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Abstract: A 10-field theory for second-grade viscoelastic fluids is developed in the framework of
Rational Extended Thermodynamics. The field variables are the density, the velocity, the temperature
and the stress tensor. The particular case of an adiabatic fluid is considered. The field equations are
determined by use of physical universal principles such as the Galileian and the Entropy Principles.
As already proved, Rational Extended Thermodynamics is able to eliminate some inconsistencies
with experiments that arise in Classical Thermodynamics. Moreover, the paper shows that, if the
quadratic terms are taken into account, the classical constitutive relations for a second-grade fluid
can be obtained as a limit case of the field equations of the present theory.
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1. Introduction

Rational Extended Thermodynamics (ET) [1–3] can describe processes where rapid
time changes or a strong deviation from equilibrium occur. In fact, it has been shown
that the field equations of ET can describe a range of various non-equilibrium phenomena
such as light shattering, sound waves, heat waves and structure of shock waves [1–3].
ET has been applied, with many interesting results, to monoatomic gases [1] and mix-
tures [2–4], showing in particular the possibility of describing the thermal-diffusion effect.
Recently, ET has been generalized to dense and rarefied polyatomic gases both in the
classical [2,3,5] and in the relativistic framework [6–8], with respect to metal electrons [9],
quantum systems [10], graphene [11], biological models [12–14], blood flow [15,16], heat
transfer in different symmetries [17] and gas bubbles [18,19], providing in all cases relevant
results. In the last 40 years, there were different attempts to describe viscoelastic fluids
using the methods of Extended Thermodynamics.

Viscoelastic fluids are well known in the literature. The basic descriptions for these
kind of fluids can be found in the classical papers and books [20–22], while the basis
of molecular theory of non-Newtonian fluids goes back to Bird [23,24]. In the litera-
ture, there are also some controversial discussions about the coefficients and the stability
criteria [25–27]. More recently, viscoelastic fluids have been described in different volumes
in continuum mechanics like [28,29] and there have been a lot of different applications to
different kind of flows with both analytical [30–34] and numerical solutions [35–37].

The first attempt to describe viscoelastic fluids within Rational Extended Thermody-
namics was made by Müller and Wilmansky [38] in 1986, and was later described in detail
in [28]; they constructed the first Extended Thermodynamic theory for viscoelastic materials
moving in parallel with those for ideal gasses. Later, IS-Liu [39] in 1989 and Vignatti and
Oliveira [40] in 2013 made another attempt to describe this kind of fluid using Rational
Extended Thermodynamic theory. They used the more complex Eulerian structure to
describe these materials. Also, Reitebuch in his dissertation [41], following the ideas in [42],
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tried to move closer to the molecular theory of non-Newtonian fluids. All these attempts
are discussed in detail in Chapter 16 of [1], showing the advances and the limitations of
these theories. In particular, there was still a problem with respect to recovering the classical
second-grade constitutive relations from the field equations of Extended Thermodynamics.
Fazio in her master’s thesis [43] studied second-grade adiabatic fluids from the Extended
Thermodynamic point of view and tried to solve a problem that arises in the description of
these fluids, as described in detail in [1] and later in the present paper. Therefore, here we
want to present a first attempt to recover the classical constitutive relations as a limit case
of Extended Thermodynamics.

In this paper, following [1], we derive a hyperbolic model for a non-Newtonian
adiabatic second-grade fluid. We consider as field variables not only the classical ones
(density, velocity and temperature) but also the stress tensor. The field equations are balance
laws, closed by local and instantaneous constitutive relations. Their generality is reduced
using physical universal laws like the Galileian and the Entropy Principles. The exploitation
of the Galileian Principle furnishes the explicit velocity dependence of the constitutive
relations, while the Entropy Principle implies some relations between the constitutive
quantities. The Entropy Principle is exploited by use of the Lagrange Multipliers [39] or
Main Fields [44].The calculations are carried out both in the linear and in the quadratic cases
and it was shown that the two principles are able to determine all constitutive functions
except for the thermal and caloric equations of state and two remaining arbitrary functions.
The obtained model is hyperbolic at least in the neighborhood of the equilibrium state.
Hyperbolicity guarantees finite speeds of propagation and hyperbolic models are better
suited to describing transient regimes.

Once the field equations are obtained, the reduction to the classical constitutive re-
lations using Maxwellian iteration is discussed. In the linear case, it was not possible
to obtain the classical law as a limit case while, in the presence of quadratic constitutive
relations, a possibility is shown.

The main aim of the present paper is to construct a hyperbolic set of field equations for
the description of a second-grade fluid that is compatible with the Galileian and Entropy
Principles in line with Rational Extended Thermodynamics. In addition, it was shown that,
contrary to the previous Rational Extended Thermodynamics field equations, the herein
obtained model is able to furnish the classical constitutive relations for second-grade fluids
via second Maxwellian iterations if quadratic constitutive equations in the stress tensor are
taken into account.

2. Classical Thermodynamics

In Classical Thermodynamics [45], the field variables are the density ρ(x, t), the veloc-
ity v(x, t) and the temperature T(x, t). They describe the state of the fluid in position x and
time t. The field equations for these variables are based on the conservation laws of mass,
momentum and energy that are expressed by the following set of balance equations

∂ρ

∂t
+

∂(ρvj)

∂xj
= 0,

∂(ρvi)

∂t
+

∂

∂xj
(ρvjvi − τij) = ρ fi,

∂(ρe)
∂t

+
∂

∂xj
(ρevj − τijvi + qj) = ρvi fi,

(1)

where τij represents the components of the stress tensor and e the specific total energy,
given by

ρe = ρϵ +
1
2

ρv2, (2)
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where ϵ is the specific internal energy, qi the components of heat flux and fi the components
of the specific body force. System (1) is not closed for the occurrence of ϵ, τij and qi that
must be expressed explicitly in terms of the field variables ρ, vi and T through the so-called
constitutive functions. In this paper, we consider an adiabatic second-grade viscoelastic
fluid, so qi vanishes while the stress tensor τ can be written as the sum

τij = −pδij + τ<ij>, (3)

where p is the hydrostatic pressure, δij are the components of the Kronecker symbol and
τ<ij> are the components of the traceless part of the stress tensor.

In second-grade fluids, the traceless part of the stress tensor depends on the temper-
ature, the gradient of the velocity Lij = ∂vi/∂xj and its derivative with respect to time
L̇ij = dLij/dt:

τ<ij> = τ̂<ij>(T, L, L̇). (4)

The functions τ̂<ij> are subject to the principle of the material frame indifference,
which implies [46] that the dependence on L and L̇ must take place through the first two
Rivlin–Ericksen tensors:

A(1) = L + LT ,

A(2) = Ȧ(1) + A(1)L + LTA(1)
(5)

in the form

S = µA(1) + α1

[
A(2) − trA(2)I

]
+ α2

[(
A(1)

)2
− tr

(
A(1))2I

]
, (6)

where we set for simplicity Sij = τ<ij>. The coefficient µ represents the viscosity, while α1
and α2 are the normal stress coefficients that depend on the temperature T. As discussed
in [1] (page 370), experiments show [47] that α1 < 0, while a stability thermodynamic
criterion implies a positive coefficient α1 in contradiction with the experimental evaluations.

A possible way to solve this problem was presented by Müller and Wilmanski in [38],
who introduced a differential equation for the stress tensor. In their attempt, they showed
that Extended Thermodynamics is able to furnish the correct sign of the first normal
coefficient. Then, Liu [39] introduced a new and more complex Extended Thermodynamic
theory for viscoelastic fluids. This was a more precise theory for these fluids, but not a
completely resolutive one [1].

In [1], it was shown that Extended Thermodynamics is able to recover the exact sign
of α1, but it fails when it wants to re-obtain the constitutive relations (6) as a particular case.
In this paper, a possible solution for this problem is presented.

3. Extended Thermodynamics

Extended Thermodynamics [1–3] considers as field variables not only the classical
ones like the density ρ, the velocity v and the temperature T, but also some non-equilibrium
variables. Here, since we deal with an adiabatic fluid, we add to the set of the classical
variables only the stress tensor. So we have the following set of 10 field variables: ρ, vk, T
and ρ<ij> = −τ<ij>.

Following the guidelines of Rational Extended Thermodynamics, we assume that
these 10 field variables must satisfy the following set of 10 field equations
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∂ρ

∂t
+

∂(ρvk)

∂xk
= 0,

∂(ρvi)

∂t
+

∂Fik
∂xk

= ρ fi,

∂(ρeij)

∂t
+

∂Fijk

∂xk
= P<ij> + ρ(vi f j + vj fi).

(7)

The first two equations represent the conservation law of mass and momentum. The
trace of the third equation recovers the conservation law of energy, with 2ell being the
total specific energy and 2Fill its flux. The traceless part of (7)3 is a new balance equation
introduced with the aim of expressing the balance law of the stress tensor.

In order to recover from (7) the full set of field equations, it is necessary to express all
quantities in them in terms of the 10 fields by constitutive relations. Here the unknown
quantities are Fik, eij, Fijk and P<ij>.

Extended Thermodynamics assumes that the constitutive relations for these variables
must be local and instantaneous, so at one point x and time t, they must depend only on
the quantities at x and t but not on their derivatives:

Fik = Fik(ρ, vi, T, ρ<ij>),

eij = eij(ρ, vi, T, ρ<ij>),

Fijk = Fijk(ρ, vi, T, ρ<ij>),

P<ij> = P<ij>(ρ, vi, T, ρ<ij>).

(8)

Once we know these functions, we can insert them into the balance Equation (7) in order
to obtain a closed set of field equations, whose solution is called “Thermodynamic Process”.

Clearly, relations (8) are not a priori known; for this reason, Rational Extended Ther-
modynamics reduces their generality by universal physical principles such as using the
Galileian and Entropy Principles.

4. Galileian Principle

The Galileian invariance principle requires that the field equations must hold in every
inertial frame, so they must be invariant under Galileian transformations. This requirement
furnishes (see [1] page 35 and [48]) the dependence of all variables in (8) on the velocity field:

Fij = pδik + ρ<ik> + ρvivj,

eij = ρϵij + ρvivj,

Fijk = ρijk + ρ<jk>vi + ρ<ki>vj + ρϵijvk + ρvivjvk,

P<ij> = p<ij>.

(9)

The quantities ρij, ϵij, ρijk and p<ij> do not depend on the velocity field, so they are
called internal quantities and they are related to the common thermodynamic variables. In
particular, in order to obtain from (7) and (9) the conservation laws of mass, momentum
and energy, the quantities ρij must coincide with the components of stress tensor, ρϵll must
be twice the internal energy and qk = 2ρkll must be the heat flux components.
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By substitution of relations (9) into the balance Equations (7), one has the balance
equations for the internal quantities that read

dρ

dt
+ ρ

∂vk
∂xk

= 0,

ρ
dvi
dt

+
∂p
∂xi

+
∂ρ<ik>

∂xk
= 0,

d(ρϵij)

dt
+ ρϵij

∂vk
∂xk

+
∂ρijk

∂xk
+ ρjk

∂vi
∂xk

+ ρki
∂vj

∂xk
= p<ij>,

(10)

where the derivative d/dt represents the material derivative defined as d/dt = ∂/∂t +
vk∂/∂xk. The trace of Equation (10)3 is the conservation law of energy:

d(ρϵll)

dt
+ ρϵll

∂vk
∂xk

+ 2
∂qk
∂xk

+ 2ρkl
∂vl
∂xk

= 0. (11)

Inspection of (10) reveals that in order to close the system of balance equations, one
has to express the quantities p, ϵij, ρijk and p<ij> in terms of the fields. The pressure p and
the internal energy ρϵll/2 = ρϵ must be evaluated by means of the thermal and caloric
equations of state, so it remains to evaluate the functions

ϵ<ij> = ϵ<ij>(ρ, T, ρ<ij>),

ρ<ijk> = ρ<ijk>(ρ, T, ρ<ij>),

p<ij> = p<ij>(ρ, T, ρ<ij>).

(12)

As will be shown in the next section, we limit their generality by use of the En-
tropy Principle.

5. Entropy Principle

The Entropy Principle assumes the existence of state variable h, called entropy density,
satisfying the balance equation

∂h
∂t

+
∂

∂xk
(hvk + ϕk) = Σ ≥ 0, (13)

for all solutions of the field equations. The quantities ϕk and Σ represent, respectively, the
components of the entropy flux and the entropy production, that must also be determined
in terms of the fields.

Following again the guidelines of Rational Extended Thermodynamics, we consider
the field equations as constraints that the fields must satisfy. We take into consideration
these constraints introducing the Lagrange Multipliers [49] or Main Fields [44], i.e.,

Λ, Λi, Λϵ, Λ<ij>. (14)

So, the Entropy Inequality becomes
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dh
dt

+ h
∂vk
∂xk

+
∂ϕk
∂xk

− Λ
[dρ

dt
+ ρ

∂vk
∂xk

]
+

− Λi
[d(ρvi)

dt
+ ρvi

∂vk
∂xk

+
∂p
∂xi

+
∂ρ<ik>

∂xk
− ρ fi

]
+

− Λϵ
[d(ρϵll)

dt
+ ρϵll

∂vk
∂xk

+ 2ρ<kl>
∂vl
∂xk

+ 2p
∂vs

∂xs

]
+

− Λ<ij>
[d(ρϵ<ij>)

dt
+ ρϵ<ij>

∂vk
∂xk

+
∂ρ<ij>k

∂xk
+

+ 2ρ<k<i>
∂vj>

∂xk
+ 2p

∂v<i
∂xj>

− P<ij>

]
= Σ ≥ 0

(15)

which must be valid for all variables ρ, ρ<ij> and T and not only for the solutions of the
field Equation (10).

In order to exploit the Entropy Inequality (15), in this paper we assume that the
constitutive relations must be at least of second order in the non-equilibrium variables.
In [1] (page 374), the authors assumed only linear terms in the non-equilibrium field ρ<ij>.
In order to show more explicitly the evaluation of the Entropy Principle, we show it before
(next section) the study of the linear terms and after the second-order ones.

6. Linear Constitutive Relations

Since it is very complicated to recover the general form of the constitutive relations (12)
from the Entropy Inequality (15), we firstly limit our attention to linear constitutive func-
tions, assuming

ρϵ<ij> = β1(ρ, T)ρ<ij>,

ρ<ijk> = 0,

P<ij> = P1(ρ, T)ρ<ij>.

(16)

In order to be coherent with the orders of all terms in the Entropy Inequality, we must
consider some quadratic terms in the entropy quantities and in the Lagrange Multipli-
ers, i.e.,

h = h0(ρ, T) + h1(ρ, T)ρ<ij>ρ<ij>,

ϕi = 0,

Λi = 0,

Λ = Λ0(ρ, T) + Λ1(ρ, T)ρ<ij>ρ<ij>,

Λϵ = Λϵ
0(ρ, T) + Λϵ

1(ρ, T)ρ<ij>ρ<ij>,

Λ<ij> = H0(ρ, T)ρ<ij> + H1(ρ, T)ρ<k<i>ρ<j>k>.

(17)

By substituting the constitutive relations (16) and (17) and equating the coefficients
of the derivatives of all fields, it is possible to recover ten equations for the determination
of the coefficients in (16) and (17). In particular, we have the following four differential
equations with γ0 = 2ρϵ
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∂h0

∂ρ
= Λ0 + Λϵ

0
∂γ0

∂ρ
,

∂h0

∂T
= Λϵ

0
∂γ0

∂T
,

∂h1

∂ρ
= Λ1 + Λϵ

1
∂γ0

∂ρ
+ H0

∂β1

∂ρ
,

∂h1

∂T
= Λϵ

1
∂γ0

∂T
+ H0

∂β1

∂T
,

(18)

the five algebric equations

2h1 = H0β1,

h0 = Λ0ρ + Λϵ
0γ0 + 2Λϵ

0 p,

h1 = Λ1ρ + Λϵ
1γ0 + 2Λϵ

1 p + H0β1 −
2
3

H1 p,

H0 + pH1 = 0,

Λϵ
0 + pH0 = 0

(19)

and the residual inequality
Σ = P1H0ρ<ij>ρ<ij> ≥ 0. (20)

From Equations (18)1,2, one has

dh0 =
(

Λ0 + Λϵ
0

∂γ0

∂ρ

)
dρ + Λϵ

0
∂γ0

∂T
dT, (21)

which, compared with the well-known Gibbs equation of Classical Thermodynamics [46],
implies the equilibrium values of the Lagrange Multipliers Λϵ

0 and Λ0:

Λϵ
0 =

1
2T

, Λ0 = − g
T

, (22)

where g represents the chemical potential. From (19)4,5, it is possible to obtain

H0 = − 1
2pT

, H1 =
1

2p2T
, (23)

while from (19)1,3 it follows that

β1 +
4
3
= 4pT

[
ρΛ1 + 2Λϵ

1(ρϵ + p)
]

(24)

which can be used in order to evaluate Λϵ
1.

Finally, from the remaining equations, the expressions
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Λ1 =
1
2

β1
∂H0

∂ρ
− 1

2
H0

∂β1

∂ρ
− Λϵ

1
∂γ0

∂ρ
,

β1
∂H0

∂T
− H0

∂β1

∂T
− 2Λϵ

1
∂γ0

∂T
= 0

h1 = − 1
4pT

β1

(25)

can be determined together with the inequality

P1 ≤ 0. (26)

When the thermal and caloric equations of state are determined, relation (25)3 can
be used in order to evaluate β1 via integration except for an arbitrary function. Then,
ignoring the terms of order higher than one in the fluxes and using the constitutive relations
determined in this section, it is possible to obtain from (10)3 the balance equation for the
stress tensor of the form:

d(β1ρ<ij>)

dt
+ β1ρ<ij>

∂vk
∂xk

+ 2ρ<k<i>
∂vj>

∂xk
+ 2p

∂v<i
∂xj>

= −|P1|ρ<ij> (27)

System (10)1,2, (11) and (27) represents the system of 10 partial differential equations
for the determination of the 10 fields ρ, vk, T, ρ<ij>. The system is completely explicit in
terms of the fields except for the thermal and caloric equations of state and the arbitrary
function in β1, which was impossible to determine using the physical principles.

Equation (27) represents a generalization of the Navier–Stokes law for non-Newtonian
fluids since it relates the stress tensor in terms of the gradient of the velocity field.

For a better comparison with the classical case, (27) is written in the equivalent form

d(β1ρ<ij>)

dt
+ β1ρ<ij>

∂vk
∂xk

+ 2β1ρ<k<i>
∂vk

∂xj>
+ 2β1ρ<k<j>

∂vk
∂xi>

− 2
(

β1 −
1
2

)
ρ<k<i>

(
∂vj>

∂xk

)s

− 2
(

β1 −
1
2

)
ρ<k<j>

(
∂vi>
∂xk

)s

− 2
(

β1 +
1
2

)
ρ<k<i>

(
∂vj>

∂xk

)a

− 2
(

β1 +
1
2

)
ρ<k<j>

(
∂vi>
∂xk

)a

+ 2p
∂v<i
∂xj>

= −|P1|ρ<ij>.

(28)

The terms with the symbol s refer to symmetric parts, while those with a refer to
antisymmetric ones.

In the next section, we will try to recover from this last balance equation the assump-
tion (6) via the so-called Maxwellian iterations.

7. Maxwellian Iterations

As already said, Rational Extended Thermodynamics introduces balance equations
like (28) for the additional non-equilibrium field variables, instead of assuming constitutive
relations like (6). A possible way to re-obtain from (28) the classical constitutive relations (6)
is using a method known as Maxwellian iterations, since Maxwell used it to solve a similar
problem in kinetic theory of gases [50].
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In the first iteration, one substitutes the equilibrium values in the left-hand side of the
balance equations, obtaining in this case under investigation

2p
∂v<i
∂xj>

= −|P1|ρ<ij>. (29)

This is the classical Navier–Stokes law, which assumes the traceless part of the stress
tensor proportional to the gradient of the velocity field. The coefficient of proportionality

µ =
p

|P1|
(30)

is the viscosity. In Rational Extended Thermodynamics, relations like (30) are often used to
evaluate the viscosity coefficient if the production terms are known. For example, in gases
or mixtures the kinetic theory is able to evaluate the production terms for particular kinds
of molecules and from (30) it is possible to recover explicit expressions for the viscosity.
Sometimes, relations like (30) are used to evaluate the production terms if the viscosity
is known.

In non-Newtonian fluids, (6) represents the generalization of the Navier–Stokes
law (29) already in the classical case. Therefore, the second iteration must be performed.
So, we substitute the first iteration (29) in the left-hand side of Equations (28) and neglect
the terms with ∂vk/∂xk since the classical case refers to incompressible fluids. In this way,
it is possible to obtain an explicit expression for the stress tensor in terms of the products of
the gradients of the velocity fields that are comparable with the classical relation (6). The
terms coincide except for the terms that contain the antisymmetric parts of the gradient of
the velocity, which cannot be present in (6). In principle, coefficient β1 is not already fully
determined but it cannot be chosen in such a way to eliminate these antisymmetric parts,
since β1 must be positive. So the antisymmetric part cannot be removed. This problem
was already shown in [1] and in this paper we propose to solve it by taking into account
the quadratic terms in the constitutive relations (12) instead of limiting the analysis to the
linear terms (16).

8. Quadratic Constitutive Relations

We assume quadratic terms in the constitutive relations, so instead of (16), we have

ρϵ<ij> = β1(ρ, T)ρ<ij> + β2(ρ, T)ρ<k<iρ<j>k>,

ρ<ijk> = 0,

P<ij> = P1(ρ, T)ρ<ij> + P2(ρ, T)ρ<k<iρ<j>k>

(31)

and, in order to be coherent in the Entropy Inequality, we must consider the entropic
variables until third-order terms in the non-equilibrium variable ρ<ij>, that is

h = h0(ρ, T) + h1(ρ, T)ρ<ij>ρ<ij> + h2(ρ, T)ρ<ij>ρ<jk>ρ<ki> (32)

while, for the assumption of vanishing heat flux, ϕi = 0 and Λi = 0 still hold and the
Lagrange Multipliers assume the form

Λ = Λ0(ρ, T) + Λ1(ρ, T)ρ<ij>ρ<ij> + Λ2(ρ, T)ρ<ij>ρ<jk>ρ<ki>,

Λϵ = Λϵ
0(ρ, T) + Λϵ

1(ρ, T)ρ<ij>ρ<ij> + Λϵ
2(ρ, T)ρ<ij>ρ<jk>ρ<ki>,

Λ<ij> = H0(ρ, T)ρ<ij> + H1(ρ, T)ρ<k<i>ρ<j>k>+

+ H2(ρ, T)ρ<lv>ρ<l<i>ρ<j>v> + H3(ρ, T)ρ<ls>ρ<ls>ρ<ij>.

(33)



Axioms 2024, 13, 265 10 of 13

All relations (31)–(33) must be inserted in the Entropy Inequality (15) in order to
recover the coefficients in (31)–(33). Equating the coefficients of the derivatives of all fields,
it is possible to recover 16 equations. The first ten coincide with (18)–(20); the remaining
ones are the two differential relations for the coefficients in the entropic quantities

∂h2

∂ρ
= Λ2 + Λϵ

2
∂γ0

∂ρ
+ H0

∂β2

∂ρ
+ H1

∂β1

∂ρ
,

∂h2

∂T
= Λϵ

2
∂γ0

∂T
+ H0

∂β2

∂T
+ H1

∂β1

∂T
,

(34)

together with the four algebraic relations

3h2 = 2H0β2 + H1β1,

h2 = Λ2ρ + Λϵ
2γ0 + 2Λϵ

2 p + H0β2 + H1β1 −
2
3

pH2,

2Λϵ
1 −

2
3

H1 + 2pH3 = 0,

2pH2 + 2H1 = 0.

(35)

Therefore, it is possible to obtain again the functions obtained in the previous section
together with the two following ones

H2 = − 1
2p3T

, H3 = −
Λϵ

1
p

+
1

6p2T
, (36)

the relations

h2 = − β2

3pT
+

β1

6p2T
,

β2 − 2
β1

p
− 4

3
1
p
= 6pT

[
ρΛ2 + 2(ρe + p)Λϵ

2

]
,

1
3

β1
∂H1

∂T
− 2

3
H1

∂β1

∂T
− 1

3
H0

∂β2

∂T
+

1
3

β2
∂H0

∂T
− Λϵ

2
∂γ0

∂T
= 0

(37)

and the expression for Λ2 that for simplicity we do not write here. From (37)2, it is possible
to obtain Λϵ

2 and, by integration of (37)3, one has β2 in terms of an arbitrary integration
function. In this way, all coefficients (31)–(33) are known except for the equations of state
and the two arbitrary integration functions in β1 and β2.

Taking into account all these functions and neglecting all terms of order higher than 2
in the non-equilibrium variable ρ<ij>, Equation (10)3 becomes

d
dt

(
β1ρ<ij> + β2ρ<k<i>ρ<j>k>

)
+

(
β1ρ<ij> + β2ρ<k<i>ρ<j>k>

) ∂vk
∂xk

+ 2p
∂v<i
∂xj>

+ 2ρ<k<i>
∂vj>

∂xk
= −|P1|ρ<ij> + P2ρ<k<i>ρ<j>k>.

(38)

As it is easy to see, the first iteration coincides with (29). Then, in order to evaluate
the second iteration and compare it easily with the Classical Equation (6), we write (38)
in a different form, neglecting for simplicity the terms with ∂vk/∂xk that vanish in the
classical case,
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d(β1ρ<ij>)

dt
+ 2β1ρ<k<i>

∂vk
∂xj>

+ 2β1ρ<k<j>
∂vk

∂xi>
+

− 2
(

β1 −
1
2

)
ρ<k<i>

(
∂vj>

∂xk

)s

− 2
(

β1 −
1
2

)
ρ<k<j>

(
∂vi>
∂xk

)s
+

− 2
(

β1 +
1
2

)
ρ<k<i>

(
∂vj>

∂xk

)a

− 2
(

β1 +
1
2

)
ρ<k<j>

(
∂vi>
∂xk

)a
+

+
1
2

dβ2

dt
ρ<k<i>

(
∂vj>

∂xk

)s

+
1
2

dβ2

dt
ρ<j<k>

(
∂vi>
∂xk

)s
+

+
1
2

dβ2

dt
ρ<k<i>

(
∂vj>

∂xk

)a

+
1
2

dβ2

dt
ρ<j<k>

(
∂vi>
∂xk

)a
+

+ 2p
∂v<i
∂xj>

= P1ρ<ij> + P2ρ<k<i>ρ<j>k>.

(39)

Furthermore, in order to better show the results, in the fourth and fifth lines the
stress tensor components ρ<jk> and ρ<ik> are already evaluated in terms of the velocity
derivative using the first Maxwellian iteration. Moreover, the derivatives of the stress
tensor components are neglected since they are terms of higher order when compared
with second-grade fluid. As can be easily seen, this last equation contains, in addition
to the terms in (28), the terms with the derivatives of β2. These additional terms can
eliminate the antisymmetric parts of the velocity derivatives: since Equation (6) is valid for
an incompressible fluid, we must suppose

dβ2

dt
=

∂β2

∂T
dT
dt

, (40)

so we can use the function β2 in order to satisfy the relation

1
2

∂β2

∂T
dT
dt

= 2β1 + 1 (41)

and this choice eliminates the antisymmetric parts of the velocity derivatives. It is clear
that, in order to satisfy relation (41), the temperature must change during the time. This is
allowed also if the heat flux vanishes, as in the case of the present paper.

Therefore, inserting the first iteration (29) into the left-hand side of Equation (39), and
assuming (41), we obtain the second iteration that has the same form as (6).

9. Conclusions and Final Remarks

In the paper, a model for a second-grade fluid is introduced in the context of Rational
Extended Thermodynamics. The field equations are based on the conservation law of
mass, momentum and energy and a balance equation for the stress tensor. The constitutive
relations are determined via universal physical principles, like the Galileian and Entropy
Principles. Firstly, linear constitutive relations are determined like in [1]. In this case, it
was shown that, applying Maxwellian iterations, it is not possible to obtain the classical
equations appropriate to a second-grade fluid (6) as a limiting case. Constitutive relations
that are quadratic in the stress tensor can instead recover the classical relation (6).

An interesting further study could be the investigation of solutions for different
kinds of flow for second-order fluids described by the obtained field equations and the
comparison with the analogue classical results like the ones obtained [30–34].

It could be interesting to investigate the more general case of a heat conduction fluid
in order to study the effect of heat conduction in the field equations. This study is already
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under investigation, although it is more complex. Furthermore, third-grade fluid could
also be an interesting subject for investigation. Probably in this case, the effect of the third
Maxwellian iteration must be carried out. Surely, the third-order constitutive relations must
be taken into account and the formula must become more complex.
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