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Abstract: In the present article, we build the excitedcoherent states associated with deformed su(1, 1)
algebra (DSUA), called photon-added deformed Perelomov coherent states (PA-DPCSs). The con-
structed coherent states are obtained by using an alterationof the Holstein–Primakoff realization
(HPR) for DSUA. A general method to resolve of the problem of the unitary operator was developed
for these kinds of quantum states. The Mandel parameter is considered to examine the statistical
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1. Introduction

The investigation of coherent states (C-Ss) and their uses in several physics fields have
been the subject of several works over the last four decades. These states have significant
applications in quantum optics, statistical mechanics, nuclear physics, and condensed
matter physics [1–3]. Schrödinger was the first to introduce the concept of coherent states
for the harmonic oscillator system. His goal was to obtain quantum states that show an
intimate close link between quantum and classical descriptions [4]. In quantum optics,
Glauber introduced the importance of C-Ss as eigenstates of the lowering operator [5,6],
and he figured out that these C-Ss have the property of minimizing the uncertainty in both
position and momentum. Klauder reintroduced the identical states in [7,8]. The similarity
here was that these C-Ss were the specific states of the system of the harmonic oscillator.
Due to their significant properties, these C-Ss were then generalized from either a physical
or mathematical standpoint to other systems. For a review of all these generalizations, see
Refs. [9–11].

Perelomov [12] and Gilmore [13] independently realized a set of C-Ss related to any
Lie groups. These states are referred to as SU(1, 1) C-Ss, which are related to the SU(1, 1)
group. They characterize several quantum systems and have many intriguing applications
in condensed matter physics, statistical mechanics, and quantum optics [9–11]. On another
side, the establishment of quantum groups served as a formal characterization of deformed
Lie algebras [14,15], which allowed us to build deformed C-Ss that were considered an
extension of the concept of CSs. Then, generalized deformations of Glauber states are
constructed as C-Ss associated with deformed oscillators. Additionally, deformed SU(1, 1)
C-Ss were built as C-Ss associated with the DSUA [16,17]. Mathematically, Klauder [7,8]
notes that the minimal set of conditions necessary to construct C-Ss includes normalization
condition, continuity in labels, and the presence of a positive weighting function to deal
with the resolution of unity.
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The primary feature of quantum states is the quantum entanglement that is not
present in classical physics. As noticed by Schr̈odinger [18], this is a characteristic feature
of quantum mechanics, one that forces it to move completely away from classical lines of
thought. The confusion of Einstein, Podolsky, and Rosen about quantum entanglement
led them to suggest an alternative theory of quantum mechanics that was eventually
disproved by a theory devised by Bell and confirmed experimentally by what we call the
Bell inequality test [19–23]. The pioneer’s workon understanding entanglement led to
the emergence of quantum information science with the main goal of finding methods
for exploiting quantum mechanical effects in nature, such as the superposition principal
and entanglement, to perform tasks of information processing that would not be possible
in the traditional (classical) world. Due to the brilliant work developed by Bennett et al.,
we now understand the role of entanglement in the development of numerous quantum
protocols such as dense coding [24], teleportation [25], and quantum key distribution [26].
Using the fundamentals of quantum mechanics and entanglement as a tool has led to
the development of information-processing tasks. Recently, there is also a link between
quantum entanglement and other disciplines, including high-energy and condensed matter
physics, where the entanglement phenomenon can be viewed as a clue about quantum time
and space [27] and the signature of quantum phase transition and quantum orders [28].

Agarwal and Tara gave the first description of the PA-CSs for the harmonic oscilla-
tor [29]. These quantum states attracted a great deal of attention and provided several
physical applications [30–32]. In light of their possible uses, several generalizations have
been proposed [33–39]. Thus, these kinds of CSs could be useful. In the present article,
we shall build the excitedcoherent states associated with DSUA. The constructed coherent
states are obtained by using an alterationof HPR for DSUA. A general way for the resolution
of the problem of the unitary operator will be developed for this kind of quantum state. The
Mandel parameter will be considered to examine the physical properties of PA-DPCSs. Fur-
thermore, we shall propose a way to produce the PA-DPCSs by considering the interaction
among fields and atoms. Finally, we shall introduce the concept of entangled states in the
context of PA-DPCSs and examine the entanglement properties for entangled PA-DPCSs.

The manuscript is outlined as follows. In Section 1, we introduce the scheme for
constructing the PA-DPCSs in the framework of DSUA and examine the non-classicality of
these states by evaluating the Mandel parameter. In Section 2, we propose a physical way
to generate the PA-DPCSs. Section 3 is devoted to studying the bipartite entanglement of
PA-DPCSs. A summary is provided in the last section.

2. PA-DPCSs and Statistical Properties

The DSUA is characterized by the commutation relations of the generators K̂κ
z and K̂κ

±

[K̂κ
z , K̂κ

±] = ±K̂κ
± ; [K̂κ

+, K̂κ
−] = [2K̂κ

z ] , (1)

where K̂κ
z and K̂κ

± satisfy the Hermiticity restrictions

(K̂κ
z)

† = K̂κ
z ; (K̂κ

+)
† = K̂κ

− ; (K̂κ
−)

† = K̂κ
+. (2)

The function [ ] in Equation (1) defines the deformation of DSUA. The choice of
particular forms of [ ] leads to a specific deformation of the DSUA. When [Y ] = Y we
obtain the undeformed SUA. In this manuscript, the following box function [40–42]

[Y ] =
κY − 1
κ − 1

, (3)

represents the standard deformation of the SUA. Here, κ is the deformed parameter and
considered to be real.
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The unitary irreducible representation of the DSUA is obtained through the unitary
representation [43] of the undeformed SUA as

K̂κ
z |k, m⟩ = m|k, m⟩ ,

K̂κ
±|k, m⟩ = ([m ∓ k ± 1][m ± k])

1
2 |k, m ± 1⟩. (4)

Here, the vector |k, m⟩ defines an orthonormal basis of the irreducible representation
space for k ∈ { 1

2 , 1, 3
2 , · · ·}, which is the Bargman index that labels the representation and

m ∈ {k, k + 1, k + 2, · · ·}.
We should write the basis vectors |j, m⟩ in terms of the Fock states (|k, m⟩ ∼ |n⟩) in

order to examine the photons statistics of PA-DPCSs. We use an alteration

K̂κ
+ = Âκ

†

√
[2k + N] , K̂κ

− =
√
[2k + N] Âκ , K̂κ

z = N + k . (5)

Here, Âκ , Âκ
+ represent deformed annihilation and creation operators that act on |n⟩ as

Âκ
+|n⟩ =

√
[n + 1] |n + 1⟩ , Âκ |n⟩ =

√
[n] |n − 1⟩. (6)

According to Klauder’s work [7,8], the following minimum requirements must be met
in order to obtain coherent states:

(a) Normalization condition
⟨ζ|ζ⟩ = 1, (7)

where ζ represents the amplitude of the coherent state.
(b) Continuity property ∣∣∣|ζ⟩ − |ζ ′⟩

∣∣∣ −→ 0 when |ζ − ζ
′ |2 −→ 0. (8)

(c) Resolution of the unity operator∫ ∫
dµ(ζ)|ζ⟩⟨ζ| = I, (9)

where dµ(ζ) represents the measure in the label space.

As we will show in this manuscript, the last requirement is unquestionably the most
significant and restricted one. It is challenging to determine if a resolution relation exists,
and for a wide class of coherent states, this problem has not yet been solved. Here, we give
a general scheme for constructing PA-DPCSs by discussing the minimum requirements
needed to build Klauder’s coherent states.

The PCSs related to DSUA are defined by the formula

|ζ, k⟩ = N (|ζ|2)Eκ(ζK̂κ
+)|k, k⟩, (10)

where Eκ(x) represents a deformation of the ordinary exponential function

Eκ(x) =
∞

∑
n=0

xn

[n]!
with [n]! = [1] . . . [n − 1][n]. (11)

The condition of normalization requires that

N (|ζ|2) =
(√

(1 − |ζ|2)(−2k)
)−1

, (12)

where

(a + b)(m) :=
m

∑
n=0

[m

n

]
am−nbn , (13)
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with the deformed binomial formula[m

n

]
=

[m]!
[m]![m − n]!

for m ≥ n . (14)

The formula defined by Equation (13) is already considered by mathematicians [17,44].
The DPCS can be given by the formula

|ζ, k⟩ =
(√

(1 − |ζ|2)−(2k)
)−1 ∞

∑
m=k

√[ m+k−1

m−k

]
ζm−k|k, m⟩. (15)

Using the HPR, the DPCSs can be re-written as a function of |n⟩ as

|ζ, k⟩ =
(√

(1 − |ζ|2)−(2k)
)−1 ∞

∑
n=0

√[ 2k+n−1

n

]
ζn|n⟩. (16)

The PA-DPCSs |ξ, k, m⟩ can be built by repeated application of the operator K̂κ
+ to

DPCSs |ξ, k⟩
|ζ, k, m⟩ = N(|ζ|2)(K̂κ

+)
m|ζ, k⟩ (17)

where m is a nonegative integer that defines the number of added photons. By using
Equation (4), we obtain

(K̂κ
+)

m|n⟩ =
[
[n + m]![n + 2k + m − 1]!

[n]![n + 2k − 1]!

] 1
2
|n + m⟩. (18)

Substituting (18) into (17), we find that

|ζ, k, m⟩ = N(|ζ|2)
∞

∑
n=0

[
[n + m]![n + 2k + m − 1]!

([n]!)2[2k − 1]!

] 1
2

ζn|n + m⟩, (19)

where the normalization function

N(|ζ|2) =
(

∞

∑
n=0

[
[n + m]![n + 2k + m − 1]!

([n]!)2[2k − 1]!

]
|ζ|2n

)− 1
2

. (20)

In the m → 0 limit, we can recover the DPCSs |ξ, k⟩.
As of right now, it appears that the selected states are essentially unrestricted by the

requirements (a) and (b). We investigate the condition on the measure dµ = Wd2ζ in (9),
where for d2ζ = d(Re[ζ])d(Im[ζ]) the following equations should be satisfied∫ ∫

C
d2ζ|ζ, k, m⟩⟨ζ, k, m|W

(
|ζ|2
)
= ∑

n
|n⟩⟨n|. (21)

Concurrent with our construction of the PA-DPCSs in Equation (19), we introduce the
polar decomposition ζ = reiθ to obtain

∫ +∞

0
xn N2(x)W(x)dx =

1
π

([
[n + m]![n + 2k + m − 1]!

([n]!)2[2k − 1]!

])−1

, (22)

Instead of solving Equation (22) for W(x), with x = r2, we examine the existence of
solution to integrable equations given by∫ +∞

0
xnŴ(x)dx = ξ(n) (23)

where
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Ŵ(x) = N2(x)W(x), ξ(n) =
1
π

([
[n + m]![n + 2k + m − 1]!

([n]!)2[2k − 1]!

])−1

.

The well-known Stieltjes moment problem is represented by Equation (23).
To solve the integral equation, we consider similar approach as used in [45] by applying

the concept of Fourier transforms. We multiply Equation (23) by ((iy)n/n!) and perform a
sum over the integer n

∫ +∞

0
Ŵ(x) eixy dx =

∞

∑
n=0

(
(iy)n

n!

)
ξ(n) = W(y). (24)

It is clear that the series on the right-hand side must converge. This is the case when
the parameters of the standard box function are real. Thus, in this case we can obtain the
inverse Fourier transform of W(y)

Ŵ(x) =
1

2π

∫ +∞

−∞
W(y) e−ixy dy. (25)

The function W(x) permitting the resolution of the identity operator is given by

W(x) =
N−2(x)

2π

∫ +∞

−∞
W(y) e−ixy dy. (26)

This fulfills the Klauder requirements that must be met by the PA-DPCSs presented in
this work in order for them to qualify as coherent states.

For examining what is going on and obtaining a handle on the physical nature of
the PA-DPCSs, the HPR of the DSUA should be used to compare the obtained states with
Glauber’s coherent states. To do this, the Mandel parameter, MP, is used as a measure
for deciding whether the probability distribution is sub-Poissonian, Poissonian, or super-
Poissonian. The parameter MP is defined by the formula [46]

MP =
⟨(∆N̂)2⟩ − ⟨N̂⟩

⟨N̂⟩
. (27)

Here, ⟨N̂⟩ represents the average number of photons in the PA-DPCS |z, k, m⟩ and
⟨(∆N̂)2⟩ = ⟨N̂2⟩ − ⟨N̂⟩2 defines the standard deviation such that

⟨N⟩ = N2(|ζ|2)
∞

∑
n=m

[
[n][n]![n + 2k − 1]!

([n − m]!)2[2k − 1]!

]
|ζ|2(n−m), (28)

and

⟨N2⟩ = N2(|ζ|2)
∞

∑
n=m

[
[n]2[n]![n + 2k − 1]!

([n − m]!)2[2k − 1]!

]
|ζ|2(n−m). (29)

The probability distribution is said to be sub-Poissonian if −1 ≤ MP < 0, Poissonian
if MP = 0, and super-Poissonian if MP > 0.

In Figures 1 and 2, we display the Mandel MP parameter as a function of |ζ| consider-
ing different values of the parameters m and κ with k = 5 and k = 10. From the figures,
it can be seen that an increase in the value of m leads to a decrease in the value of the
parameter MP. We can observe that the Mandel parameter MP can obtain positive and
negative values when κ → 1 indicates super-Poissonian and sub-Poissonian distributions
of photons that depend on the values of |ζ|. When κ gets away from 1, the parameter
MP has a negative value, indicating a sub-Poissonian distribution of photons for different
values of m. Furthermore, the increase of k leads to a decrease in the value of MP with
respect to the C-Ss parameters.
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Figure 1. MP of the PA-DPCSs as function of |ζ| for different values of m and κ with the Bargman
index k = 5. Labels (a–d) are considered for κ = 1, κ = 0.95, κ = 0.85, and κ = 0.75, respectively. Blue
(dashed curve): PA-DPCSs for m = 1; red (dashed-dotted curve): PA-DPCSs for m = 3; green (solid
curve): PA-DPCSs for m = 5; black (dotted curve): PA-DPCSs for m = 8. When m increases and κ

gets away from 1, the parameter MP has a negative value and sub-Poissonian distribution, which
results in an enhancement in the non-classicality for the PA-DPCSs.
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Figure 2. MP of the PA-DPCSs as function of |ζ| for different values of m and κ with the Bargman
index k = 10. Labels (a–d) are considered for κ = 1, κ = 0.95, κ = 0.85, and κ = 0.75, respectively.
Blue (dashed curve): PA-DPCSs for m = 1; red (dashed-dotted curve): PA-DPCSs for m = 3; green
(solid curve): PA-DPCSs for m = 5; black (dotted curve): PA-DPCSs for m = 8. Generally, the
increase of k leads to a decreased MP and then results in an enhancement of the non-classicality for
the PA-DPCSs.



Axioms 2024, 13, 289 7 of 13

3. Generation of the PA-DPCS

For physically generating the PA-DPCS in (19), we consider a slab of excited atoms
with two levels through a cavity. Let |Ψ(0)⟩ = |ζ, k, m⟩|e⟩ represent the atom–field state at
the instant t = 0, where the state |e⟩ describes the excited state of an atom. The configuration
of the Hamiltonian of an interaction is

H = h̄γ
(

σ+K̂κ
− + K̂κ

+σ−
)

. (30)

Here, σ+ = |e⟩⟨g| and σ− = |g⟩⟨e| are the standard atomic two-level transition

operators acting on the excited state |e⟩ =
(

1
0

)
and ground state |g⟩ =

(
0
1

)
as follows:

σ+|g⟩ = |e⟩ and σ−|e⟩ = |g⟩.
The state |Ψ(0)⟩ at subsequent times is

|Ψ(t)⟩ = exp
[
−iη

(
σ+K̂κ

− + K̂κ
+σ−

)]
|Ψ(0)⟩, (31)

where we have set η = h̄γ, which with γ denotes the coupling constant. For η ≪ 1,
we obtain

|Ψ(t)⟩ ∼=
(

1 − iη
(

σ+K̂κ
− + K̂κ

+σ−
))

|ζ, k, m⟩|e⟩. (32)

The atom–field state can be given as

|Ψ(t)⟩ = |ζ, k, m⟩|e⟩ − iηK̂κ
+|ζ, k, m⟩|g⟩. (33)

Then, the field state can be transferred to K̂κ
+|ζ, k, m⟩, with the atom in the ground state

|g⟩, which corresponds to the PA-DPCS |ζ, k, 1⟩ and leads to generating the state |ζ, k, 1⟩.
Based on the above method, we can produce the PA-DPCSs with different values of m via
the Hamiltonian operator

Hm = h̄λ
(

σ+
(
K̂κ

−

)m
+
(
K̂κ

+

)m
σ−
)

. (34)

4. Entangled PA-DPCSs

In this section, we introduce sufficient conditions allowing us to test whether the
bipartite PA-PSCSs are entangled, and we analyze the amount of entanglement of the
entangled PA-PSCSs in terms of k, m, κ, and |ζ|.

Two inequalities have been presented recently for the detection of entanglement [47].
Let H = HA ⊗HB be a ket space for a bipartite system AB. Here, HA represents the ket
space for system A and HB is for system B. Let Â and B̂ be two operators acting on the ket
spaces HA and HB, respectively. The quantum state of system AB is entangled if

|⟨ÂB̂†⟩|2 > ⟨Â†ÂB̂†B̂⟩ (35)

|⟨ÂB̂⟩|2 > ⟨Â†Â⟩⟨B̂†B̂⟩.

Let us now exploit the implications of these inequalities for the bipartite PA-DPCSs,
where each subsystem is described by a PA-DPCS as

|ϕ⟩ = C|ζ1, k1, m⟩ ⊗ |ζ2, k2, m⟩+D|ζ ′
1, k1, m⟩ ⊗ |ζ ′

2, k2, m⟩. (36)

In terms of |ni⟩ (i = 1, 2), we have

|ϕ⟩ =
∞

∑
n1=m

∞

∑
n2=m

Bk1,k2
n1,n2 |n1⟩ ⊗ |n2⟩, (37)

where



Axioms 2024, 13, 289 8 of 13

Bk1 ,k2
n1 ,n2 =

[
CN(|ζ1|2)N(|ζ2|2)ζn1−m

1 ζ
n2−m
2 +DN(|ζ ′

1|2)N(|ζ ′
2|2)ζ

′
1

n1−m
ζ
′
2

n2−m]( [n1]![n2]![n1 + 2k1 − 1]![n2 + 2k2 − 1]!

([n1 − m]![n2 − m]!)2[2k1 − 1]![2k2 − 1]!

) 1
2

. (38)

Let K̂κ
1− and K̂κ

2− be the lowering operators of the suκ1(1, 1) and suκ2(1, 1) quantum
algebras, respectively, with raising operators K̂κ

1+ and K̂κ
2+ . In this case, the conditions for

entanglement are given

|⟨K̂κ
1−K̂

κ
2+⟩|

2 > ⟨K̂κ
1+K̂

κ
1−K̂

κ
2+K̂

κ
2−⟩ (39)

|⟨K̂κ
1−K̂

κ
2−⟩|

2 > ⟨K̂κ
1+K̂

κ
1−⟩⟨K̂

κ
2+K̂

κ
2−⟩. (40)

Using (37), we obtain that

⟨ϕ|K̂κ
1−K̂

κ
2− |ϕ⟩ =

∞

∑
n1=m

∞

∑
n2=m

B∗k1,k2
n1,n2

Bk1,k2
n1+1,n2+1([n1 + 1][n2 + 1][2k1 + n1][2k2 + n2])

1
2 (41)

⟨ϕ|K̂κ
1† K̂κ

1− |ϕ⟩ =
∞

∑
n1=m

∞

∑
n2=m

|Bk1,k2
n1,n2

|2[n1][2k1 + n1 − 1] (42)

and
⟨ϕ|K̂κ

2† K̂κ
2− |ϕ⟩ =

∞

∑
n1=m

∞

∑
n2=m

|Bk1,k2
n1,n2

|2[n2][2k2 + n2 − 1]. (43)

The entanglement condition is

|⟨ϕ|K̂κ
1− K̂κ

2− |ϕ⟩|
2 > ⟨ϕ|K̂κ

1+ K̂κ
1− |ϕ⟩⟨ϕ|K̂

κ
2+ K̂κ

2− |ϕ⟩. (44)

We note that the quantum state (36) is separable if one of the following conditions is
verified: C = 0, D = 0, |ζ1, k1, m⟩ = ±eiθ1 |ζ ′

1, k1, m⟩, or |ζ2, k2, m⟩ = ±eiθ2 |ζ ′
2, k2, m⟩.

Let us examine the degree of quantum entanglement for entangled PA-DPCSs intro-
duced as

|Φ⟩ = Nθ

(
|ζ1, k1, m⟩ ⊗ | − ζ2, k2, m⟩

+ eiθ | − ζ1, k1, m⟩ ⊗ |ζ2, k2, m⟩
)

. (45)

The ket states |ζ1, k1, m⟩ and | − ζ1, k1, m⟩ described the first subsystem, and |ζ2, k2, m⟩
and | − ζ2, k2, m⟩ described the second subsystem, spanning two dimensional subspaces
considered to be linearly independent.The normalization factor Nθ should satisfy

Nθ = [2 + 2 cos θµ1µ2]
− 1

2 .

(46)

where
µ1 = ⟨ζ1, k1, m| − ζ1, k1, m⟩, µ2 = ⟨−ζ2, k2, m|ζ2, k2, m⟩. (47)

The state (45) describes a bipartite system in the context of suκ(1, 1) algebra.
Various measures of bipartite quantum states have been considered in the literature.

In the present manuscript, the concurrence is used to examine the degree of entanglement
of PA-DPCSs. It is defined for state |Φ⟩ by Formula [48]

C(|Φ⟩) = |⟨Φ|Φ̃⟩|, (48)

where the tilde represents the operation |Φ̃⟩ = σy ⊗ σy|Φ∗⟩. |Φ∗⟩ denotes the complex

conjugate of |Φ⟩ and σy is the pauli y-operator
[

i
(

0 −1
1 0

)]
. The concurrence C ranges

from the value zero for a separable state to the value one for a maximally entangled state
(C = 1). The two conditions for which the states (45) become maximally entangled are
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(1) µ1 ̸= 0 and µ2 ̸= 0, C = 1 as µ1 = µ2 and θ = π; (2) µ1 = µ2 = 0, C = 1 for different
values of θ.

In Figures 3 and 4, we plot the concurrence of the entangled PA-DPCSs as a function of
|ζ1| and |ζ2| for k = 5 and k = 10, respectively, considering various values of m with κ = 1.
Labels (a), (b), (c), and (d) are considered for m = 1, m = 3, m = 5, and m = 8, respectively.
From the figures, it can be seen that function C depends on the parameters m according
to the change |ζ1| and |ζ2|. Interestingly, large values of function C are obtained for small
values of the amplitude ζ1 and ζ2 for which C = 1. On the other hand, the measure of
entanglement C is not largely affected by the increase of the Bargman parameters k1 and
k2. In Figures 5 and 6, we plot the concurrence of the entangled PA-DPCSs in terms of |ζ1|
and |ζ2| for k = 5 and k = 10, respectively, in the case of κ = 0.85. From the figure, we note
that the degree of the quantum entanglement of entangled PA-DPCSs can be manipulated
through a convenable selection of parameter κ. We find that the degree of entanglement will
be significant as the parameter κ gets near to one with respect to the physical parameters.

(a) m = 1 (b) m = 3

(c) m = 5 (d) m = 8

Figure 3. The variation in concurrence, defined by Equation (48), in terms of |ζ1| and |ζ2| for different
values of m with k1 = k2 = 5 and κ = 1. Labels (a–d) are considered for m = 1, m = 3, m = 5, and
m = 8, respectively. Generally, the degree of entanglement of entangled PA-DPCSs depends on the
selection of the physical parameters.
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(a) m = 1 (b) m = 3

(c) m = 5 (d) m = 8

Figure 4. The variation in concurrence, defined by Equation (48), in terms of |ζ1| and |ζ2| for different
values of m with k1 = k2 = 10 and κ = 1. Labels (a–d) are considered for m = 1, m = 3, m = 5, and
m = 8, respectively. Generally, the degree of entanglement of entangled PA-DPCSs depends on the
selection of the physical parameters.

(a) m = 1 (b) m = 3

Figure 5. Cont.
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(c) m = 5 (d) m = 8

Figure 5. The variation in concurrence, defined by Equation (48), in terms of |ζ1| and |ζ2| for different
values of m with k1 = k2 = 5 and κ = 0.85. Labels (a–d) are considered for m = 1, m = 3, m = 5, and
m = 8, respectively. Generally, the degree of entanglement of entangled PA-DPCSs depends on the
selection of the physical parameters.

(a) m = 1 (b) m = 3

(c) m = 5 (d) m = 8

Figure 6. The variation in concurrence, defined by Equation (48), in terms of |ζ1| and |ζ2| for different
values of m with k1 = k2 = 10 and κ = 0.85. Labels (a–d) are considered for m = 1, m = 3, m = 5,
and m = 8, respectively. Generally, the degree of entanglement of entangled PA-DPCSs depends on
the selection of the physical parameters.
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5. Conclusions

In summary, we have built the photon-added coherent states associated with DSUA.
The constructed coherent states are obtained by using an alterationof the HPR for DSUA. We
have developed a general method for the resolution of the problem of the unitary operator
for these kinds of quantum states. We considered the Mandel parameter for examining
the photon statistics of PA-DPCSs. We have shown that this parameter can obtain positive
and negative values, exhibiting super- and sub-Poissonian distribution; depending on
the values of state parameters and proper selection of the parameters, there can be an
enhancement in the non-classicality of the PA-DPCSs.Furthermore, we have proposed a
physical way to generate the PA-DPCSs in the framework of interaction among fields and
atoms. Finally, we have introduced the concept of entangled states in the context of PA-
DPCSs and examined entanglement properties for entangled PA-DPCSs with respect to the
physical parameters. The obtained results can stimulate and propose further applications
and studies for PA-DPCSs.
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