiplying ξ by the first equation above on the left and by the second
equation above on the right,
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(
pj+1 + pj

)T
ξ
(
pj+1 − pj

)
=
(
X
(
qj+1 − qj

))T
ξ(−Y)

(
qj+1 + qj

)

= −
(
qj+1 − qj

)TXξY
(
qj+1 + qj

)
.

(43)

Since
(XξY)−1 = Y−1(X + Y)X−1 = X−1 + Y−1 = ζ−1

is symmetric and positive-definite, it is deduced that ζ = XξY is symmetric and positive-
definite. Following from Equation (43),

pj+1
Tξpj+1 + qj+1

Tζqj+1 = pj
Tξpj + qj

Tζqj,

and the property is proven since φ(pj+1, qj+1) = φ(pj, qj).

By Proposition 7 and Condition (40), Simpson’s scheme is conditionally stable.

5. Linear Double Pendulum Model and Exact Solution

This section presents a case study for subsequent numerical experiments.

5.1. Lagrangian

Let us model the system depicted by Figure 1. It is a two-degree-of-freedom dynamical
system composed of two masses (m1, m2) linked together by two massless thin rigid rods
of respective fixed lengths (l1, l2). Each joint articulates the system with one rotational
degree of freedom. The masses’ coordinates are given by

(x1, y1) = (l1 sin q1,−l1 cos q1)

(x2, y2) = (l1 sin q1 + l2 sin q2,−l1 cos q1 − l2 cos q2),

and their velocities are obtained by time differentiation considering that qi = qi(t). The
system kinetic energy is then given by

T =
1
2

m1

(
ẋ1

2 + ẏ1
2
)
+

1
2

m2

(
ẋ2

2 + ẏ2
2
)

,

where an overdot indicates time differentiation. Potential energy is calculated as

V = −m1gl1 cos q1 −m2g(l1 cos q1 + l2 cos q2),

and finally, the system Lagrangian L = T −V can be explicated as

L =
1
2
(m1 + m2)l12q̇1

2 +
1
2

m2l22q̇2
2 + m2l1l2q̇1q̇2 cos(q1 − q2)

+ (m1 + m2)gl1 cos q1 + m2gl2 cos q2.
(44)

Small oscillations take place when qi(t) are small and around the stable equilibrium.
This equilibrium corresponds to the system’s resting position when it is aligned with the
vertical axis pointing downwards. Such motions can be described by linear equations.
In this situation, the Lagrangian (44) takes a simpler form provided that the following
approximations take place:

cos q1 ≈ 1− q1
2

2
;

cos q2 ≈ 1− q2
2

2
;

cos(q1 − q2) ≈ 1− (q1 − q2)
2

2
.

(45)
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l1

l2

m1

m2

x

y

q1

q2

x1

y1

x2

y2

~g

Figure 1. Double pendulum system subject to the gravity action. The system is composed of two
masses (m1, m2) linked together by two massless thin rigid rods of respective fixed lengths (l1, l2).
Each joint articulates the system with one rotational degree of freedom. Masses are located by the
generalized coordinates q = (q1, q2).

Using Equation (45), the linear form LL of Lagrangian (44) becomes

LL =
1
2
(m1 + m2)l1

(
l1q̇1

2 + 2g− gq1
2
)
+

1
2

m2l2
(

l2q̇2
2 + 2l1q̇1q̇2 + 2g− gq2

2
)

, (46)

where the second term of the cos(q1 − q2) approximation in Equation (45) vanishes when
multiplying the product q̇1q̇2. Generalized momenta are defined as

pi =
∂LL
∂q̇i

.

According to the Lagrangian (46), we have

p1 = (m1 + m2)l12q̇1 + m2l1l2q̇2,

p2 = m2l2(l1q̇1 + l2q̇2).

Motion equations are then obtained by applying Euler–Lagrange equations d
dt

∂LL
∂q̇i
−

∂LL
∂qi

= 0:

(m1 + m2)l12q̈1 + m2l1l2q̈2 + (m1 + m2)gl1q1 = 0,

m2l1l2q̈1 + m2l22q̈2 + m2gl2q2 = 0.
(47)

5.2. Exact Solution

Equation (47) can also be established as a linear system of the form

Mq̈ + Kq = 0. (48)

where

M =

(
(m1 + m2)l12 m2l1l2

m2l1l2 m2l22

)
; q =

(
q1
q2

)
; K =

(
(m1 + m2)gl1 0

0 m2gl2

)
.
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The general solution of Equation (48) is of the form

q(t) = Re
([

x1
x2

]
· eiωt

)
,

where x1 and x2 are eigenvectors and ω denotes the oscillation frequency. Two characteristic
frequencies (ω1, ω2) are determined by the solution of the auxiliary equation det(K −
ω2M) = 0:

(m1 + m2)g2 − (m1 + m2)g(l1 + l2)ω2 + m1l1l2ω4 = 0.

Let us focus on the case where

l1 = l2 = l.

In this particular case, the oscillation frequencies are given by

ω1,2 = ω0

√(
1 + µr ±

√
µr(1 + µr)

)
, (49)

with a mass ratio µr = m2/m1 and frequency ω0 =
√

g/l.
Eigenvectors x1 and x2 are then obtained by solving (K−ωi

2M)xi = 0 for i = 1 and
i = 2:

m1l
[
(1 + µr)(g−ωi

2l) −ωi
2µrl

−ωi
2µrl µr(g−ωi

2µrl)

]
xi = 0.

Solving the above system gives

x1 =

[
1

−
√

1+µr
µr

]
, x2 =

[
1√
1+µr

µr

]
. (50)

Finally, using Equation (50), the general solution of Equation (48) (or Equation (47))
can be established as

q(t) = c1x1 cos(ω1t + ϕ1) + c2x2 cos(ω2t + ϕ2), (51)

where constants (c1, c2, ϕ1, ϕ2) are given by the chosen initial conditions on the positions
and velocities.

6. Simulation Results

We will now assess the precision and convergence of our proposed integrator, pre-
viously described in Section 3. It will be compared with Newmark’s symplectic scheme,
described in Section 2. Some results obtained with Runge–Kutta’s explicit fourth-order
integrator, described in [3] and labeled as “RK4” throughout the rest of the document, are
also given. Note that a thorough comparison with this classical integrator is beyond the
scope of our contribution. The results are provided for reference since RK4 is among the
most popular methods available. For benchmarking purposes, we applied these methods
to the solution of the linear double pendulum (depicted by Figure 1), which has an exact
solution described in the previous Section 5.

The results presented in this section are for a simulated motion of this linearized
double pendulum. The computations were carried out using Wolfram’s Mathematica
software (version 12.3) [33]. The figure plots were then created using exported data with
the pgfplots package from LATEX. Table 1 specifies the constants and initial conditions used
for all of our simulations. Using these values and following Equation (51) with null initial
phases (ϕ1, ϕ2), the exact solution that serves as the main reference in our comparisons is
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qex(t) =
π

12



− cos(ω1 t) + cos(ω2 t)√

2
cos(ω1 t) + cos(ω2 t)


,

where ω1 and ω2 are given by Equation (49).

Table 1. Constants and initial conditions used for numerical simulations.

Constants Initial Conditions

µr = 1 q(0) = (0, π/6)T rad
ω0 = 2π s−1 p(0) = (0, 0)T kg m2 s−1

Frequency ω0 is used to show the results in terms of an oscillation period t̄ such that

t̄ =
1

ω0
.

Therefore, both the total simulation duration T and step size h are given in terms of t̄.
It is to be noted that the presented results from Simpson’s scheme were obtained using the
second variant (see Section 3.5), hence the absence of the middle value at each interpolation
interval. However, both variants provided lead to the same result at each node.

6.1. Configuration Parameters and Generalized Momenta

We begin by comparing the configuration parameter solutions q obtained with the
proposed Simpson’s rule-based variational integrator, against those given by Newmark’s
method. The proposed integrator uses quadratic finite elements for interpolation and
Simpson’s rule (see Section 3). It is expected to be more precise than Newmark’s method,
which uses a centered finite difference and the midpoint integration rule (see Section 2).
Figure 2 shows the configuration parameters provided by each method, compared against
the exact solution, during one period t̄. Simpson’s integrator is already more precise than
Newmark’s scheme. Runge–Kutta’s solution is also close to the exact one, but not as much
as Simpson’s solution.
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Figure 2. Configuration parameters’, q, evolution for the linear double pendulum. Initial conditions
are specified in Table 1. The step size is fixed as h = 0.1 t̄. Simpson’s integrator tracks the exact
solution with more precision than Newmark’s method and Runge–Kutta’s integrator.
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Figures 2 and 3 show that Simpson’s integrator is more precise than both Newmark’s
and Runge–Kutta’s integrators on a short simulation (T = 1 t̄). However, Simpson’s
solutions correctly follow the exact ones for longer simulations on both the configuration
parameters and generalized momenta, as shown by Figure 4.

Newmark’s integrator precision can be increased by refining the step size. With
h = 0.01 t̄, the solutions improve, but still deviate from the exact solution after a couple of
periods. Simpson’s solutions correctly follow the exact solution for longer simulations.
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− π
12
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12
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Exact RK4 Newmark Simpson
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12
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q 2
(t
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(r
ad

)

Exact RK4 Newmark Simpson

Figure 3. Configuration parameters’, q, evolution for the linear double pendulum during ten periods.
Initial conditions are specified in Table 1. The step size is fixed as h = 0.1 t̄. Simpson’s solutions
correctly follow the exact solution for longer simulations.

6.2. Phase Portraits

With a step size of h = 0.1 t̄, Newmark’s solutions’ deviations are particularly visible
when tracing the motion phase portrait. Figure 5 shows the exact phase portraits topped
by both Newmark’s and Simpson’s solutions. Notice how Simpson’s phase portrait clearly
follows the exact one throughout the motion. The total simulation time was limited to
T = 3 t̄ for visualization purposes.
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Figure 4. Generalized momenta’s, p, evolution for the linear double pendulum during ten periods.
Initial conditions are specified in Table 1. The step size is fixed as h = 0.1 t̄. Simpson’s solutions
correctly follow the exact solution for longer simulations.
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Figure 5. Phase portraits’ evolution for the linear double pendulum. Initial conditions are specified
in Table 1. The step size is fixed as h = 0.1 t̄, and three periods are shown (T = 3t̄). Simpson’s phase
portrait clearly follows the exact one.

6.3. Energy Conservation

The following function gives the system energy:

H(p, q) =
1
2

pT M−1p +
1
2

qTKq.
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It has been previously observed (e.g., [19]) that Newmark’s integrator exactly preserves
the system energy. This is not the case for our proposed integrator based on Simpson’s
rule and is characteristic of most symplectic methods [19,32]. In the case of Simpson’s
scheme, the second equation of System (25) introduces the small and vanishing quantity
− h2

12 K
( qj+1−qj

h

)
into the discrete momentum equation. Consequently, one could assume

that the exact system energy may not be conserved, but a good energy behavior can be
expected, as outlined in [32].

Figure 6 shows that Simpson’s solutions lead to a non-conserved energy H(p, q).
Nevertheless, the maximum relative error with respect to the initial value is extremely
small even for h = 0.1 t̄, as the evaluated values are in the order of 10−3. Notice that the
energy error from Simpson’s solutions does not grow with time. Instead, it oscillates in a
bounded fashion. Note that the error drops by four orders of magnitude when dividing the
step size by ten (see Figure 6).
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Figure 6. As expected, the classical RK4 integrator does not preserve the system energy. Relative error
grows with simulation length. Newmark’s integrator exactly preserves the system energy. Simpson’s
integrator does not, but the relative error is extremely small. Notice that such an error does not grow
with time, but remains bounded. The relative error drops by four orders of magnitude when dividing
the step size by ten, showcasing the quality of the proposed integrator and its good energy behavior.

Proposition 7 shows that Simpson’s scheme preserves a quadratic form given by the
function φ(p, q) of Equation (42). Matrices ξs and ζs (where subscript s stands for Simpson)
are according to Proposition 7 as

ξs = (Xs + Ys)
−1 =

[
2
h

M +
h
3

KL−1
]−1

;

ζs =
(

Xs
−1 + Ys

−1
)−1

=

[(
2
h

M− h
6

K
)−1

+
3
h

(
KL−1 +

1
2

K
)−1

]−1

.

Figure 7 plots the absolute error on function φ(p, q) of Equation (42), by Simpson’s
scheme. The absolute error with respect to the initial value is minimal, in the order of 10−15,
and may come from accumulated rounding errors. Note that this absolute error magnitude
changes very little when refining the step size.
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Figure 7. Simpson’s scheme preserves the quadratic form φ(p, q) of Equation (42). The absolute
errors are minimal and may come from accumulated rounding errors.

6.4. Convergence

The error e(t) = q(t)− qex(t), and its convergence rate is measured following the
prescriptions found in [16]. The schemes’ precision was evaluated using an `∞ error norm
‖e‖∞ = ‖q−qex‖∞ = supn |qn−qexn |. Several simulations were performed for decreasing
values of h between h = 0.1 t̄ and h = 0.001 t̄. The ‖e‖∞ norm was calculated for each case.
These errors are plotted in Figure 8, on the logarithmic scale.

Convergence rates are expressed as the power of the step size. These rates correspond
to the slope of the error logarithm, as a function of the logarithm of h (see Figure 8).
These trials confirmed previous analyses on Newmark’s method [17,19]: it is second-order
convergent. Unsurprisingly, Runge–Kutta’s integrator is fourth-order convergent. The
results also confirm the analysis performed in [26] on the convergence rate of Simpson’s
scheme: it is fourth-order convergent. This rate is two degrees higher than the order of the
chosen quadratic interpolation. This is known as superconvergence and is closely related
to the mesh uniformity [16].
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p (RK4): 4.01 ln(h) + 4.95
q (RK4): 3.97 ln(h) + 6.14
p (Newmark): 1.97 ln(h) + 3.52
q (Newmark): 1.95 ln(h) + 2.00
p (Simpson): 3.98 ln(h) + 3.00
q (Simpson): 3.99 ln(h) + 1.86

Figure 8. Integrators’ convergence. The ‖e‖∞ norm was calculated for several simulations. Each
simulation used a fixed step size, which was decreased from h = 0.1 t̄ to h = 0.001 t̄. The convergence
order corresponds to the slope of the error norm logarithm regression line. Runge–Kutta’s classical
integrator convergence is in h4, as expected (fourth-order). Newmark’s integrator convergence is in
the order of h2 (second-order). Simpson’s integrator convergence is in the order of h4 (fourth-order).
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An important question is if convergence rates hold with growing simulation lengths T.
Table 2 shows the convergence order evolution of Newmark’s and Simpson’s schemes
with a growing simulation length, using a step size of h = 0.1 t̄. It can be observed
that Newmark’s scheme’s convergence order decays to zero for a 1000-period simulation.
RK4’s convergence rate also degrades as the simulation duration increases, although not
as much as Newmark’s method. Simpson’s scheme preserves its convergence order for
higher simulation periods. Error norms ‖e‖∞ are shown explicitly. Simpson’s scheme
loses precision according to one order of magnitude, each time the simulation length is
multiplied by ten. Table 2 exposes a normal numerical behavior of the analyzed schemes
since errors accumulate over long simulations.

Table 2. Convergence order with respect to simulation length for motion simulations performed for
a linearized double pendulum (see Figure 1). The initial conditions are specified in Table 1. Error
norms ‖e‖∞ for momenta p and states q increase with simulation length T. Newmark’s scheme’s
convergence decays to zero as T increases. RK4’s convergence rate also decays with an increasing
simulation length. Simpson’s scheme preserves its convergence rate for higher simulation durations.

‖e‖∞ Error Norm Values

Simulation
Length T Number of Meshes 10 20 40 Convergence

Order

1 t̄

Newmark p 0.0751 0.0230 0.006 06 1.81
RK4 p 0.0139 0.000 800 0.000 054 0 4.01

Simpson p 0.000 640 0.000 041 6 0.000 002 57 3.98

Newmark q 0.342 0.0961 0.0251 1.88
RK4 q 0.0483 0.003 40 0.000 200 3.91

Simpson q 0.002 01 0.000 141 0.000 008 76 3.92

10 t̄

Number of meshes 100 200 400

Newmark p 0.273 0.206 0.782 0.90
RK4 p 0.0822 0.009 90 0.0137 1.29

Simpson p 0.007 20 0.000 433 0.000 026 8 4.03

Newmark q 0.694 0.657 0.244 0.75
RK4 q 0.284 0.0329 0.0157 2.09

Simpson q 0.0235 0.001 41 0.000 090 6 4.01

100 t̄

Number of meshes 1000 2000 4000

Newmark p 0.521 0.492 0.223 0.61
RK4 p 0.108 0.0786 0.006 40 2.03

Simpson p 0.0705 0.004 39 0.000 272 4.01

Newmark q 1.02 0.964 0.665 0.31
RK4 q 0.328 0.2650 0.0216 1.96

Simpson q 0.237 0.0147 0.000 914 4.01

1000 t̄

Number of meshes 10,000 20,000 40,000

Newmark p 0.545 0.551 0.548 0.00
RK4 p 0.326 0.119 0.0595 1.23

Simpson p 0.190 0.0438 0.002 74 3.06

Newmark q 1.02 1.03 1.03 0.01
RK4 q 0.581 0.397 0.200 0.77

Simpson q 0.638 0.147 0.009 22 3.06

7. Concluding Remarks and Perspectives

In this contribution, Newmark’s method has been recalled. It is a widely used integra-
tor in certain fields of the engineering sciences, and it is symplectic. This method has been
used for benchmarking purposes in our work, where an alternative variational integrator
based on Simpson’s integration rule has been proposed.
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Simpson’s numerical scheme presented applies to the case of multiple-degrees of free-
dom systems with quadratic Lagrangians. It has been formulated linearly with partitioned
matrices. The method proves to be symplectic, as demonstrated with a proof that applies
to both Newmark’s and Simpson’s scheme. A sufficient stability condition on the step size
was given, and it was also proven that the proposed method preserves a certain quadratic
form at each time step. Simpson’s scheme is, therefore, conditionally stable.

Numerical trials on a linearized double pendulum have confirmed that the method is fourth-
order accurate on both the states and generalized momenta. Numerical evaluations revealed
that this convergence order is preserved for long simulations. The proposed method succeeds in
predicting the evolution of dynamical systems characterized by quadratic Lagrangians.

An important extension of this work is the treatment of non-linear multi-degrees of
freedom systems. In such a configuration, the middle value of the internal interpolation
cannot be eliminated. This generalization should enable more applications of the proposed
method, relating to Hamiltonian systems. Therefore, this is a natural objective for future
developments and is currently under study. An important question relates to noise presence
in matrices M and K. How would this affect the symplectic integrator? This question is
relevant in the context of non-linear dynamical systems. It shall be the object of future
developments as well.

A particular subject of interest relating to differential equations is the role of discrete
symmetries. The analysis of discrete symmetries has many applications for finding solu-
tions to differential equations. They can simplify a numerical scheme, as advocated in [34].
A description of finding discrete symmetries of differential equations has been given in [35].
A discrete symmetry analysis could lead to an improved symplectic integrator and is a
future direction for our work.

An improved nonlinear Simpson’s variational integrator could find its application in
simulating complex non-linear mechanisms. Some application examples could involve a
system of synchronized pendulums [36]; the discrete optimal control of robotic systems [37];
the modal analysis of dynamical systems [38]; the motion analysis of multibody systems
evolving in fluid environments [39]; or the motion prediction of sliding rods [24] and soft
robots [25].
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