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Abstract: In this paper, we study the following non-local problem in fractional Orlicz–Sobolev spaces:
(−∆Φ)

su + V(x)a(|u|)u = f (x, u), x ∈ RN , where (−∆Φ)
s(s ∈ (0, 1)) denotes the non-local and

maybe non-homogeneous operator, the so-called fractional Φ-Laplacian. Without assuming the
Ambrosetti–Rabinowitz type and the Nehari type conditions on the non-linearity f , we obtain the
existence of ground state solutions for the above problem with periodic potential function V(x). The
proof is based on a variant version of the mountain pass theorem and a Lions’ type result in fractional
Orlicz–Sobolev spaces.
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1. Introduction and Main Results

In recent decades, much attention has been devoted to the study of the non-linear
Schrödinger equations involving non-local operators. These types of operators can be
used to model many phenomena in the natural sciences, such as fluid dynamics, quantum
mechanics, phase transitions, finance, and so on, see [1–4] and the references therein. Due
to the important work of Fernández Bonder and Salort [5], a new generalized fractional
Φ-Laplacian operator has caused great interest among scholars in recent years, since it
allows to model non-local problems involving a non-power behavior, see [6–13] and the
references therein.

In this paper, we are interested in studying the following non-local problem involving
fractional Φ-Laplacian:

(−∆Φ)
su + V(x)a(|u|)u = f (x, u), x ∈ RN , (1)

where s ∈ (0, 1), N ∈ N, the function a : [0,+∞) → R is such that ϕ : R → R defined by:

ϕ(t) =

{
a(|t|)t for t ̸= 0,
0 for t = 0,

(2)

is an increasing homeomorphism from R onto R, and Φ : [0,+∞) → [0,+∞) defined by:

Φ(t) =
∫ t

0
ϕ(τ)dτ

is an N-function (see Section 2 for details), which together with the potential V and the
non-linearity f satisfy the following basic assumptions:
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(ϕ1) 1 < l := inf
t>0

tϕ(t)
Φ(t) ≤ sup

t>0

tϕ(t)
Φ(t) =: m < min{N

s , l∗} where l∗ := Nl
N−sl ;

(V) V ∈ C(RN ,R+) is 1-periodic in x1, · · · , xN (called 1-periodic in x for short), and
so, there exist two constants α1, α2 > 0 such that α1 ≤ V(x) ≤ α2 for all x ∈ RN ;

( f1) f ∈ C(RN ×R) is 1-periodic in x satisfying:

lim
|t|→0

f (x, t)
ϕ(|t|) = 0 and lim

|t|→∞

f (x, t)
Φ′∗(|t|)

= 0, uniformly in x ∈ RN ,

where Φ∗ denotes the Sobolev conjugate function of Φ (see Section 2 for details).
For s ∈ (0, 1), the so-called fractional Φ-Laplacian operator is defined as:

(−∆Φ)
su(x) := P.V.

∫
RN

a(|Dsu|) Dsu
|x − y|N+s dy, where Dsu :=

u(x)− u(y)
|x − y|s (3)

and P.V. denotes the principal value of the integral. Notice that if Φ(t) = |t|p(p > 1), then
the fractional Φ-Laplacian operator reduces to the following fractional p-Laplacian operator:

(−∆p)
su(x) := P.V.

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))
|x − y|N+ps dy.

To study this class of non-local problem involving fractional p-Laplacian, the vari-
ational method has become one of the important tools over the past several decades,
see [14–20] and the references therein. In many studies on p-superlinear elliptic prob-
lems, to ensure the boundedness of the Palais–Smale sequence or Cerami sequence of
the energy functional, the following (AR) type condition for the non-linearity f due to
Ambrosetti–Rabinowitz [21] was always assumed:

For (AR), there exists a constant µ > p such that:

0 < µF(x, t) ≤ t f (x, t), for all t ̸= 0,

where the following is true: F(x, t) =
t∫

0
f (x, τ)dτ.

In fact, (AR) implies that there exist two positive constants c1, c2 such that:

F(x, t) ≥ c1|t|µ − c2, for all (x, t) ∈ RN ×R,

which is obviously stronger than the following p-superlinear growth condition:
(F1) lim

|t|→∞

F(x,t)
|t|p = +∞, uniformly in x ∈ RN .

(F1) was first introduced by Liu and Wang in [22] for the case p = 2 and has since
been commonly used in recent papers. With the development of the variational theory and
application, certain new restrictive conditions have been established in order to weaken
(AR). However, the majority of these conditions are just complementary to (AR). For
example, one can replace (AR) with (F1) and the following Nehari type condition:

(Ne) f (x,t)
|t|p−1 is (strictly) increasing in t for all x ∈ RN .

For the case p = 2, Li, Wang and Zeng proved the existence of ground state by Nehari
method in [23]. Besides, for the case p = 2, Ding and Szulkin in [24] replaced (AR) with
(F1) and the following condition:

(F2) F (x, t) > 0 for all t ̸= 0, and | f (x, t)|σ ≤ c3F (x, t)|t|σ for some c3 > 0, σ >
max{1, N

2 } and all (x, t) with |t| larger enough, where F (x, t) = t f (x, t)− 2F(x, t).
They demonstrated that (F1) and (F2) are valid when the non-linearity f satisfies

both (AR) and a subcritical growth condition that | f (x, t)| ≤ c4(|t| + |t|q−1) for some
c4 > 0, q ∈ (2, 2∗) and all (x, t) ∈ RN × R, where 2∗ = 2N

N−2 if N ≥ 3 and 2∗ = ∞ if
N = 1 or N = 2. In [25,26], some conditions similar to (F2) were introduced for the



Axioms 2024, 13, 294 3 of 22

case p > 1. Moreover, in [27], Tang introduced the following new and weaker super-
quadratic condition:

(F3) there exists a θ0 ∈ (0, 1) such that:

1 − θ2

2
t f (x, t) ≥

∫ t

θt
f (x, τ)dτ = F(x, t)− F(x, θt), for all θ ∈ [0, θ0], (x, t) ∈ RN ×R.

Tang proved that (F3) is weaker than both (AR) and (Ne) and also different from (F2).
It is worth noting that (F3) has been extended for the case p > 1 in [28].

To the best of our knowledge, some conditions mentioned above have been success-
fully generalized to the non-local problem involving fractional Φ-Laplacian. In [29], for
Equation (1) with potential V(x) ≡ 1, by applying the mountain pass theorem, Sabri,
Ounaies, and Elfalah proved the existence of a non-trivial solution when the autonomous
non-linearity f (u) satisfies an (AR) type condition. On the whole space RN , to overcome
the difficulty due to the lack of compactness of the Sobolev embedding, the authors re-
constructed the compactness by choosing a radially symmetric function subspace as the
working space. In [13], for Equation (1) with unbounded or bounded potentials V, by apply-
ing the Nehari manifold method, Silva, Carvalho, de Albuquerque, and Bahrouni proved
the existence of ground state solutions when the non-linearity f satisfies the following both
(AR) and (Ne) type conditions:

For (AR)∗, there exists θ > m such that θF(x, t) ≤ t f (x, t), for (x, t) ∈ RN ×R;
For (Ne)∗, the map t → f (x,t)

|t|m−1 is strictly increasing for t > 0 and strictly decreasing
for t < 0.

To be precise, for the case when V is unbounded, the authors reconstructed the
compactness by assuming that V is coercive and then choosing a subspace depending on
V as the working space. For the case when V is bounded, to overcome the difficulty due
to the lack of compactness and obtain a non-trivial solution, the authors assumed that V
and f are 1-periodic in x and introduced an important Lions’ type result for fractional
Orlicz–Sobolev spaces (see Theorem 1.6 in [13]). Since the ground state solution is obtained
as a minimizer of the energy functional on the Nehari manifold N , it is crucial to require
that f is of class C1. Otherwise N may not be a C1-manifold and it is not clear that the
minimizer on the Nehari manifold N is a critical point of the energy functional.

Motivated by [13], in this paper, we still study the existence of ground state for
Equation (1) under the assumption that V and f are 1-periodic in x. We manage to extend
the above p-superlinear growth conditions (F2) and (F3) to the non-local problem involving
fractional Φ-Laplacian. Instead of applying the Nehari manifold method, we firstly prove
that Equation (1) has a non-trivial solution by using a variant mountain pass theorem (see
Theorem 3 in [30]). Subsequently, we prove the existence of ground state by using the
Lions’ type result for fractional Orlicz–Sobolev spaces and some techniques of Jeanjean and
Tanaka (see Theorem 4.5 in [31]).

Next, we present our main results as follows.

Theorem 1. Assume that (ϕ1), (V), ( f1) and the following conditions hold:

(ϕ2) lim sup
t→0

|t|l
Φ(|t|) < +∞;

( f2) lim
|t|→∞

F(x,t)
Φ(|t|) = +∞, uniformly in x ∈ RN ;

( f3) F̂(x, t) > 0 for all t ̸= 0, and |F(x, t)|k ≤ cF̂(x, t)|t|lk for some c > 0, k > N
sl and all

(x, t) with |t| larger enough, where F̂(x, t) = t f (x, t)− mF(x, t).
Then, Equation (1) has at least one ground state solution.

Theorem 2. Assume that (ϕ1), (V), ( f1) and the following conditions hold:
( f4) F(x, t) ≥ 0 for all (x, t) ∈ RN ×R, and lim

|t|→∞

F(x,t)
|t|m = +∞, uniformly in x ∈ RN ;
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( f5) there exists a θ0 ∈ (0, 1) such that:

1 − θl

m
t f (x, t) ≥

∫ t

θt
f (x, τ)dτ = F(x, t)− F(x, θt), for all θ ∈ [0, θ0], (x, t) ∈ RN ×R.

Then, Equation (1) has at least one ground state solution.

Remark 1. To some extent, Theorem 2 improves the result of Theorem 1.8 in [13]. In fact, our
results do not require the smoothness condition that functions f and a are of class C1. Moreover, it
is obvious that (φ4) in [13] implies (ϕ1) and ( f0) in [13] implies our subcritical growth condition
given by ( f1). Furthermore, when Φ(t) = |t|2, ( f5) is weaker than both (AR) type condition ( f4)
and (Ne) type condition ( f4) in [13] (see [27]).

Remark 2. Theorem 2 extends and improves the result of Theorem 1.1 in [32]. In fact, when
Φ(t) = |t|2, our subcritical growth condition given by ( f1) reduces to:

lim
|t|→∞

f (x, t)
|t|2∗−1 = 0, uniformly in x ∈ RN , (4)

which is weaker than (A2) in [32]. For example, it is easy to check that function f (t) = |t|2∗−2t
log(e+|t|)

satisfies (4) but does not satisfy (A2) in [32]. Moreover, it is obvious that Theorem 1 is different from
Theorem 1.2 in [32] even when the fractional Φ-Laplacian Equation (1) reduces to the fractional
Schrödinger equation.

The rest of this paper is organized as follows. In Section 2, we recall some definitions
and basic properties on the Orlicz and fractional Orlicz–Sobolev spaces. In Section 3, we
complete the proofs of the main results. In Section 4, we present some examples about the
function ϕ defined by (2) and non-linearity f to illustrate our results.

2. Preliminaries

In this section, we make a brief introduction about Orlicz and fractional Orlicz–Sobolev
spaces. For more details, we refer the reader to [5,33,34] and references therein.

To begin with, we recall the notion of N-function. Let ϕ : [0,+∞) → [0,+∞) be a right
continuous and monotone increasing function that satisfies the following conditions:

(1) ϕ(0) = 0;
(2) lim

t→+∞
ϕ(t) = +∞;

(3) ϕ(t) > 0 whenever t > 0.

Then, the function defined on [0,+∞) by Φ(t) =
∫ t

0 ϕ(τ)dτ is called an N-function. It
is obvious that Φ(0) = 0 and Φ is strictly increasing and convex in [0,+∞).

An N-function Φ is said to satisfy the ∆2-condition if there exists a constant K > 0
such that Φ(2t) ≤ KΦ(t) for all t ≥ 0. Φ satisfies the ∆2-condition if and only if for any
given c ≥ 1, there exists a constant Kc > 0 such that Φ(ct) ≤ KcΦ(t) for all t ≥ 0.

Given two N-functions A and B, B is said to dominate A globally if there exists a
constant K > 0 such that A(t) ≤ B(Kt) for all t ≥ 0. Furthermore, B is said to be essentially
stronger than A, denoted by A ≺≺ B, if for each c > 0 it holds that:

lim
t→+∞

A(ct)
B(t)

= 0.

For the N-function introduced above, the complement of Φ is defined by:

Φ̃(t) = max
ρ≥0

{tρ − Φ(ρ)}, for t ≥ 0.
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Then, it holds that Young’s inequality:

ρt ≤ Φ(ρ) + Φ̃(t), for all ρ, t ≥ 0, (5)

and the inequality (see Lemma A.2 in [35]):

Φ̃(ϕ(t)) ≤ Φ(2t), for all t ≥ 0. (6)

Now, we recall the Orlicz space LΦ(RN) associated with Φ. When Φ satisfies the
∆2-condition, the Orlicz space LΦ(RN) is the vectorial space of the measurable functions
u : RN → R satisfying: ∫

RN
Φ(|u|)dx < +∞.

The space LΦ(RN) is a Banach space endowed with the Luxemburg norm:

∥u∥Φ = ∥u∥LΦ(RN) := inf
{

λ > 0 :
∫
RN

Φ
(
|u|
λ

)
dx ≤ 1

}
.

Particularly, when Φ(t) = |t|p(p > 1), the corresponding Orlicz space LΦ(RN) re-
duces to the classical Lebesgue space Lp(RN) endowed with the norm:

∥u∥p = Lp(RN) :=
(∫

RN
|u(x)|pdx

) 1
p
.

The fact that Φ satisfies ∆2-condition implies that:

un → u in LΦ(Ω) ⇐⇒
∫

Ω
Φ(|un − u|)dx → 0, (7)

where Ω is an open set of RN . Moreover, by the Young’s inequality (5), the following
generalized version of Hölder’s inequality holds (see [33,34]):∣∣∣∣∫RN

uvdx
∣∣∣∣ ≤ 2∥u∥Φ∥v∥Φ̃, for all u ∈ LΦ(RN), v ∈ LΦ̃(RN).

Given an N-function Φ and a fractional parameter 0 < s < 1, we recall the fractional
Orlicz–Sobolev space Ws,Φ(RN) defined as:

Ws,Φ(RN) :=
{

u ∈ LΦ(RN) :
∫∫

R2N
Φ(|Dsu|)dµ < +∞

}
,

where Dsu is defined by (3) and dµ(x, y) := dxdy
|x−y|N . The space Ws,Φ(RN) is a Banach space

endowed with the following norm:

∥u∥s,Φ = ∥u∥Ws,Φ(RN) := ∥u∥Φ + [u]s,Φ,

where the so-called (s, Φ)-Gagliardo semi-norm is defined as:

[u]s,Φ := inf
{

λ > 0 :
∫∫

R2N
Φ
(
|Dsu|

λ

)
dµ ≤ 1

}
.

The following lemmas will be useful in the following.

Lemma 1. (see [33,35]) Assume that Φ is an N-function. Then, the following conditions are equivalent:
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(1)

1 < l = inf
t>0

tϕ(t)
Φ(t)

≤ sup
t>0

tϕ(t)
Φ(t)

= m < +∞; (8)

(2) Let ζ1(t) = min{tl , tm}, ζ2(t) = max{tl , tm}, for t ≥ 0. Then, Φ satisfies:

ζ1(t)Φ(ρ) ≤ Φ(ρt) ≤ ζ2(t)Φ(ρ), for all ρ, t ≥ 0;

(3) Φ satisfies the ∆2-condition.

Lemma 2. (see [11,35]) Assume that Φ is an N-function and (8) holds. Then, Φ satisfies:

(1)

ζ1(∥u∥Φ) ≤
∫
RN

Φ(|u|)dx ≤ ζ2(∥u∥Φ), for all u ∈ LΦ(RN);

(2)

ζ1([u]s,Φ) ≤
∫∫

R2N
Φ(|Dsu|)dµ ≤ ζ2([u]s,Φ), for all u ∈ Ws,Φ(RN).

Lemma 3. (see [35]) Assume that Φ is an N-function and (8) holds with l > 1. Let Φ̃ be the
complement of Φ and ζ3(t) = min{tl̃ , tm̃}, ζ4(t) = max{tl̃ , tm̃}, for t ≥ 0, where l̃ := l

l−1 and
m̃ := m

m−1 . Then, Φ̃ satisfies:

(1)

m̃ = inf
t>0

tΦ̃
′
(t)

Φ̃(t)
≤ sup

t>0

tΦ̃
′
(t)

Φ̃(t)
= l̃;

(2)
ζ3(t)Φ̃(ρ) ≤ Φ̃(ρt) ≤ ζ4(t)Φ̃(ρ), for all ρ, t ≥ 0;

(3)

ζ3(∥u∥Φ̃) ≤
∫
RN

Φ̃(|u|)dx ≤ ζ4(∥u∥Φ̃), for all u ∈ LΦ̃(RN).

Remark 3. By Lemmas 1 and 3, (ϕ1) implies that Φ and Φ̃ are two N-functions satisfying the ∆2-
condition. The fact that Φ and Φ̃ satisfy the ∆2-condition implies that LΦ(RN) and Ws,Φ(RN) are
separable and reflexive Banach spaces. Moreover, C∞

c (RN) is dense in Ws,Φ(RN) (see [5,33,34]).

Next, we recall the Sobolev conjugate function of Φ, which is denoted by Φ∗. Sup-
pose that:

∫ 1

0

Φ−1(τ)

τ
N+s

N
dτ < +∞ and

∫ +∞

1

Φ−1(τ)

τ
N+s

N
dτ = +∞. (9)

Then, Φ∗ is defined by:

Φ−1
∗ (t) =

∫ t

0

Φ−1(τ)

τ
N+s

N
dτ, for t ≥ 0.

Lemma 4. (see [6,36]) Assume that Φ is an N-function and (8) holds with l, m ∈ (1, N
s ). Then, (9)

holds. Let ζ5(t) = min{tl∗ , tm∗}, ζ6(t) = max{tl∗ , tm∗}, for t ≥ 0, where l∗ := Nl
N−sl , m∗ :=

Nm
N−sm . Then, Φ∗ satisfies:

(1)

l∗ = inf
t>0

tΦ′
∗(t)

Φ∗(t)
≤ sup

t>0

tΦ′
∗(t)

Φ∗(t)
= m∗;



Axioms 2024, 13, 294 7 of 22

(2)
ζ5(t)Φ∗(ρ) ≤ Φ∗(ρt) ≤ ζ6(t)Φ∗(ρ), for all ρ, t ≥ 0;

(3)

ζ5(∥u∥Φ∗) ≤
∫
RN

Φ∗(|u|)dx ≤ ζ6(∥u∥Φ∗), for all u ∈ LΦ∗(RN).

The conjugate function Φ∗ plays a crucial role in the following embedding results,
which will be used frequently in our proofs.

Lemma 5. (see [13,33,36]) Assume that Φ is an N-function and (8) holds with l, m ∈ (1, N
s ).

Then, the following embedding results hold:

(1) the embedding Ws,Φ(RN) ↪→ LΦ∗(RN) is continuous;
(2) the embedding Ws,Φ(RN) ↪→ LΦ(RN) is continuous;
(3) the embedding Ws,Φ(RN) ↪→ LΨ(RN) is continuous if Φ dominates Ψ globally;
(4) the embedding Ws,Φ(RN) ↪→ LΨ(RN) is continuous if Ψ satisfies the ∆2-condition, Ψ ≺≺

Φ∗ and

lim
t→0+

Ψ(t)
Φ(t)

= 0;

(5) when RN is replaced by a C0,1 bounded open subset D of RN , then the embedding Ws,Φ(D) ↪→
LΨ(D) is compact if Ψ ≺≺ Φ∗. Explicitly, when m < l∗, the embedding Ws,Φ(Br) ↪→
LΦ(Br) is compact, where the following is true: Br := {x ∈ RN : |x| < r} for r > 0.

Notation: Throughout this paper, Cd is used to denote a positive constant which
depends only on the constant or function d.

3. Proofs

In fractional Orlicz–Sobolev space Ws,Φ(RN), denoted by W for simplicity, the energy
functional I associated with Equation (1) is defined by:

I(u) :=
∫∫

R2N
Φ(|Dsu|)dµ +

∫
RN

V(x)Φ(|u|)dx −
∫
RN

F(x, u)dx. (10)

It follows ( f1) that for any given constant ε > 0, there exists a constant Cε > 0 such
that:

| f (x, t)| ≤ εϕ(|t|) + CεΦ′
∗(|t|) and |F(x, t)| ≤ εΦ(|t|) + CεΦ∗(|t|), for all (x, t) ∈ RN ×R. (11)

Thus, by using standard arguments as [8], we have that I ∈ C1(W,R) and its derivative
is given by:

⟨I′(u), v⟩ =
∫∫

R2N
a(|Dsu|)DsuDsvdµ +

∫
RN

V(x)a(|u|)uvdx −
∫
RN

f (x, u)vdx, for all u, v ∈ W. (12)

Thus, the critical points of I are weak solutions of Equation (1).
Define Ii(i = 1, 2) : W → R by:

I1(u) =
∫∫

R2N
Φ(|Dsu|)dµ +

∫
RN

V(x)Φ(|u|)dx (13)

and:

I2(u) =
∫
RN

F(x, u)dx. (14)

Then:
I(u) = I1(u)− I2(u), for all u, v ∈ W
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and:

⟨I′1(u), v⟩ =
∫∫

R2N
a(|Dsu|)DsuDsvdµ +

∫
RN

V(x)a(|u|)uvdx, for all u, v ∈ W, (15)

⟨I′2(u), v⟩ =
∫
RN

f (x, u)vdx, for all u, v ∈ W. (16)

Lemma 6. Assume that (ϕ1), (V) and ( f1) hold. Then, there exist two constants ρ, η > 0 such
that I(u) ≥ η for all u ∈ W with ∥u∥s,Φ = ρ.

Proof. When ∥u∥s,Φ = ∥u∥Φ + [u]s,Φ ≤ 1, by (10), (V), (11) with taking ε < α1, Lemma 2,
(3) in Lemma 4 and (1) in Lemma 5, we have:

I(u) ≥
∫∫

R2N
Φ(|Dsu|)dµ + α1

∫
RN

Φ(|u|)dx −
∫
RN

|F(x, u)|dx

≥
∫∫

R2N
Φ(|Dsu|)dµ + (α1 − ε)

∫
RN

Φ(|u|)dx − Cε

∫
RN

Φ∗(|u|)dx

≥ [u]ms,Φ + (α1 − ε)∥u∥m
Φ − Cε max{∥u∥l∗

Φ∗ , ∥u∥m∗
Φ∗}

≥ min{1, α1 − ε}Cm∥u∥m
s,Φ − CεCl∗

Φ∗∥u∥l∗
s,Φ − CεCm∗

Φ∗∥u∥m∗
s,Φ.

Taking into account that m < l∗ ≤ m∗, it follows from the aforementioned inequality
that there exist sufficiently small positive constants ρ and η such that I(u) ≥ η for all u ∈ W
with ∥u∥s,Φ = ρ.

Lemma 7. Assume that (ϕ1), (V), ( f1) and ( f2) (or ( f4)) hold. Then, there exists a u0 ∈ W such
that I(tu0) → −∞ as t → +∞.

Proof. For any given constant M > α2, by ( f1) and ( f2) (or combine ( f4) with (2) in
Lemma 1), there exists a constant CM > 0 such that:

F(x, t) ≥ MΦ(|t|)− CM, for all (x, t) ∈ RN ×R. (17)

Now, choose u0 ∈ C∞
c (Br) \ {0} with 0 ≤ u0(x) ≤ 1. Then u0 ∈ W, and by (10),

(V), (17), (2) in Lemma 1 and the fact F(x, 0) = 0 for all x ∈ RN , when t > 0 we have:

I(tu0) =
∫∫

R2N
Φ(|Ds(tu0)|)dµ +

∫
RN

V(x)Φ(|tu0|)dx −
∫
RN

F(x, tu0)dx

=
∫∫

R2N
Φ(t|Dsu0|)dµ +

∫
RN

V(x)Φ(t|u0|)dx −
∫

Br
F(x, tu0)dx

≤ Φ(t)
∫∫

R2N
max{|Dsu0|l , |Dsu0|m}dµ + α2

∫
RN

Φ(t|u0|)dx − M
∫

Br
Φ(t|u0|) + CM|Br|

≤ Φ(t)
∫∫

R2N
(|Dsu0|l + |Dsu0|m)dµ − (M − α2)Φ(t)

∫
RN

min{|u0|l , |u0|m}dx + CM|Br|

= Φ(t)
[∫∫

R2N
(|Dsu0|l + |Dsu0|m)dµ − (M − α2)∥u0∥m

m

]
+ CM|Br|.

Note that lim
t→+∞

Φ(t) = +∞. We can choose M > 1
∥u0∥m

m
{
∫∫
R2N

(|Dsu0|l + |Dsu0|m)dµ}+

α2 such that I(tu0) → −∞ as t → +∞. What needs to be pointed out is that here we
used the fact that u0 ∈ Ws,Ψ(RN), where Ψ(t) = |t|l + |t|m, t ≥ 0. So,

∫∫
R2N (|Dsu0|l +

|Dsu0|m)dµ < +∞.

Lemmas 6 and 7 and the fact that I(0) = 0 show that the energy functional I has a
mountain pass geometry; that is, setting:

Γ = {γ ∈ C([0, 1], W) : γ(0) = 0, ∥γ(1)∥s,Φ > ρ and I(γ(1)) ≤ 0},
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we have Γ ̸= ∅. Then, by using the variant version of the mountain pass theorem (see
Theorem 3 in [30]), we deduce that I possesses a (C)c-sequence {un} with the level c ≥
η > 0 given by:

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)). (18)

We recall that (C)c-sequence {un} of I in W means

I(un) → c and (1 + ∥un∥s,Φ)∥I′(un)∥W∗ → 0, as n → ∞. (19)

To prove the boundedness of the (C)c-sequence {un} of I in W, we will use the Lions’
type result for fractional Orlicz–Sobolev spaces (see Theorem 1.6 in [13]). We note that
the claim un ⇀ 0 in X of Theorem 1.6 in [13] is not necessary. With the same proof as
Theorem 1.6 in [13], we can get the following result.

Lemma 8. (Lions’ type result for fractional Orlicz–Sobolev spaces). Suppose that the function ϕ
defined by (2) satisfies (ϕ1) and:

lim
t→0+

Ψ(t)
Φ(t)

= 0.

Let {un} be a bounded sequence in Ws,Φ(RN) in such a way that:

lim
n→∞

sup
y∈RN

∫
Br(y)

Φ(|un|)dx = 0,

for some r > 0. Then, un → 0 in LΨ(RN), where Ψ is an N-function such that Ψ ≺≺ Φ∗.

Lemma 9. Assume that (ϕ1), (ϕ2), (V) and ( f1)-( f3) hold. Then, any (C)c-sequence of I in W is
bounded for all c ≥ 0.

Proof. Let {un} be a (C)c-sequence of I in W for c ≥ 0. By (19), we have:

I(un) → c and
∣∣∣∣〈I′(un),

1
m

un

〉∣∣∣∣→ 0, as n → ∞. (20)

Then, by (10), (12), (ϕ1), and (V), for n large, we have:

c + 1 ≥ I(un)−
〈

I′(un),
1
m

un

〉
=

∫∫
R2N

(
Φ(|Dsun|)−

1
m

a(|Dsun|)|Dsun|2
)

dµ

+
∫
RN

V(x)
(

Φ(|un|)−
1
m

a(|un|)u2
n

)
dx

+
∫
RN

(
1
m

un f (x, un)− F(x, un)

)
dx

≥ 1
m

∫
RN

F̂(x, un)dx. (21)

To prove the boundedness of {un}, arguing by contradiction, we suppose that there
exists a subsequence of {un}, still denoted by {un}, such that ∥un∥s,Φ → ∞, as n → ∞. Let
ũn = un

∥un∥s,Φ
. Then ∥ũn∥s,Φ = 1.

Firstly, we claim that:

λ1 := lim
n→∞

sup
y∈RN

∫
B2(y)

Φ(|ũn|)dx = 0. (22)
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Indeed, if λ1 ̸= 0, there exist a constant δ > 0, a subsequence of {ũn}, still denoted by
{ũn}, and a sequence {zn} ∈ ZN such that:∫

B2(zn)
Φ(|ũn|)dx > δ, for all n ∈ N. (23)

Let ūn = ũn(· + zn). Then ∥ūn∥s,Φ = ∥ũn∥s,Φ = 1, that is, {ūn} is bounded in W.
Passing to a subsequence of {ūn}, still denoted by {ūn}, by Remark 3 and (5) in Lemma 5,
we can assume that there exists a ū ∈ W such that:

ūn ⇀ ū in W, ūn → ū in LΦ(B2) and ūn(x) → ū(x) a.e. in B2. (24)

Note that: ∫
B2

Φ(|ūn|)dx =
∫

B2(zn)
Φ(|ũn|)dx.

Then, by (23), (24), and (7), we obtain that ū ̸= 0 in LΦ(B2), that is, [ū ̸= 0] := {x ∈ B2 :
ū(x) ̸= 0} has non-zero Lebesgue measure. Let u∗

n = un(·+ zn). Then ∥u∗
n∥s,Φ = ∥un∥s,Φ,

and it follows from the fact that V and f are 1-periodic in x that:

I(u∗
n) = I(un) and ∥I′(u∗

n)∥W∗ = ∥I′(un)∥W∗ , for all n ∈ N,

which imply that {u∗
n} is also a (C)c-sequence of I. Then, by (21), for n large, we have:∫

RN
F̂(x, u∗

n)dx ≤ m(c + 1). (25)

However, by (2) in Lemma 1, ( f2) and ( f3) imply:

lim
|t|→∞

F̂(x, t) = +∞, uniformly in x ∈ RN . (26)

Moreover, by (24), ūn = ũn(·+ zn) =
un(·+zn)
∥un∥s,Φ

= u∗
n

∥un∥s,Φ
implies:

|u∗
n(x)| = |ūn(x)|∥un∥s,Φ → ∞, a.e. x ∈ [ū ̸= 0]. (27)

Then, it follows from ( f3), (26), (27) and Fatou’s Lemma that:∫
RN

F̂(x, u∗
n)dx ≥

∫
[ū ̸=0]

F̂(x, u∗
n)dx → +∞, as n → ∞,

which contradicts (25). Therefore, λ1 = 0, and thus, (22) holds.
Next, for given p ∈ (l, l∗) and c > 0, by (ϕ1), (ϕ2) and 2) in Lemma 4, we have:

lim
t→0+

tp

Φ(t)
= 0 and lim

t→+∞

(ct)p

Φ∗(t)
≤ lim

t→+∞

cptp

Φ∗(1)min{tl∗ , tm∗}
= 0. (28)

Then, by Lemma 8, (22) and (28) imply that:

ũn → 0 in Lp(RN), for all p ∈ (l, l∗). (29)

In addition, let Ψ = |t|l , t ≥ 0. Combining (ϕ1) and (ϕ2) with Lemma 1, we can easily
check that Φ dominates Ψ globally. Then, it follows from 3) in Lemma 5 that the embedding
W ↪→ Ll(RN) is continuous, which implies that there exists a constant M1 > 0 such that:

∥ũn∥l
l ≤ M1, for all n ∈ N. (30)



Axioms 2024, 13, 294 11 of 22

Finally, to get a contradiction, we will divide both sides of formula I(un) = I1(un)−
I2(un) by ∥un∥l

s,Φ1
and let n → ∞. On the ond hand, by (20), it is clear that:

I(un)

∥un∥l
s,Φ

→ 0, as n → ∞. (31)

On the other hand, by (13), (V) and Lemma 2, we have:

I1(un)

∥un∥l
s,Φ

=
1

∥un∥l
s,Φ

{
∫∫
R2N

Φ(|Dsun|)dµ +
∫
RN

V(x)Φ(|un|)dx}

≥
min{[un]ls,Φ, [un]ms,Φ}+ α1 min{∥un∥l

Φ, ∥un∥m
Φ}

∥un∥l
s,Φ

≥
[un]ls,Φ + α1∥un∥l

Φ − 1 − α1

∥un∥l
s,Φ

≥ min{1, α1}Cl([un]s,Φ + ∥un∥Φ)
l − 1 − α1

∥un∥l
s,Φ

→ min{1, α1}Cl , as n → ∞. (32)

Moreover, by (2) in Lemma 1, ( f1) implies that:

lim
|t|→0

F(x, t)
|t|l

= 0, uniformly in x ∈ RN .

Then, for any given constant ε > 0, there exists a constant Rε > 0 such that:

|F(x, t)|
|t|l

≤ ε, for all x ∈ RN , |t| ≤ Rε. (33)

For the above Rε > 0, by ( f1) and ( f3), there exists a constant CR > 0 such that:(
|F(x, t)|

|t|l

)k
≤ CR F̂(x, t), for all x ∈ RN , |t| > Rε. (34)

Let:

Xn = {x ∈ RN : |un(x)| ≤ Rε} and Yn = {x ∈ RN : |un(x)| > Rε}.

Then:

|I2(un)|
∥un∥l

s,Φ
≤
∫

Xn

|F(x, un)|
∥un∥l

s,Φ
dx +

∫
Yn

|F(x, un)|
∥un∥l

s,Φ
dx. (35)

By (33) and (30), we have:∫
Xn

|F(x, un)|
∥un∥l

s,Φ
dx =

∫
Xn

|F(x, un)|
|un|l

|ũn|ldx ≤ ε∥ũn∥l
l ≤ εM1. (36)

The claim k > N
sl given by ( f3) implies that lk

k−1 ∈ (l, l∗). Hence, by Hölder’s inequal-
ity, (34), (21), (29), and the fact that F̂(x, t) ≥ 0, we have:
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∫
Yn

|F(x, un)|
∥un∥l

s,Φ
dx =

∫
Yn

|F(x, un)|
|un|l

|ũn|ldx

≤
(∫

Yn

(
|F(x, un)|

|un|l

)k
dx

) 1
k(∫

Yn
|ũn|

lk
k−1 dx

) k−1
k

≤
(∫

Yn
CR F̂(x, un)dx

) 1
k
∥ũn∥l

lk
k−1

≤ [CRm(c + 1)]
1
k ∥ũn∥l

lk
k−1

→ 0, as n → ∞. (37)

Since ε is arbitrary, it follows from (35), (36), and (37) that:

I2(un)

∥un∥l
s,Φ

→ 0, as n → ∞. (38)

By dividing both sides of formula I(un) = I1(un)− I2(un) by ∥un∥l
s,Φ1

and letting
n → ∞, we get a contradiction via (31), (32), and (38). Therefore, the (C)c-sequence {un} is
bounded.

Lemma 10. Assume that (ϕ1), (V), ( f1), ( f4) and ( f5) are satisfied. Then, for u ∈ W, it holds that:

I(u) ≥ I(tu) +
1 − tl

m
⟨I′(u), u⟩, for all t ∈ [0, θ0],

where θ0 is given in ( f5).

Proof. When u ∈ W, 0 ≤ t ≤ 1, by (10), (12), and Lemma 1, we have:

I(u)− I(tu)− 1 − tl

m
⟨I′(u), u⟩

=
∫∫

R2N
Φ(|Dsu|)dµ +

∫
RN

V(x)Φ(|u|)dx −
∫
RN

F(x, u)dx

−
∫∫

R2N
Φ(|Dstu|)dµ −

∫
RN

V(x)Φ(|tu|)dx +
∫
RN

F(x, tu)dx

−1 − tl

m

∫∫
R2N

a(|Dsu|)|Dsu|2dµ − 1 − tl

m

∫
RN

V(x)a(|u|)u2dx +
1 − tl

m

∫
RN

u f (x, u)dx

≥
∫∫

R2N
Φ(|Dsu|)dµ − max{tl , tm}

∫∫
R2N

Φ(|Dsu|)dµ − (1 − tl)
∫∫

R2N
Φ(|Dsu|)dµ

+
∫
RN

V(x)Φ(|u|)dx − max{tl , tm}
∫
RN

V(x)Φ(|u|)dx − (1 − tl)
∫
RN

V(x)Φ(|u|)dx

+
∫
RN

[
1 − tl

m
u f (x, u)− F(x, u) + F(x, tu)

]
dx

=
∫
RN

[
1 − tl

m
u f (x, u)−

∫ u

tu
f (x, τ)dτ

]
dx.

Then, it follows from ( f5) that:

I(u) ≥ I(tu) +
1 − tl

m
⟨I′(u), u⟩, for all t ∈ [0, θ0],

for some θ0 ∈ (0, 1).

Lemma 11. Assume that (ϕ1), (V), ( f1), ( f4) and ( f5) hold. Then any (C)c-sequence of I in W
is bounded for all c ≥ 0.
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Proof. Let {un} be a (C)c-sequence of I in W for c ≥ 0. By (19), we have:

I(un) → c and
∣∣〈I′(un), un

〉∣∣→ 0, as n → ∞. (39)

To prove the boundedness of {un}, arguing by contradiction, we suppose that there
exists a subsequence of {un}, still denoted by {un}, such that ∥un∥s,Φ → ∞, as n → ∞. Let
ũn = un

∥un∥s,Φ
. Then ∥ũn∥s,Φ = 1.

Firstly, we claim that:

λ2 := lim
n→∞

sup
y∈RN

∫
B2(y)

Φ(|ũn|)dx = 0. (40)

Indeed, if λ2 ̸= 0, there exist a constant δ > 0, a subsequence of {ũn}, still denoted by
{ũn}, and a sequence {zn} ∈ ZN such that:∫

B2(zn)

Φ(|ũn|)dx > δ, for all n ∈ N. (41)

Let ūn = ũn(· + zn). Then ∥ūn∥s,Φ = ∥ũn∥s,Φ = 1, that is, {ūn} is bounded in W.
Passing to a subsequence of {ūn}, still denoted by {ūn}, by Remark 3 and (5) in Lemma 5,
we can assume that there exists a ū ∈ W such that:

ūn ⇀ ū in W, ūn → ū in LΦ(B2) and ūn(x) → ū(x) a.e. in B2. (42)

Note that: ∫
B2

Φ(|ūn|)dx =
∫

B2(zn)
Φ(|ũn|)dx.

Then, by (41), (42), and (7), we obtain that ū ̸= 0 in LΦ(B2), that is, [ū ̸= 0] := {x ∈
B2 : ū(x) ̸= 0} has non-zero Lebesgue measure. Let u∗

n = un(· + zn). Then ∥u∗
n∥s,Φ =

∥un∥s,Φ, and:

|u∗
n(x)| = |ūn(x)|∥un∥s,Φ → ∞, a.e. x ∈ [ū ̸= 0]. (43)

Then, it follows from (14), ( f4), (43) and Fatou’s Lemma that:

I2(un)

∥un∥m
s,Φ

=
∫
RN

F(x, un)

∥un∥m
s,Φ

dx

=
∫
RN

F(x + zn, u∗
n)

|u∗
n|m

|ūn|mdx

≥
∫
[ū ̸=0]

F(x + zn, u∗
n)

|u∗
n|m

|ūn|mdx → +∞, as n → ∞. (44)

Moreover, it follows from (13), (V), and Lemma 2 that:

lim sup
n→∞

I1(un)

∥un∥m
s,Φ

= lim sup
n→∞

1
∥un∥m

s,Φ
{
∫∫
R2N

Φ(|Dsun|)dµ +
∫
RN

V(x)Φ(|un|)dx}

≤ lim sup
n→∞

max{[un]ls,Φ, [un]ms,Φ}+ α2 max{∥un∥l
Φ, ∥un∥m

Φ}
∥un∥m

s,Φ

≤ 1 + α2. (45)

By dividing both sides of formula I(un) = I1(un)− I2(un) by ∥un∥m
s,Φ1

and letting
n → ∞, we get a contradiction via (39), (44), and (45). Therefore, λ2 = 0 and thus (40) holds.
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Then, by using the Lions’ type result for fractional Orlicz–Sobolev spaces, with the similar
discussion as in Lemma 9, we have:

ũn → 0 in Lp(RN), for all p ∈ (m, l∗). (46)

Besides, it follows from (1) in Lemma 2, (3) in Lemma 4, (1)–(2) in Lemma 5 and the
fact ∥ũn∥s,Φ = 1 that there exists a constant M2 > 0 such that:∫

RN
(Φ(|ũn|) + Φ∗(|ũn|))dx

≤ max
{
∥ũn∥l

Φ, ∥ũn∥m
Φ

}
+ max

{
∥ũn∥l∗

Φ∗ , ∥ũn∥m∗
Φ∗

}
≤ M2, for all n ∈ N. (47)

Next, for any given R > 1, let tn = R
∥un∥s,Φ

. Since ∥un∥s,Φ → ∞ as n → ∞, it follows
that tn ∈ (0, θ0) for n large enough. Thus, by (39) and Lemma 10, we have:

c + on(1) = I(un)

≥ I(tnun) +
1 − tl

n
m

⟨I′(un), un⟩

= I
(

R
∥un∥s,Φ

un

)
+ on(1)

= I(Rũn) + on(1)

= I1(Rũn)− I2(Rũn) + on(1). (48)

For the above R and any given ε > 0, by ( f1), the continuity of F and the fact that Φ
and Φ∗ satisfy the ∆2-condition, there exist constants Cε > 0 and p ∈ (m, l∗) such that:

|F(x, Rt)| ≤ ε(Φ(|t|) + Φ∗(|t|)) + Cε|t|p, for all (x, t) ∈ RN ×R. (49)

Then, by (14), (46), (47), and (49), we have:

|I2(Rũn)| ≤
∫
RN

|F(x, Rũn)|dx

≤ ε
∫
RN

(Φ(|ũn|) + Φ∗(|ũn|))dx + Cε

∫
RN

|ũn|pdx

≤ εM2 + on(1). (50)

Since ε > 0 is arbitrary, (50) implies that:

I2(Rũn) = on(1). (51)

Moreover, for the above R > 1, by (13), Lemma 1 and the fact ∥ũn∥s,Φ = ∥ũn∥Φ +
[ũn]s,Φ = 1, we have:

I1(Rũn) =
∫∫

R2N
Φ(|Ds(Rũn)|)dµ +

∫
RN

V(x)Φ(|Rũn|)dx

≥ min{Rl , Rm}
(

min{[ũn]
l
s,Φ, [ũn]

m
s,Φ}+ α1 min{∥ũn∥l

Φ, ∥ũn∥m
Φ}
)

= Rl([ũn]
m
s,Φ + α1∥ũn∥m

Φ
)

≥ min{1, α1}Rl([ũn]
m
s,Φ + ∥ũn∥m

Φ
)

≥ min{1, α1}RlCm, (52)

where Cm := inf|u|+|v|=1{|u|m + |v|m} > 0. Then, by the arbitrariness of R, combin-
ing (51) and (52) with (48), we get a contradiction. Therefore, the (C)c-sequence {un}
is bounded.
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Lemma 12. Assume that (ϕ1), (V), and ( f1) hold. Then I′ : W → W∗ is weakly sequentially
continuous. Namely, if un ⇀ u in W, then I′(un) ⇀ I′(u) in the dual space W∗ of W.

Proof. Since W is reflexive, it is enough to prove I′(un)
w∗
⇀ I′(u) in W∗. Namely, to prove:

lim
n→∞

⟨I′(un), v⟩ = ⟨I′(u), v⟩, for all v ∈ W. (53)

Firstly, we prove that I′ is bounded on each bounded subset of W. Indeed, by (12),
(V), (5), (11), (6), Lemma 2, (3) in Lemma 4, (1) in Lemma 5, and the fact that Φ, Φ̃ and Φ∗
satisfy the ∆2-condition, we have:

∥I′(u)∥W∗ = sup
v∈W,∥v∥s,Φ=1

|⟨I′(u), v⟩|

≤ sup
v∈W,∥v∥s,Φ=1

(∫∫
R2N

a(|Dsu|)|Dsu||Dsv|dµ +
∫
RN

V(x)a(|u|)|u||v|dx

+
∫
RN

| f (x, u)||v|dx
)

≤ sup
v∈W,∥v∥s,Φ=1

(∫∫
R2N

Φ̃(a(|Dsu|)|Dsu|)dµ +
∫∫

R2N
Φ(|Dsv|)dµ

+(α2 + ε)
∫
RN

Φ̃(a(|u|)|u|)dx + (α2 + ε)
∫
RN

Φ(|v|)dx

+Cε

∫
RN

Φ̃∗(Φ′
∗(|u|))dx + Cε

∫
RN

Φ∗(|v|)dx
)

≤
(∫∫

R2N
Φ(2|Dsu|)dµ + (α2 + ε)

∫
RN

Φ(2|u|)dx + Cε

∫
RN

Φ∗(2|u|)dx
)

+ sup
v∈W,∥v∥s,Φ=1

(
max{[v]ls,Φ, [v]ms,Φ}+ (α2 + ε)max{∥v∥l

Φ, ∥v∥m
Φ}

+Cε max{∥v∥l∗
Φ∗ , ∥v∥m∗

Φ∗}
)

≤ K2

(∫∫
R2N

Φ(|Dsu|)dµ + (α2 + ε)
∫
RN

Φ(|u|)dx + Cε

∫
RN

Φ∗(|u|)dx
)

+1 + α2 + ε + CεCΦ∗

≤ K2

(
(1 + α2 + ε)∥u∥m

s,Φ + CεCΦ∗∥u∥m∗
s,Φ

)
+ (K2 + 1)(1 + α2 + ε + CεCΦ∗),

which implies that I′ is bounded on each bounded subset of W. Moreover, C∞
c (RN) is

dense in W. Then, to prove (53) we only need to prove:

lim
n→∞

⟨I′(un), w⟩ = ⟨I′(u), w⟩, for all w ∈ C∞
c (RN). (54)

To get (54), arguing by contradiction, we suppose that there exist constant δ > 0,
w0 ∈ C∞

c (RN) with supp{w0} ⊂ Br for some r > 0, and a subsequence of {un}, still
denoted by {un}, such that:

|⟨I′(un), w0⟩ − ⟨I′(u), w0⟩| ≥ δ, for all n ∈ RN . (55)

Since un ⇀ u in W, by (5) in Lemma 5, there exists a subsequence of {un}, still
denoted by {un}, such that

un → u in LΦ
loc(R

N), un(x) → u(x) a.e. in RN and Dsun → Dsu a.e. in R2N .
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Next, we claim that

lim
n→∞

∫
RN

f (x, un)w0dx =
∫
RN

f (x, u)w0dx. (56)

Indeed, it follows ( f1) that for any given constant ε > 0, there exists a constant Cε > 0
such that:

| f (x, t)| ≤ Cε + εΦ′
∗(|t|), for all (x, t) ∈ RN ×R.

Then, by using standard arguments, we can obtain that the sequence { f (x, un)} is
bounded in LΦ̃∗(Br). Moreover, f (x, un) → f (x, u) a.e. in Br. Then, by applying Lemma 2.1
in [37], we get f (x, un) ⇀ f (x, u) in LΦ̃∗(Br), and thus (56) holds because w0 ∈ LΦ∗(Br).

Similarly, we can get:

lim
n→∞

∫∫
R2N

a(|Dsun|)DsunDsw0dµ =
∫∫

R2N
a(|Dsu|)DsuDsw0dµ (57)

and:

lim
n→∞

∫
RN

V(x)a(|un|)unw0dx =
∫
RN

V(x)a(|u|)uw0dx, (58)

which is based on the fact that the sequence {a(|Dsun|)Dsun} is bounded in LΦ̃(R2N , dµ),
a(|Dsun|)Dsun → a(|Dsu|)Dsu a.e. in R2N , Dsw0 ∈ LΦ(R2N , dµ), and the sequence
{V(x)a(|un|)un} is bounded in LΦ̃(RN), V(x)a(|un|)un → V(x)a(|u|)u a.e. in RN , w0 ∈
LΦ(RN), respectively.

Therefore, combining (56)–(58) with (12), we can conclude that:

lim
n→∞

|⟨I′(un), w0⟩ − ⟨I′(u), w0⟩| = 0,

which contradicts (55). Thus, (54) holds and the proof is completed.

Lemma 13. Equation (1) has at least a non-trivial solution under the assumptions of Theorem 1
and Theorem 2, respectively.

Proof. Let {un} be the (C)c-sequence of I in W for the level c > 0 given in (18). Lemmas 9
and 11 show that the sequence {un} is bounded in W under the assumptions of Theorem 1
and Theorem 2, respectively.

First, we claim that:

λ3 := lim
n→∞

sup
y∈RN

∫
B2(y)

Φ(|un|)dx > 0. (59)

Indeed, if λ3 = 0, by using the Lions’ type result for fractional Orlicz–Sobolev spaces
again, we have:

un → 0 in Lp(RN), for all p ∈ (m, l∗). (60)

Given p ∈ (m, l∗), by ( f1), (ϕ1) and the definition F(x, t) =
∫ t

0 f (x, τ)dτ, for any given
constant ε > 0, there exists a constant Cε > 0 such that:

|F(x, t)| ≤ ε(Φ(|t|) + Φ∗(|t|)) + Cε|t|p, for all (x, t) ∈ RN ×R (61)

and:

|t f (x, t)| ≤ ε(Φ(|t|) + Φ∗(|t|)) + Cε|t|p, for all (x, t) ∈ RN ×R. (62)
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Then, it follows from (60)–(62), (1) in Lemma 2, (3) in Lemma 4 and (1) in Lemma 5,
the boundedness of {un}, and the arbitrariness of ε that:

lim
n→∞

∫
RN

F(x, un)dx = lim
n→∞

∫
RN

un f (x, un)dx = 0. (63)

Hence, by (10), (12), (19), (ϕ1), (V), and (63), we have:

c = lim
n→∞

{
I(un)−

〈
I′(un),

1
l

un

〉}
= lim

n→∞

{∫∫
R2N

(
Φ(|Dsun|)−

1
l

a(|Dsun|)|Dsun|2
)

dµ

+
∫
RN

V(x)
(

Φ(|un|)−
1
l

a(|un|)u2
n

)
dx

+
∫
RN

(
1
l

un f (x, un)− F(x, un)

)
dx
}

≤ lim
n→∞

{∫
RN

(
1
l

un f (x, un)− F(x, un)

)
dx
}

= 0,

which contradicts c > 0. Therefore, λ3 > 0, and thus, (59) holds.
Then, it follows from (59) that there exist a constant δ > 0, a subsequence of {un}, still

denoted by {un}, and a sequence {zn} ⊂ ZN such that:∫
B2(zn)

Φ(|un|)dx =
∫

B2

(Φ(|u∗
n|)dx > δ, for all n ∈ N, (64)

where u∗
n := un(·+ zn). Since V and F are 1-periodic in x, {u∗

n} is also a (C)c-sequence of I.
Then, passing to a subsequence of {u∗

n}, still denoted by {u∗
n}, we can assume that there

exists a u∗ ∈ W such that:

u∗
n ⇀ u∗ in W and u∗

n → u∗ in LΦ(B2). (65)

Thus, by (64), (65), and (7), we obtain that u∗ ̸= 0. Moreover, it follows from Lemma 12
and (19) that:

∥I′(u∗)∥W∗ ≤ lim inf
n→∞

∥I′(u∗
n)∥W∗ = 0,

which implies I′(u∗) = 0, that is, u∗ is a non-trivial solution of Equation (1).

Lemma 14. Assume that (ϕ1), (V) and ( f1) hold. Then:

⟨I′(u), u⟩ = ⟨I′1(u), u⟩ − o(⟨I′1(u), u⟩) as ∥u∥s,Φ → 0.

Proof. By using the continuity of I′i (i = 1, 2) defined by (15) and (16), we can easily
verify that ⟨I′i (u), u⟩ = o(1)(i = 1, 2) as ∥u∥s,Φ → 0. Then, it is sufficient to prove
⟨I′2(u), u⟩ = o(⟨I′1(u), u⟩) as ∥u∥s,Φ → 0 because ⟨I′(u), u⟩ = ⟨I′1(u), u⟩ − ⟨I′2(u), u⟩.

For any given constant ε > 0, it follows ( f1), (ϕ1) and (5) that there exists a constant
Cε > 0 such that:

|t f (x, t)| ≤ εΦ(|t|) + CεΦ∗(|t|), for all (x, t) ∈ RN ×R. (66)

Then, by (16) and (66), we have:

|⟨I′2(u), u⟩| ≤
∫
RN

|u f (x, u)|dx

≤ ε
∫
RN

Φ(|u|)dx + Cε

∫
RN

Φ∗(|u|)dx. (67)
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Moreover, by (15), (ϕ1), and (V), we have:

⟨I′1(u), u⟩ =
∫∫

R2N
a(|Dsu|)|Dsu|2dµ +

∫
RN

V(x)a(|u|)u2dx

≥ l
∫∫

R2N
Φ(|Dsu|)dµ + α1l

∫
RN

Φ(|u|)dx. (68)

Then, (67), (68), Lemma 2, (3) in Lemma 4, (1) in Lemma 5, and the fact that 1 < m < l∗

imply that:

lim
∥u∥s,Φ→0

|⟨I′2(u), u⟩|
⟨I′1(u), u⟩ ≤ lim

∥u∥s,Φ→0

ε
∫
RN Φ(|u|)dx + Cε

∫
RN Φ∗(|u|)dx

l
∫∫

R2N Φ(|Dsu|)dµ + α1l
∫
RN Φ(|u|)dx

≤ ε

α1l
+ lim

∥u∥s,Φ→0

Cε

∫
RN Φ∗(|u|)dx

min{1, α1}l
(∫∫

R2N Φ(|Dsu|)dµ +
∫
RN Φ(|u|)dx

)
≤ ε

α1l
+ lim

∥u∥s,Φ→0

Cε max{Cl∗
Φ∗

, Cm∗
Φ∗

}∥u∥l∗
s,Φ

min{1, α1}lCm∥u∥m
s,Φ

=
ε

α1l
.

Since ε is arbitrary, we conclude that |⟨I′2(u), u⟩| = o(⟨I′1(u), u⟩) as ∥u∥s,Φ → 0, which
implies that ⟨I′2(u), u⟩ = o(⟨I′1(u), u⟩) as ∥u∥s,Φ → 0.

Proof of Theorems 1 and 2. Lemma 13 shows that Equation (1) has at least a non-trivial
solution under the assumptions of Theorem 1 and Theorem 2, respectively. Next, we prove
Equation (1) has a ground state solution. Let:

N := {u ∈ W \ {0} : I′(u) = 0} and d := inf
u∈N

{I(u)}.

First, we claim that d ≥ 0. Indeed, for any given non-trivial critical point u ∈ N ,
by (10), (12), (ϕ1), (V) and ( f3) (or ( f5)), we have:

I(u) = I(u)−
〈

I′(u),
1
m

u
〉

=
∫∫

R2N

(
Φ(|Dsu|)− 1

m
a(|Dsu|)|Dsu|2

)
dµ

+
∫
RN

V(x)
(

Φ(|u|)− 1
m

a(|u|)u2
)

dx

+
∫
RN

(
1
m

u f (x, u)− F(x, u)
)

dx

≥ 1
m

∫
RN

F̂(x, u)dx ≥ 0.

Since the non-trivial critical point u of I is arbitrary, we conclude d ≥ 0. Choose a
sequence {un} ⊂ N such that I(un) → d as n → ∞. Then, it is obvious that {un} is a
(C)d-sequence of I for the level d. Lemmas 9 and 11 show that {un} is bounded in W.
Moreover, combining Lemma 14 with the fact that {un} ⊂ N , we can conclude that there
exists a constant M3 > 0 such that:

∥un∥s,Φ ≥ M3, for all n ∈ N. (69)

Now, we claim that:

λ4 := lim
n→∞

sup
y∈RN

∫
B2(y)

Φ(|un|)dx > 0. (70)
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Indeed, if λ4 = 0, similar to (63), we can get:

lim
n→∞

∫
RN

un f (x, un)dx = 0. (71)

Then, by (12), (ϕ1), (V), and (71), we have:

0 = lim
n→∞

{
⟨I′(un), un⟩+

∫
RN

un f (x, un)dx
}

= lim
n→∞

{∫∫
R2N

a(|Dsun|)|Dsun|2dµ +
∫
RN

V(x)a(|un|)u2
ndx
}

≥ lim
n→∞

{
l
∫∫

R2N
Φ(|Dsun|)dµ + α1l

∫
RN

Φ(|un|)dx
}

≥ 0,

which together with Lemma 2 implies that ∥un∥s,Φ = ∥un∥Φ + [un]s,Φ → 0 as n → ∞,
which contradicts (69). Therefore, λ4 > 0, and thus, (70) holds.

Next, with similar arguments as those in Lemma 13, let u∗
n := un(·+ zn). Then, {u∗

n}
is also a (C)d-sequence of I. Moreover, there exist a subsequence of {u∗

n}, still denoted by
{u∗

n}, and a u∗ ∈ W such that u∗
n ⇀ u∗ in W with u∗ ̸= 0 and I′(u∗) = 0. This shows that

u∗ ∈ N , and thus, I(u∗) ≥ d.
On the other hand, by (10), (12), (ϕ1), (V), ( f3) (or ( f5)), and Fatou’s Lemma, we have:

I(u∗) = I(u∗)−
〈

I′(u∗),
1
m

u∗
〉

=
∫∫

R2N

(
Φ(|Dsu∗|)− 1

m
a(|Dsu∗|)|Dsu∗|2

)
dµ

+
∫
RN

V(x)
(

Φ(|u∗|)− 1
m

a(|u∗|)|u∗|2
)

dx

+
∫
RN

(
1
m

u∗ f (x, u∗)− F(x, u∗)

)
dx

≤ lim inf
n→∞

{
I(u∗

n)−
〈

I′(u∗
n),

1
m

u∗
n

〉}
= d.

Therefore, I(u∗) = d, that is, u∗ is a ground state solution of Equation (1). This finishes
the proof.

4. Examples

For Equation (1), when given s ∈ (0, 1) and N ∈ N, the function ϕ defined by (2) can
be selected from the following possibilities, each satisfying conditions (ϕ1)–(ϕ2).

Case 1. Let ϕ(t) = |t|p−2t for t ̸= 0, ϕ(0) = 0 with 1 < p < N
s . In this case, simple

computations show that l = m = p.
Case 2. Let ϕ(t) = |t|p−2t + |t|q−2t for t ̸= 0, ϕ(0) = 0 with 1 < p < q < N

s < pq
q−p . In

this case, simple computations show that l = p, m = q.

Case 3. Let ϕ(t) = |t|q−2t
log(1+|t|p) for t ̸= 0, ϕ(0) = 0 with 1 < p + 1 < q < N

s < q(q−p)
p . In

this case, simple computations show that l = q − p, m = q.
Moreover, we provide an additional case that satisfies condition (ϕ1) but fails to satisfy

condition (ϕ2).
Case 4. Let ϕ(t) = |t|q−2t log(1 + |t|p) for t ̸= 0, ϕ(0) = 0 with 1 < q < p + q < N

s <
q(p+q)

p . In this case, simple computations show that l = q, m = p + q.



Axioms 2024, 13, 294 20 of 22

For example, regarding Case 2, the operator in non-local problem (1) defined by (3)
reduces to the following fractional (p, q)-Laplacian operator:

(−∆p − ∆q)
su(x) = P.V.

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))
|x − y|N+ps dy

+P.V.
∫
RN

|u(x)− u(y)|q−2(u(x)− u(y))
|x − y|N+qs dy.

Let f (x, t) = qh(x)|t|q−2t log(1 + |t|) + h(x)|t|q−1t
1+|t| , where h ∈ C(RN , (0,+∞)) is 1-

periodic in x. Then, F(x, t) = h(x)|t|q log(1 + |t|) and F̂(x, t) = h(x)|t|q+1

1+|t| . It is easy to check
that f satisfies ( f1)-( f2), but does not satisfy the (AR) type condition (AR)∗. However, we
can see that it satisfies ( f3). Indeed, since N

s < pq
q−p , then there exists constant k ∈ ( N

sp , q
q−p )

such that:

lim sup
|t|→∞

(
|F(x, t)|

|t|l

)k 1
F̂(x, t)

= lim sup
|t|→∞

hk−1(x)(1 + |t|)(log(1 + |t|))k

|t|(p−q)k+q+1
= 0,

which implies that condition ( f3) holds. Therefore, by using Theorem 1, we obtain that
Equation (1) has at least one ground state solution when potential V satisfies condition (V).

In addition, let f (x, t) = h(x)γ(t), where h ∈ C(RN , (0,+∞)) is 1-periodic in x and:

γ(t) =

 0, |t| ≤ 1,(
|t|

q+p∗−4
2 − 1

|t|

)
t, |t| > 1.

Then, F(x, t) = h(x)Γ(t), where:

Γ(t) =

 0, |t| ≤ 1,
2

q+p∗ |t|
q+p∗

2 − |t|+ q+p∗−2
q+p∗ , |t| > 1.

It is easy to check that f satisfies ( f1) and ( f4), but does not satisfy ( f3) and the (Ne)
type condition (Ne)∗. However, we can see that it satisfies ( f5). Indeed, since:

1 − θl

m
t f (x, t) =

1 − θp

q
h(x)tγ(t) and F(x, t)− F(x, θt) ≤ F(x, t) = h(x)Γ(t), (72)

for all θ ∈ R, (x, t) ∈ RN ×R. Then, it is obvious that:

1 − θl

m
t f (x, t) ≥ F(x, t)− F(x, θt), for all θ ∈ R, (x, t) ∈ RN × [−1, 1]. (73)

Moreover:

inf
|t|>1

tγ(t)− qΓ(t)
tγ(t)

= inf
|t|>1

p∗−q
q+p∗ |t|

q+p∗
2 + (q − 1)|t| − q2+qp∗−2q

q+p∗

|t|
q+p∗

2 − |t|
> 0,

which implies that there exists a θ0 ∈ (0, 1) such that:

1 − θp

q
h(x)tγ(t) ≥ h(x)Γ(t), for all θ ∈ [0, θ0], x ∈ RN , |t| > 1. (74)

Then, combining (73) and (74) with (72), we can conclude that ( f5) holds. Therefore,
by using Theorem 2, we obtain that Equation (1) has at least one ground state solution
when potential V satisfies condition (V).
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5. Conclusions

In this paper, we have explored the existence of ground state solutions for a non-
local problem in fractional Orlicz–Sobolev spaces. This problem involves the fractional
Φ-Laplacian, a non-local, and a non-homogeneous operator. Our analysis did not rely on
traditional assumptions such as the Ambrosetti–Rabinowitz type or Nehari type conditions
on the non-linearity. Instead, we utilized a modified version of the mountain pass theorem
and a Lions’ type result tailored for fractional Orlicz–Sobolev spaces. These techniques
allowed us to demonstrate the existence of ground state solutions in the periodic case.
This work extends and improves the existing results in the literature. Looking ahead,
it is intriguing to consider the potential extension of our work to systems in fractional
Orlicz–Sobolev spaces, presenting exciting prospects for future exploration and research.
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