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Abstract: The authors investigate Langevin boundary value problems containing a variable order
Caputo fractional derivative. After presenting the background for the study, the authors provide
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1. Introduction

Fractional calculus is an intriguing facet of mathematical analysis that has garnered
increasing attention across various scientific disciplines by extending differentiation and
integration concepts to non-integer orders. While the usual calculus focuses on integer-
order derivatives and integrals, fractional calculus expands these operations to include
non-integer and even variable orders. This results in a more detailed and flexible descrip-
tion of physical processes that are especially useful in domains like physics, engineering,
and biology (see [1–4]). Variable order fractional calculus is a key advancement in this dis-
cipline by offering the new concept that the order of differentiation or integration might be
a variable rather than a fixed value. This breakthrough provides a strong tool for modeling
complicated systems with various degrees of memory and non-local effects that results in a
more realistic depiction of real-world processes and makes it a useful and adaptable tool
(see [5–9] and the references therein).

Brownian motion is the random motion of particles suspended in a fluid (liquid or gas)
resulting from their collision with fast molecules in the considered fluid. This phenomenon
is named after the Scottish botanist Robert Brown, who first observed it in 1827 while
studying pollen particles suspended in water [10]. However, the mathematical explanation
and formalization of Brownian motion came later, through the work of Albert Einstein and
the French mathematician Louis Bachelier. The particles’ motion is characterized by random
and erratic changes in direction and speed, therefore playing a crucial role in modeling
various phenomena by simplifying the dynamics of real systems and providing a useful
framework for understanding the behavior of particles in a fluctuating environment. It is
widely used in various fields that involve random fluctuations such as physics, chemistry,
biology, and finance.

In the context of physics, processes are often described mathematically using the
Langevin equation, which is a stochastic differential equation that describes the motion
of a particle undergoing Brownian motion under the influence of a random force. It is
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commonly used in the study of statistical mechanics and is named after the French physicist
Paul Langevin [11], who, in 1908, developed the traditional version of this equation in
terms of ordinary derivatives of the form

m
d2

dt2 ϑ = λ
d
dt

ϑ + η(t) = 0,

where m is the mass of the particle, λ is the friction coefficient, and η(t) is a random force.
However, in complex media, this model did not seem to give an accurate representa-

tion of the dynamics of the system. In 1966, Kubo [12] proposed the extended Langevin
equation in which a frictional memory kernel was included in the Langevin equation to
represent the fractal and memory features. Mainardi et al. [13,14] developed the fractional
Langevin equation in the 1990s. This yielded many interesting results regarding the ex-
istence, uniqueness, and stability of solutions of fractional order Langevin equations; for
more details, see [15–17] and the references therein.

In [18], Abbas et al. discussed the solvability of the following Langevin equation with
two Hadamard fractional derivatives

HDα
1,t

(
HDβ

1,t − λ
)

ϑ(t) = H(t, ϑ(t)), t ∈ [1, e],(
HDβ

1,t − λ
)

ϑ(e) = 0, H I1−β
1+ ϑ(1) = c0,

where c0 ∈ R, λ > 0, HDα
1,t, and HDβ

1,t denote Hadamard fractional derivatives of orders
α and β (0 < α, β ≤ 1), respectively, H I1−α

1+ denotes the left hand Hadamard fractional
integral of order 1 − α, and H : [1, e] × R → R is a given continuous function. The
approach they used involved the analysis of a Volterra integral equation and properties of
the Mittag-Leffler function.

Recently, Hilal et al. [19] investigated the existence and uniqueness of solutions
to the following boundary value problem for the Langevin equation with the Hilfer
fractional derivative{

HDα1,γ1
(HDα2,γ2 − λ

)
ϑ(t) = H(t, ϑ(t)), a ≤ t ≤ b,

ϑ(a) = 0, ϑ(b) = ∑n
i=1 µi(Ivi (ϑ))(η), a < η < b,

where HDαi ,γi , i = 1, 2, are Hilfer fractional derivatives of order 0 < αi < 1 and parameters
0 ≤ γi ≤ 1, λ ∈ R, a ≥ 0, Ivi is the Riemann–Liouville fractional integral of order vi > 0,
µi ∈ R, and H : [a, b]×R → R is a continuous function.

As far as we know, there are no contributions in the literature on the solutions of
fractional Langevin equations of variable order.

In this paper, we investigate the Langevin boundary value problem involving variable
order Caputo fractional derivatives{

CDα(t)
0+

(
CDβ(t)

0+ − λ
)

ϑ(t) = H(t, ϑ(t)), t ∈ [0, T],

ϑ(0) = ϑ(T) = 0.
(1)

Here, 0 < α(t), β(t) < 1, λ ∈ R+, H : [0, T] × R → R is a continuous function,
and CDα(t)

0+ and CDβ(t)
0+ are Caputo fractional derivatives of variable orders α(t) and β(t),

respectively, for the function ϑ. These are formally defined by (see [5])

CDα(t)
0+ ϑ(t) =

1
Γ(1 − α(t))

∫ t

0
(t − s)−α(t)ϑ′(s)ds, t > 0,

CDβ(t)
0+ ϑ(t) =

1
Γ(1 − β(t))

∫ t

0
(t − s)−β(t)ϑ′(s)ds, t > 0,
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The Riemann–Liouville integrals of ϑ of variable orders α(t) and β(t), respectively, are
given by (see, for example, [8])

Iα(t)
0+ ϑ(t) =

1
Γ(α(t))

∫ t

0
(t − s)α(t)−1ϑ(s)ds, t > 0,

Iβ(t)
0+ ϑ(t) =

1
Γ(β(t))

∫ t

0
(t − s)β(t)−1ϑ(s)ds, t > 0.

This paper is organized as follows. In Section 2, we present some definitions and
necessary lemmas associated with variable order fractional Langevin boundary value
problems. In Section 3, we establish the existence and uniqueness of solutions for the
problem (1). In the last section, we present an example to illustrate the results we obtained.

2. Preliminaries

In this section, we introduce some fundamental concepts that will be needed for
obtaining our results.

Let [0, T], T > 0, be a subset of R. By C([0, T],R), we mean the Banach space of
continuous functions ϑ : [0, T] → R with the usual supremum norm

||ϑ(t)||∞ = sup{|ϑ(t)|, t ∈ [0, T]},

and we let L1([0, T],R) be the Banach space of measurable functions ϑ : [0, T] → R that are
Lebesgue integrable, equipped with the norm

||ϑ||L1 =
∫ T

0
|ϑ(s)| ds.

Definition 1 ([20]). Let S be a subset of R.

(i) S is called a generalized interval if it is either a standard interval, a point, or ∅.
(ii) If S is a generalized interval, then the finite set P consisting of generalized intervals contained

in S is called a partition of S provided that every x ∈ S lies in exactly one of the generalized
intervals in the finite set P .

(iii) We say that the function ψ : t 7→ R is piece-wise constant with respect to the partition P of S,
i.e., for any I ∈ P , ψ is constant on I.

In what follows, [α] denotes the greatest integer function of α.

Lemma 1 ([1]). Let α, β > 0, 0 < a < b, ϑ ∈ L1(a, b), and CDα
a+ϑ ∈ L1(a, b). Then, the unique

solution of the equation
CDα

a+ϑ(t) = 0,

is given by
ϑ(t) = ϱ0 + ϱ1(t − a) + ϱ2(t − a)2 + · · ·+ ϱi−1(t − a)i−1,

where i = [α] + 1 and ϱk ∈ R, k = 0, 1, . . . , i − 1. Moreover,

Iϖ1
a+

CDα
a+ϑ(t) = ϑ(t) + ϱ0 + ϱ1(t − a) + ϱ2(t − a)2 + · · ·+ ϱi−1(t − a)i−1,

CDα
a+ Iα

a+ϑ(t) = ϑ(t),

and
Iα
a+ Iβ

a+ϑ(t) = Iβ
a+ Iα

a+ϑ(t) = Iα+β
a+ ϑ(t).

The following result is known as Schauder’s fixed point theorem.
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Theorem 1 (([1] [Theorem 1.7]) [21]). Let E be a Banach space, B be a nonempty bounded convex
and closed subset of E, and G : B → B be a compact and continuous map. Then, G has at least one
fixed point in B.

3. Existence of Solutions

Based on the previous discussion, in this section, we present our main results.
Let P = {[0, T1], (T1, T2], (T2, T3], . . . , (Tn−1, T]} be a partition of the finite interval

[0, T], and let α : [0, T] → (0, 1], and β : [0, T] → (0, 1] be two piecewise constant functions
with respect to P given by

α(t) =
n

∑
i=1

αiIi(t) =


α1, t ∈ [0, T1],
α2, t ∈ (T1, T2],
...
αn, t ∈ (Tn−1, T],

β(t) =
n

∑
i=1

βiIi(t) =


β1, t ∈ [0, T1],
β2, t ∈ (T1, T2],
...
βn, t ∈ (Tn−1, T],

where 0 < αi, βi < 1, i ∈ {1, 2, . . . , n}, are constants, and Ii is the characteristic function for
the interval (Ti−1, Ti] for each i ∈ {1, 2, . . . , n}, i.e.,

Ii(t) =

{
1, t ∈ Ji,
0, elsewhere.

Hence, we obtain

CDα(t)
0+

(
CDβ(t)

0+ − λ
)

ϑ(t)

=
∫ t

0

(t − s)−∑n
i=1 αiIi(t)

Γ(1 − ∑n
i=1 αiIi(t))

d
ds

(∫ s

0

(s − w)−∑n
i=1 βiIi(s)

Γ(1 − ∑n
i=1 βiIi(s))

ϑ′(w)dw − λϑ(s)

)
ds.

The equation in the problem (1) can then be written as

∫ t

0

(t − s)−∑n
i=1 αiIi(t)

Γ(1 − ∑n
i=1 αiIi(t))

d
ds

(∫ s

0

(s − w)−∑n
i=1 βiIi(s)

Γ(1 − ∑n
i=1 βiIi(s))

ϑ′(w)dw − λϑ(s)

)
ds = H(t, ϑ(t))

for 0 ≤ t ≤ T < +∞. We denote by Ei = C([Ti−1, Ti],R), the class of functions that form a
Banach space with the norm

||ϑ||Ei = sup
t∈[Ti−1,Ti ]

|ϑ(t)|, i ∈ {1, 2, . . . , n}.

Let the functions ϑ̂i ∈ Ei be such that ϑ̂i(t) = 0 for all t ∈ [0, Ti−1] and all i ∈ {2, . . . , n}.
Therefore, in the interval [0, T1], we have

CDα1
0+

(
CDβ1

0+ − λ
)

ϑ̂(t) =
∫ t

0

(t − s)−α1

Γ(1 − α1)

d
ds

(∫ s

0

(s − w)−β1

Γ(1 − β1)
ϑ̂′(w)dw − λϑ̂(s)

)
ds = H(t, ϑ̂(t)). (2)

Again, in the interval (T1, T2],

CDα2
T+

1

(
CDβ2

T+
1
− λ

)
ϑ̂(t) =

∫ t

T1

(t − s)−α2

Γ(1 − α2)

d
ds

(∫ s

T1

(s − w)−β2

Γ(1 − β2)
ϑ̂′(w)dw − λϑ̂(s)

)
ds = H(t, ϑ̂(t)). (3)

Similarly, in (Ti−1, Ti],

CDαi
T+

i−1

(
CDβi

T+
i−1

− λ

)
ϑ̂(t) =

∫ t

Ti−1

(t − s)−αi

Γ(1 − αi)

d
ds

(∫ s

Ti−1

(s − w)−βi

Γ(1 − βi)
ϑ̂′(w)dw − λϑ̂(s)

)
ds

= H(t, ϑ̂(t)). (4)
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Thus, for each i ∈ {1, 2, . . . , n}, we consider the auxiliary constant order boundary
value problem CDαi

T+
i−1

(
CDβi

T+
i−1

− λ

)
ϑ̂(t) = H(t, ϑ̂(t)), Ti−1 < t ≤ Ti,

ϑ̂(Ti−1) = ϑ̂(Ti) = 0.
(5)

Next, we define what we mean by a solution of (1).

Definition 2. We say that the problem (1) has a solution ϑ ∈ C([0, T],R), if there exist functions ϑi,
such that: ϑ1 ∈ E1 satisfies Equation (2) with ϑ1(0) = ϑ1(T1) = 0; ϑ2 ∈ E2 satisfies Equation (3) with
ϑ2(T1) = ϑ2(T2) = 0; ϑi ∈ Ei satisfies Equation (4) with ϑi(Ti−1) = ϑi(Ti) = 0 for i ∈ {3, . . . , n}.

Remark 1. We say that problem (1) has a unique solution in C([0, T],R) if the functions ϑ̂i are unique for
each i ∈ {1, 2, . . . , n}.

Based on the previous discussion, we have the following results.

Lemma 2. Let i ∈ {1, . . . , n}. Then, the function ϑ̂ is a solution of (5) if and only if ϑ̂ is a solution of the
integral equation

ϑ̂(t) = −
(

λIβi

T+
i−1

ϑ̂(t)− Iαi+βi

T+
i−1

H(t, ϑ̂(t))
)∣∣∣∣

t=Ti

(
t − Ti−1
Ti − Ti−1

)βi

+
λ

Γ(βi)

∫ t

Ti−1

(t − s)βi−1ϑ̂(s)ds

+
1

Γ(αi + βi)

∫ t

Ti−1

(t − s)αi+βi−1H(s, ϑ̂(s))ds, (6)

for t ∈ (Ti−1, Ti] for each i ∈ {1, 2, . . . , n}.

Proof. Assume that ϑ̂ satisfies (5). We transform (5) into an equivalent integral equation as follows.
Let ti−1 < t ≤ ti; then, Lemma 1 implies(

CDβi

T+
i−1

− λ

)
ϑ̂(t) = Iαi

T+
i−1

H(t, ϑ̂(t)) + ϱ1,

so
ϑ̂(t) = λIβi

T+
i−1

ϑ(t) + Iαi+βi

T+
i−1

H(t, ϑ̂(t)) +
ϱ1

Γ(βi + 1)
(t − Ti−1)

βi + ϱ2.

Using the boundary conditions ϑ̂(Ti) = ϑ̂(Ti−1) = 0, we obtain
ϱ2 = 0

ϱ1 = − Γ(βi + 1)
(Ti − Ti−1)

βi

(
λIβi

T+
i−1

ϑ̂(t) + Iαi+βi

T+
i−1

H(t, ϑ̂(t))
)∣∣∣∣

t=Ti

.

Therefore, the solution of the auxiliary boundary value problem (5) is given by

ϑ̂(t) = −
(

λIβi

T+
i−1

ϑ̂(t) + Iαi+βi

T+
i−1

H(t, ϑ̂(t))
)∣∣∣∣

t=Ti

(
t − Ti−1
Ti − Ti−1

)βi

+
λ

Γ(βi)

∫ t

Ti−1

(t − s)βi−1ϑ̂(s)ds

+
1

Γ(αi + βi)

∫ t

Ti−1

(t − s)αi+βi−1H(s, ϑ̂(s))ds. (7)

A straightforward calculation shows that if ϑ̂ is given by (6), then it is a solution of (5) for each
i ∈ {1, 2, . . . , n}.

Before presenting our main results, we first state the following hypotheses that will be needed:

Hypothesis 1. Let H : [0, T] × R → R be a continuous function and assume that there exist positive
constants L1 and L2 such that

|H(t, x)| ≤ L1|x|+ L2

for all (t, x) ∈ [0, T]×R.
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Hypothesis 2. The parameter λ satisfies

λ

Γ(βi + 1)
(Ti − Ti−1)

βi +
L1

Γ(αi + βi + 1)
(Ti − Ti−1)

αi+βi <
1
2

.

Theorem 2. Assume that (H1) and (H2) hold. Then, the boundary value problem (1) has at least one solution
in C([0, T],R).

Proof. Consider the mapping G : Ei → Ei given by

(G ϑ̂)(t) = −
(

λIβi

T+
i−1

ϑ̂(t) + Iαi+βi

T+
i−1

H(t, ϑ̂(t))
)∣∣∣∣

t=Ti

(
t − Ti−1
Ti − Ti−1

)βi

+
λ

Γ(βi)

∫ t

Ti−1

(t − s)βi−1ϑ̂(s)ds

+
1

Γ(αi + βi)

∫ t

Ti−1

(t − s)αi+βi−1H(s, ϑ̂(s))ds.

Let the ball BRi =
{

ϑ ∈ Ei : ||ϑ||Ei ≤ Ri
}

be a non-empty, closed, bounded, convex subset of
Ei, where

Ri ≥

2L2
Γ(αi + βi + 1)

(ti − ti−1)
αi+βi

1 −
(

2λ

Γ(βi + 1)
(Ti − Ti−1)

βi +
2L1

Γ(αi + βi + 1)
(Ti − Ti−1)

αi+βi

) .

The proof will be given through several steps.
Step 1: For each i ∈ {1, 2, . . . , n}, G(BRi ) ⊂ BRi . We have

|(G ϑ̂)(t)| =
∣∣∣∣∣−
(

λIβi

T+
i−1

ϑ̂(t) + Iαi+βi

T+
i−1

H(t, ϑ̂(t))
)∣∣∣∣

t=Ti

(
t − Ti−1
Ti − Ti−1

)βi

+
λ

Γ(βi)

∫ t

Ti−1

(t − s)βi−1ϑ̂(s)ds

+
1

Γ(αi + βi)

∫ t

Ti−1

(t − s)αi+βi−1H(s, ϑ̂(s))ds
∣∣∣∣

≤ 2λ

Γ(βi)

∫ Ti

Ti−1

(Ti − s)βi−1|ϑ̂(s)|ds +
2

Γ(αi + βi)

∫ Ti

Ti−1

(Ti − s)αi+βi−1|H(s, ϑ̂(s))|ds

≤ 2λ

Γ(βi)

∫ Ti

Ti−1

(Ti − s)βi−1|ϑ̂(s)|ds +
2

Γ(αi + βi)

∫ Ti

Ti−1

(Ti − s)αi+βi−1(L1|ϑ̂(s)|+ L2)ds

≤
2λ||ϑ̂||Ei

Γ(βi)

∫ Ti

Ti−1

(Ti − s)βi−1ds +
2L1||ϑ̂||Ei

Γ(αi + βi)

∫ Ti

Ti−1

(Ti − s)αi+βi−1ds

+
2L2

Γ(αi + βi)

∫ Ti

Ti−1

(Ti − s)αi+βi−1ds

≤
2λ||ϑ̂||Ei

Γ(βi + 1)
(Ti − Ti−1)

βi +
2L1||ϑ̂||Ei

Γ(αi + βi + 1)
(Ti − Ti−1)

αi+βi

+
2L2

Γ(αi + βi + 1)
(Ti − Ti−1)

αi+βi

≤ Ri.

Step 2: G is continuous for each i ∈ {1, 2, . . . , n}. Let {ϑ̂m} be a sequence such that ϑ̂m → ϑ̂ in
BRi . Then, for each t ∈ [Ti−1, Ti], i ∈ {1, 2, . . . , n},
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|(G ϑ̂m)(t)− (G ϑ̂)(t)| =
∣∣∣∣∣−
(

λIβi

T+
i−1

ϑ̂m(t) + Iαi+βi

T+
i−1

H(t, ϑ̂m(t))
)∣∣∣∣

t=Ti

(
t − Ti−1
Ti − Ti−1

)βi

+
λ

Γ(βi)

∫ t

Ti−1

(t − s)βi−1ϑ̂m(s)ds

+
1

Γ(αi + βi)

∫ t

Ti−1

(t − s)αi+βi−1H(s, ϑ̂m(s))ds

+

(
λIβi

T+
i−1

ϑ̂(t)− Iαi+βi

T+
i−1

H(t, ϑ̂(t))
)∣∣∣∣

t=Ti

(
t − Ti−1
Ti − Ti−1

)βi

− λ

Γ(βi)

∫ t

Ti−1

(t − s)βi−1ϑ̂(s)ds

− 1
Γ(αi + βi)

∫ t

Ti−1

(t − s)αi+βi−1H(s, ϑ̂(s))ds
∣∣∣∣

≤ 2λ

Γ(βi)

∫ Ti

Ti−1

(Ti − s)βi−1|ϑ̂m(s)− ϑ̂(s)|ds

+
2

Γ(αi + βi)

∫ Ti

Ti−1

(Ti − s)αi+βi−1|H(s, ϑ̂m(s))− H(s, ϑ̂(s))|ds.

Taking into account the convergence of the sequence {ϑ̂m}, and the continuity of the function
H, the right-hand side of the above inequality tends to zero as m → +∞. Therefore,

||G(ϑ̂m)(t)− G(ϑ̂)(t)||Ei → 0 as m → +∞.

Step 3: G is relatively compact for each i ∈ {1, 2, . . . , n}. In view of Step 1, we have that
G(BRi ) ⊂ BRi . Thus, G(BRi ) is uniformly bounded. It remains to show that G is equicontinuous for
each i ∈ {1, 2, . . . , n}.

Let t1, t2 ∈ (Ti−1, Ti]. Then,

|(G ϑ̂)(t1)− (G ϑ̂)(t2)|

=

∣∣∣∣∣−
(

λIβi

T+
i−1

ϑ̂(t) + Iαi+βi

T+
i−1

H(t, ϑ̂(t))
)∣∣∣∣

t=Ti

(
t1 − Ti−1
Ti − Ti−1

)βi

+
λ

Γ(βi)

∫ t1

Ti−1

(t1 − s)βi−1ϑ̂(s)ds

+
1

Γ(αi + βi)

∫ t1

Ti−1

(t1 − s)αi+βi−1H(s, ϑ̂(s))ds

+

(
λIβi

T+
i−1

ϑ̂(t) + Iαi+βi

T+
i−1

H(t, ϑ̂(t))
)∣∣∣∣

t=Ti

(
t2 − Ti−1
Ti − Ti−1

)βi

− λ

Γ(βi)

∫ t2

Ti−1

(t2 − s)βi−1ϑ̂(s)ds

− 1
Γ(αi + βi)

∫ t2

Ti−1

(t2 − s)αi+βi−1H(s, ϑ̂(s))ds
∣∣∣∣

≤
(

λIβi

T+
i−1

ϑ̂(t)− Iαi+βi

T+
i−1

H(t, ϑ̂(t))
)∣∣∣∣

t=Ti

[(
t1 − Ti−1
Ti − Ti−1

)βi

−
(

t2 − Ti−1
Ti − Ti−1

)βi
]

+
λ

Γ(βi)

∫ t1

Ti−1

[
(t1 − s)βi−1 − (t2 − s)βi−1

]
|ϑ̂(s)|ds − λ

Γ(βi)

∫ t2

t1

(t2 − s)βi−1|ϑ̂(s)|ds

1
Γ(αi + βi)

∫ t1

Ti−1

[
(t1 − s)αi+βi−1 − (t2 − s)αi+βi−1

]
|H(s, ϑ̂(s))|ds

− 1
Γ(αi + βi)

∫ t2

t1

(t2 − s)αi+βi−1|H(s, ϑ̂(s))|ds

As t1 → t2, the right-hand side of the above inequality tends to zero. Hence, the mapping G
is equicontinuous. Therefore, in view of the Ascoli–Arzelà Theorem, the mapping G is relatively
compact on BRi .



Axioms 2024, 13, 277 8 of 11

It follows from Theorem 1 that the auxiliary boundary value problem (5) has at least one solution
in BRi for each i ∈ {1, 2, . . . , n}.

As a result, the boundary value problem (1) has a least one solution in C([0, T],R), which is
given by

ϑ(t) =



ϑ1(t) = ϑ̂1(t), t ∈ [0, T1],

ϑ2(t) =

{
0, t ∈ [0, T1],

ϑ̂2(t), t ∈ (T1, T2],
...

ϑn(t) =

{
0, t ∈ [0, Tn−1],

ϑ̂n(t), t ∈ (Tn−1, T].

In order to prove the uniqueness of solutions, we need to introduce an additional hypothesis:

Hypothesis 3. There exists a positive constant L3 such that |H(t, x) − H(t, y)| ≤ L3|x − y| for each
t ∈ [0, T] and x, y ∈ R.

Theorem 3. Assume that conditions (H1)–(H3) hold. Then, (5) has a unique solution on [Ti−1, Ti] for each
i ∈ {1, 2, . . . , n}, provided that(

2λ

Γ(βi + 1)
(Ti − Ti−1)

βi +
2L3

Γ(αi + βi + 1)
(Ti − Ti−1)

αi+βi

)
< 1. (8)

Proof. As previously shown in Step 1 of the proof of Theorem 2, the mapping G : BRi → BRi is
uniformly bounded. It remains to show that G is a contraction.

Let i ∈ {1, 2, . . . , n} and let ϑi, ϑ∗
i ∈ BRi . Then,

|(Gϑi)(t)− (Gϑ∗
i )(t)| =

∣∣∣∣∣−
(

λIβi

T+
i−1

ϑi(t) + Iαi+βi

T+
i−1

H(t, ϑi(t))
)∣∣∣∣

t=Ti

(
t − Ti−1
Ti − Ti−1

)βi

+
λ

Γ(βi)

∫ t

Ti−1

(t − s)βi−1ϑi(s)ds

+
1

Γ(αi + βi)

∫ t

Ti−1

(t − s)αi+βi−1H(s, ϑi(s))ds

+

(
λIβi

T+
i−1

ϑ∗
i (t) + Iαi+βi

T+
i−1

H(t, ϑ∗
i (t))

)∣∣∣∣
t=Ti

(
t − Ti−1
Ti − Ti−1

)βi

− λ

Γ(βi)

∫ t

Ti−1

(t − s)βi−1ϑ∗
i (s)ds

− 1
Γ(αi + βi)

∫ t

Ti−1

(t − s)αi+βi−1H(s, ϑ∗
i (s))ds

∣∣∣∣
≤ 2λ

Γ(βi)

∫ Ti

Ti−1

(Ti − s)βi−1|ϑi(s)− ϑ∗
i (s)|ds

+
2

Γ(αi + βi)

∫ Ti

Ti−1

(Ti − s)αi+βi−1|H(s, ϑi(s))− H(s, ϑ∗
i (s))|ds

≤ 2λ

Γ(βi)

∫ Ti

Ti−1

(Ti − s)βi−1|ϑi(s)− ϑ∗
i (s)|ds

+
2L3

Γ(αi + βi)

∫ Ti

Ti−1

(Ti − s)αi+βi−1|ϑi(s)− ϑ∗
i (s)|ds

≤
(

2λ

Γ(βi + 1)
(Ti − Ti−1)

βi +
2L3

Γ(αi + βi + 1)
(Ti − Ti−1)

αi+βi

)
||ϑi − ϑ∗

i ||Ei .

In view of (8), G is a contraction for each i ∈ {1, 2, . . . , n}. As a consequence of Banach’s fixed
point theorem, the operator G has a unique fixed point, which corresponds to a unique solution
of (5) on (Ti−1, Ti] for each i ∈ {1, 2, . . . , n}. In view of Remark 1, we have the uniqueness of
solutions to (1).
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4. Example
In this section, we illustrate the applicability of the results obtained in this paper. Consider the

fractional Langevin boundary value problemCDα(t)
0+

(
CDβ(t)

0+ − 1
8

)
ϑ(t) = sin

(
1
8

ϑ(t)
)
+

1
(t + 2)2 , 0 ≤ t ≤ 4,

ϑ(0) = 0, ϑ(4) = 0.
(9)

Here, λ =
1
8

, H(t, x) = sin
( x

8

)
+

1
(t + 2)2 , T1 = 2, and T2 = 4 so that our partition of [0, 4]

becomes P = {[0, 2], (2, 4]}. We take

α(t) =


2

10
, t ∈ [0, 2],

7
10

, t ∈ (2, 4],

β(t) =


3

10
, t ∈ [0, 2],

5
10

, t ∈ (2, 4].

Since |H(t, x)| ≤ 1
8
|x|+ 1

4
, in view of (H1), we see that L1 =

1
8

and L2 =
1
4

. Consider the

auxiliary boundary value problemsCD
2

10
0+

(
CD

3
10
0+ +

1
8

)
ϑ(t) = sin

(
1
8

ϑ(t)
)
+

1
(t + 2)2 , 0 ≤ t ≤ 2,

ϑ(1) = 0, ϑ(2) = 0,

and CD
7

10
2+

(
CD

5
10
2+ +

1
8

)
ϑ(t) = sin

(
1
8

ϑ(t)
)
+

1
(t + 2)2 , 2 < t ≤ 4,

ϑ(2) = 0, ϑ(4) = 0.

Now, for i ∈ {1, 2}, we have
λ

Γ(βi + 1)
(Ti − Ti−1)

βi +
L1

Γ(αi + βi + 1)
(Ti − Ti−1)

αi+βi ≈ 0.37093 <
1
2

,

λ

Γ(βi + 1)
(Ti − Ti−1)

βi +
L1

Γ(αi + βi + 1)
(Ti − Ti−1)

αi+βi ≈ 0.47880 <
1
2

.

so (H2) is satisfied. Therefore, by Theorem 2, the problem (9) has at least one solution given by

ϑ(t) =


ϑ1(t) = ϑ̂1(t), t ∈ [0, 2],

ϑ2(t) =

{
0, t ∈ [0, 2],

ϑ̂2(t), t ∈ (2, 4].

To illustrate Theorem 3, in the above problem take H(t, x) =
|x|

(10 + t2)(1 + |x|) for all t ∈ [0, 4].

Clearly, |H(t, x)− H(t, y)| ≤ 1
10

|x − y|. Thus, (H3) is satisfied with L3 =
1
10

.
Direct computations give

2λ

Γ(βi + 1)
(Ti − Ti−1)

βi +
2L3

Γ(αi + βi + 1)
(Ti − Ti−1)

αi+βi ≈ 0.50250 < 1,

2λ

Γ(βi + 1)
(Ti − Ti−1)

βi +
2L3

Γ(αi + βi + 1)
(Ti − Ti−1)

αi+βi ≈ 0.60743 < 1.

for i ∈ {1, 2}, which proves the theorem.



Axioms 2024, 13, 277 10 of 11

5. Conclusions
In this paper we studied Langevin boundary value problems that contain a variable order

Caputo fractional derivative. The background and motivation for the study were presented along
with the concepts needed in the work. The existence of solutions was proved by applying Schauder’s
fixed point theorem, and the uniqueness of solutions was obtained by adding an additional hypothesis
and applying Banach’s contraction principle. To illustrate the applicability of the results, an example
was given.

One possible direction for future research would be to try to apply different fixed-point theorems
so that different assumptions to guarantee existence could be obtained. For example, it would be
interesting to see if the Leggett and Williams fixed point theorem might be used. Another possible
direction for future research could be to change the setting to Hölder-type spaces. An appropriate
question to raise is whether it would be beneficial to use regulated functions rather than piecewise
continuous functions.

The question of what is (are) the appropriate space (spaces) to use as a setting for fractional
problems is an interesting one that is deserving of future investigation. The answer often depends
on the type of fractional derivative involved and the form of the boundary conditions. The reader
who is interested in this may wish to consult the monographs by Kilbas et al. [1] or Podlubny [4] for
additional observations on this question.
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published version of the manuscript.
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