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Abstract: A novel regression method is introduced and studied. The procedure weights squared
residuals based on their magnitude. Unlike the classic least squares which treats every squared
residual as equally important, the new procedure exponentially down-weights squared residuals that
lie far away from the cloud of all residuals and assigns a constant weight (one) to squared residuals
that lie close to the center of the squared-residual cloud. The new procedure can keep a good balance
between robustness and efficiency; it possesses the highest breakdown point robustness for any
regression equivariant procedure, being much more robust than the classic least squares, yet much
more efficient than the benchmark robust method, the least trimmed squares (LTS) of Rousseeuw.
With a smooth weight function, the new procedure could be computed very fast by the first-order
(first-derivative) method and the second-order (second-derivative) method. Assertions and other
theoretical findings are verified in simulated and real data examples.
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1. Introduction
In the classical regression analysis, we assume that there is a relationship for a given

data set {(x⊤i , yi)
⊤, i ∈ {1, 2, · · · , n}}:

yi = (1, x⊤i )β0 + ei, i ∈ {1, · · · , n} (1)

where yi ∈ R1, ⊤ stands for the transpose, β0 = (β01, · · · , β0p)
⊤ (the true unknown

parameter) in Rp and xi = (xi1, · · · , xi(p−1))
⊤ in Rp−1 (p ≥ 2), ei ∈ R1 is called an error

term (or random fluctuation/disturbances, which is usually assumed to have zero mean
and variance σ2 in classic regression theory). That is, β01 is the intercept term of the model.
We write wi = (1, x′i)

⊤, then one has yi = w⊤
i β0 + ei, which is used interchangeably

with (1).
One wants to estimate the β0 based on a given sample z(n) := {(x⊤i , yi)

⊤, i ∈ {1, · · · , n}}
from the model y = (1, x⊤)β0 + e. Call the difference between yi and w⊤

i β the i-th residual
ri(β) for a candidate coefficient vector β (which is often suppressed). That is,

ri := ri(β) = yi − w⊤
i β. (2)

To estimate β0, the classic least squares (LS) minimizes the sum of squares of residuals,

β̂ls = arg min
β∈Rp

n

∑
i=1

r2
i .

Alternatively, one can replace the square above by the absolute value to obtain the
least absolute deviations estimator (i.e., L1 estimator, in contrast to the L2 (LS) estimator).
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The LS estimator is very popular in practice across a broader spectrum of disciplines
due to its great computability and optimal properties when the error eis is i.i.d. and
follows a normal N(0, σ2) distribution. It, however, can behave badly when the error
distribution is slightly departed from the normal distribution, particularly when the errors
are heavy-tailed or contain outliers.

Robust alternatives to the β̂ls have abounded in the literature for a long time. The
most popular ones are M-estimators [1], the least median squares (LMS) and least trimmed
squares (LTS) estimators [2], S-estimators [3], MM-estimators [4], τ-estimators [5], max-
imum depth estimators ([6,7]), and the recent least squares of trimmed residuals (LST)
regression [8], among others. For more related discussions, see Sections 1.2 and 4.4 of [9],
and Section 5.14 of [10].

Robust methods that have a high breakdown point are usually computationally in-
tensive and with a non-differentiable objective function (e.g., LMS, LTS, and LST). In this
article, we will introduce a smooth and differentiable objective function that greatly facili-
tates the computation of the underlying estimator. We introduce a new class of alternatives
for robust regression, weighted least squares (WLS) estimators β̂wls:

β̂wls = arg min
β∈Rp

n

∑
i

wir2
i (β), (3)

where wi is the weight associated with ri with a fundamental feature: it assigns equal weight
to all r2

i that are small (no greater than a cut-off value) and exponentially down-weights
(penalizes) the large ones (when r2

i s are greater than the cut-off value).
Weighted least squares estimation has been proposed and discussed in the literature,

including the famous Huber’s M-estimators which, however, can have the lowest break-
down point if the derivative of the weight (or loss) function is non-decreasing; see [9] (p. 13)
or [10,11]. For more discussions, see Section 1.2 of [9] or Section 5.11 of [10]. Previous
weight functions in the literature are either constants (e.g., LS with 1, or LMS and LTS
with 0 and 1 weight), rank-based weight, do not down-weight large residuals sufficiently,
or non-differentiable. Among these weight-induced regression estimators, there are few
that possess a high breakdown point (50%), a high efficiency, and a high computability,
simultaneously.

On the other hand, there is much room for smooth weight functions. Successful exam-
ples in location setting have already appeared in the literature, e.g., [12]. This motivates
us to extend those smooth weight functions to regression setting and to achieve a high
breakdown point and high efficiency and high computablity simultaneously. We propose
using a differentiable w(r), which would assign weight one to ris that lies close to the
center of the data (all ris) cloud. The other points that lie on the outskirts of the data (all ris)
cloud could be viewed as outliers, so a lower positive weight (not zero) should be given.
This would balance efficiency with robustness. The weighted procedure proposed in this
article has never appeared before. The specially chosen wi’s in (3) will recover the famous
LMS and the LTS in [2], and LST in [8]. More discussions on w and β̂wls are carried out in
Section 2, where an ad hoc choice of the weight function with the above property in mind
will be introduced.

The rest of this article is organized as follows. Section 2 introduces a class of dif-
ferentiable weight functions and a class of weighted least squares estimators. Section 3
establishes the existence of β̂wls and studies its properties including its finite sample break-
down robustness. Section 4 discusses the computation of β̂wls. Section 5 presents some
concrete examples, comparing the performance of β̂wls with other leading estimators.
Section 6 ends the article with some concluding remarks. Long proofs of the main results
are deferred to in Appendix A.
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2. A Class of Weighted Least Squares
2.1. A Class of Weight Functions

An ad hoc choice of the weight function with the property mentioned in Section 1
takes the form of

w(x) = 1(|x| ≤ c) + 1(|x| > c)
e−k(1−c/|x|)2 − e−k

1 − e−k , ∀c, k > 0, (4)

where the tuning parameter k > 1 is a positive number (say, between 1 and 10) controlling
the steepness of the exponential decrease (see the left panel of Figure 1), where the larger
the k, the steeper the curve (the key difference from the trimmed procedures where the
weight becomes zero). Tuning parameter c is the point where the weight function will
change from a constant one to being exponentially decreasing. c (>1) usually can be set
to be a large positive number (say 10), or it can be residual dependent, say 50% or 75%
percentile of the residuals, and a larger c is favorable for higher efficiency. c is assumed to
be finite to exclude the LS case (i.e., w(x) will not be a constant one).
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Figure 1. Weight function w(x) when k = 5 and c = 100. Left: w(x), right: w′(x).

One of the examples of w(x) is given in Figure 1, where w(x) and its derivative are
given and k = 5 and c = 100. For a general w(x), it is straightforward to verify that
P1 w(x) is twice differentiable and 0 < w(x) ≤ 1. When x → ∞, w(x) is asymptotically

equivalent to α(eγx−1 − 1) for some positive constants α and γ.
P2 If ri → ∞, then w(r2

i /c∗)r2
i → 2ckc∗/(ek − 1), where c∗ := Medi{y2

i }, the median of
{y2

1, y2
2, · · · , y2

n}.

2.2. Weighted Least Squares Estimators
With the weight function given above, we are ready to specify the weighted least

squares estimator in (3) with more details:

β̂wls = arg min
β∈Rp

n

∑
i

wir2
i (β), (5)

where weight wi := w(r2
i /c∗), with w(x) being a weight function in (4) that satisfies P2 and

c∗ defined in P2.
The behavior of function w(r2/c∗)r2 when r > c for different c∗s is illustrated in

Figure 2 below. Inspecting the figure reveals that it is strictly convex.
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Figure 2. Behavior of function w(x2/c∗)x2 when k = 5 and c = 100, x > c.

3. Properties of the β̂wls
3.1. Existence

Does the minimizer of the objective function O(β, z(n)) := ∑n
i wir2

i (β) on the right-
hand side (RHS) of (5) exist? We now formally address this. We need the following
assumption.

A1: For a given sample z(n) := {(zi)
n
i=1} = {(x⊤i , yi)

⊤, i ∈ {1, 2, · · · , n}} and any β ∈
Rp, all points {(x⊤i , yi)

⊤} with ris satisfying r2
i /c∗ ≤ c do not lie in a vertical hyperplane.

The assumption holds true with probability one if the sample comes from a distribution
of (x⊤, y)⊤ that has a density. Now, we have the following existence result.

Theorem 1. If A1 holds true, then the minimizer β̂wls of O(β, z(n)) always exists.

Proof. See the Appendix A.

3.2. Equivariance
Desirable fundamental properties of regression estimators include regression, scale,

and affine equivarince. For x ∈ Rn×(p−1) and y ∈ Rn, a regression estimator β̂ := t(w, y)
with w = (1, x⊤)⊤ satisfying

t(w, y + b⊤w) = t(w, y) + b, ∀b ∈ Rp; (6)

t(w, sy) = st(w, y), ∀s ∈ R; (7)

t(A⊤w, y) = A(−1)t(w, y), ∀ nonsingular A ∈ Rp×p. (8)

is called regression, scale, and affine equivariant, respectively (see page 116 of [9]). All
aforementioned regression estimators are regression, scale, and affine equivariant.

Theorem 2. β̂wls defined in (3) is regression, scale, and affine equivariant.

Proof. Notice the identities ri = yi − w⊤
i β = yi + b⊤wi − w⊤

i (β + b), sri = syi − w⊤
i (sβ),

and ri = yi − (A⊤wi)
⊤A−1β. Meanwhile, r2

i /c∗ is regression, scale, and affine invariant.
The desired result follows.

3.3. Robustness

As an alternative to the least-squares β̂ls, is the β̂wls more robust?
The most prevailing quantitative measure of the global robustness of any location or

regression estimators in the finite sample practice is the finite sample breakdown point (FSBP),
introduced in [13].

Roughly speaking, the FSBP is the minimum fraction of ‘bad’ (or contaminated) data
that the estimator can be affected by to an arbitrarily large extent. For example, in the
context of estimating the center of a data set, the sample mean has a breakdown point of
1/n (or 0%) because even one bad observation can change the mean by an arbitrary amount;
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in contrast, the sample median has a breakdown point of ⌊(n + 1)/2⌋/n (or 50%), where
⌊·⌋ is the floor function.

Definition 1 ([13]). The finite sample replacement breakdown point (RBP) of a regression
estimator t at the given sample z(n) = {z1, · · · , zn}, where zi := (x⊤i , yi)

⊤, is defined as

RBP(t, z(n)) = min
1≤m≤n

{
m
n

: sup
z(n)m

∥t(z(n)m )− t(z(n))∥ = ∞
}

, (9)

where z(n)m denotes an arbitrary contaminated sample by replacing m original sample points in z(n)

with arbitrary points in Rp. Namely, the RBP of an estimator is the minimum replacement fraction
that could drive the estimator beyond any bound. It turns out that both L1 (least absolute deviations)
and L2 (least squares) estimators have RBP 1/n (or 0%), the lowest possible value, whereas β̂wls
can have (⌊(n − p)/2⌋+ 1)/n (or 50%), the highest possible value for any regression equivariant
estimators (see p. 125 of [9]).

We shall say z(n) is in a general position when any p of observations in z(n) gives
a unique determination of β. In other words, any (p-1) dimensional subspace of the
space (x⊤, y)⊤ contains at most p observations of z(n). When the observations come from
continuous distributions, the event (z(n) being in the general position) happens with a
probability of one.

Theorem 3. Assume that A1 holds true, n > p, and z(n) is in the general position. Then,

RBP(β̂
n
wls, z(n)) =

{
⌊(n + 1)/2⌋

/
n, if p = 1,

(⌊(n − p)/2⌋+ 1)
/

n, if p > 1.
(10)

Proof. see the Appendix A.

We need the following important result for the proof of Theorem 3.

Lemma 1. For any r2
i > r2

j > c∗c, w(r2
i /c∗)r2

i < w(r2
j /c∗)r2

j when r2
j → ∞.

Proof. See the Appendix A.

Remark 1. The RBP result in Theorem 3 is the highest possible breakdown point for any regression
equivariant estimators in the literature (see p. 125 of [9]). There are very few regression estimators
that possess the highest breakdown point robustness.

4. Computation of the WLS
Now, we address the most important issue with a high breakdown point estimator,

the computation of the estimator. The objective function in (5) is

O(β) := O(β, z(n)) =
n

∑
i=1

w(r2
i /c∗)r2

i , (11)

which is differentiable with respect to β since the weight function w(x2/c∗) is twice differ-
entiable with

w′(x) = α∗e−k(1−c/|x|)2
(1 − c/|x|)sgn(x)/x21(|x| > c),

w′′(x) = α∗e−k(1−c/|x|)2(−2kc(1 − c/|x|)2/|x| − (2 − 3c/|x|)
)
/x31(|x| > c), (12)

where α∗ = −2kc/(1 − e−k). The problem in (3) belongs to an unconstrained minimization.
This type of problem has been thoroughly discussed and studied in the literature. Common
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approaches to find the solution include (i) methods utilizing first-order derivatives (gradient
descent/steepest descent/conjugate gradient), (ii) methods using second-order derivatives
(Hessian matrix) (Newton’s method), and (iii) quasi-Newton method, see [14,15]. We will
select the conjugate gradient for speed/efficiency and accuracy consideration.

Note that

∇O(β) =
∂O(β)

∂β
=

n

∑
i=1

(w′(r2
i /c∗)r2

i + c∗w(r2
i /c∗))

∂r2
i /c∗

∂β

=
n

∑
i=1

(w′(r2
i /c∗)r2

i + c∗w(r2
i /c∗))2ri/c∗(−wi)

=
n

∑
i=1

−2ri/c∗(w′(r2
i /c∗)r2

i + c∗w(r2
i /c∗))wi. (13)

∇2O(β) =
∂2O(β)

∂2β
=

−2
c∗

n

∑
i=1

∂
(
ri(w′(r2

i /c∗)r2
i + c∗w(r2

i /c∗)
)

∂β
wi

=
−2
c∗

n

∑
i=1

w⊤
i wi

(
5r2

i w′(
r2

i
c∗
) + c∗w(

r2
i

c∗
) + 2

r4
i

c∗
w′′(

r2
i

c∗
)
)

= X⊤
n WXn, (14)

where X⊤
n = (w⊤

1 , · · · , w⊤
n ), W is a diagonal matrix with its i-th diagonal entry −2γi/c∗

and

γi = 5r2
i w′(

r2
i

c∗
) + c∗w(

r2
i

c∗
) + 2

r4
i

c∗
w′′(

r2
i

c∗
).

Write γi/c∗ as g(ti), then g(ti) = 5tiw′(ti) + 2t2
i w′′(ti) + w(ti), where ti = r2

i /c∗ > c and
g(t) < 0 for t > c for different c > 0 as indicated below in Figure 3. Namely, W is positive
definite when ti > c.
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Figure 3. Behavior of function γi(ri)/c∗ when k = 5 and ri > c with different values of c.

The algorithm for the conjugate gradient method (CGM) is as follows:
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(i) Step 1. Pick a β0 (which can be an LS estimator, but for robustness, the LTS ([2]) or
LST ([8]) is a better choice). Set v0 = −∇O(β0). Set a tolerance ε. if (∥v0∥ < ε) {return
β0}.

(ii) Step 2. For k = 0, 1, · · · , n − 1,

(a) Set βk+1 = βk + αkvk, where αk is the minimizer of O(βk + αvk) with respect to α
(using backtracking line search, see page 464 of [14]), or set

αk = −∇⊤O(βk)vk/(vk)⊤H(βk)vk,

where H(βk) = ∇2(O(βk)).
(b) Compute ∇O(βk+1), if (∥∇O(βk+1)∥ < ε) {return βk+1}.
(c) If (k = n − 1) {break}; else set vk+1 = −∇O(βk+1) + αkvk, where

αk = ∇⊤O(βk+1)∇O(βk+1)/∇⊤O(βk)∇O(βk)

end for loop.
(iii) Step 3. Replace β0 by βn and go to step 1.

Convergence of the gradient algorithm or gradient descent method to the global
minimum has been thoroughly analyzed on pp. 466–467 of Boyd and Vandenberghe
(2004) [14]. The global convergence of conjugate gradient methods specifically has been
addressed in Gilbert and Nocedal (1992) [16].

5. Examples and Comparison
Now, we investigate the performance of our new procedure WLS and compare it with

some leading competitors including the robust benchmark, the least trimmed squares LTS
estimator, Rouseeuw [2] (known for its high robustness and fast computation), the MM
estimator of Yohai [4] (known for its high robustness and high efficiency), and the classical
least squares LS estimator (known for its high efficiency for i.i.d. normal errors) via some
concrete examples.

5.1. Performance Criteria
Empirical mean squared error (EMSE) For a general regression estimator t, we calculate
EMSE := ∑R

i=1 ∥ti − β0∥2/R, the empirical mean squared error (EMSE) for t. If t is regres-
sion equivariant, then we can assume (w.l.o.g.) that the true parameter β0 = 0 ∈ Rp (see
p.124 of [9]). Here, ti is the realization of t obtained from the i-th sample with size n and
dimension p, and replication number R is usually set to be 1000.
Total time consumed for all replications in the simulation (TT) This criterion measures
the speed of a procedure, where the faster and more accurate, the better.One possible
issue is the fairness of comparison of different procedures because different programming
languages (e.g., C, Rcpp, Fortran, and R) are employed by different procedures.
Finite sample relative efficiency (FSRE) In the following, we investigate via simulation
studies the finite-sample relative efficiency of the different robust alternatives of the LS with
respect to the benchmark, the classical least squares line/hyperplane. The latter is optimal
with normal models by the Gauss–Markov theorem. We generate R = 1000 samples from
the linear regression model: yi = β0 + β1x1 + · · · + βp−1xp−1 + ei, i ∈ {1, · · · , n} with
different sample size ns and dimension ps, where ei ∼ N(0, σ2). The finite sample RE of a
procedure is the percentage of EMSE of the LS divided by the EMSE of the procedure.

All R code (downloadable via https://github.com/left-github-4-codes/WLS) accessed
on 19 March 2024 for simulation, examples, and figures in this article were run on a desktop
Intel(R)Core(TM) 21 i7-2600 CPU @ 3.40 GHz.

5.2. Examples
In the sequel, the cutoff value ε is set to be 10−4 for the procedure WLS. For simplicity,

we set the tuning parameters c = k = 6 for the weight function.

https://github.com/left-github-4-codes/WLS
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Example 1 (Simple linear regression). To take the advantage of the graphical illustration of data
sets and plots, we start with p = 2, the simple linear regression case.

We generated a data set with seven artificial highly correlated (with correlation 0.88
between x and y) bi-variate normal points. It is plotted in the left panel of Figure 4. Two
reference regression lines (y = 0) and (y = x) are also provided.

−2 0 2 4 6 8

−2
0

2
4

6

x

y

1

2
3

4

56

7

reference lines

y=0
y=x

−2 0 2 4 6 8

−2
0

2
4

6

x−axis

y−
ax

is

Line types

LTS
LS
WLS
MM

Figure 4. Left panel: plot of seven artificial points and two reference lines y = 0 and y = x. Right
panel: the same seven points are fitted by LTS, WLS, MM, and the LS (benchmark). A solid black line
is LTS given by ltsReg. Green dashed line is given by WLS. Red dotted line is given by the LS, which
is identical to LTS line and is almost identical to the blue dot-dashed line given by MM in this case.

Inspecting the left panel of the figure immediately reveals that points 5 and 6 seem
to be outliers and the overall pattern of the data set is linear y = cx with c > 0. The
right panel further reveals that the LS, the LTS, and the MM lines are very sensitive to the
outlying points, whereas WLS still can catch the overall line pattern under the influence of
two outliers.

One might immediately argue that the example above has at least two drawbacks:
(i) the data set is too small, and (ii) it is purely artificial. In Figure 5, the sample size
is increased to 80 highly correlated normal points with 30% of them contaminated by
other normal points. Inspecting the figure reveals that the four procedures capture the
linear pattern perfectly in the left panel of the figure for perfect bivariate normal points,
while in the right panel, the LTS, MM, and LS lines are drastically changed due to the
24 contaminating points, while WLS well resists the influence of outliers, catching the
original overall linear pattern.

In practice, there are more cases with more than one independent variable: in the
following, we consider the case p > 2.

Example 2 (Multiple linear regression with contaminated normal points). Now, we do not
have the visual advantage like in the p = 2 case. To compare the performance of different procedures,
we have to appeal the performance measures discussed in Section 5.1.
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We consider the contaminated highly correlated normal data points scheme. We
generate 1000 samples {zi = (x⊤i , yi)

⊤, i ∈ {1, · · · , n}} with various ns from the normal
distribution N(µ, Σ), where µ is a zero vector in Rp, and Σ is a p by p matrix with diagonal
entries being 1 and off-diagonal entries being 0.9. Then, ε% of them are contaminated by
m = ⌈nε⌉ points, where ⌈·⌉ is the ceiling function. We randomly select m points of {zi,
i ∈ {1, · · · , n}} and replace them by (3, 3, · · · , 3,−3)⊤.
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Figure 5. We show 80 highly correlated normal points with 30% of them contaminated by other normal points.
Left: scatterplot of the uncontaminated perfect normal data set and four almost identical lines. Right: LTS, WLS,
MM, and LS lines for the contaminated data set. The solid black is the LTS line, the dotted green is the WLS, the
dot-dash blue is given by MM, and dashed red is given by the LS—parallel to LTS line in this case. The MM line is
almost identical to LTS and LS lines.

The performance of the CGM in Section 4 (or rather any iterative procedure) severely
depends on the initial given point β0. In light of its cyclic feature of the CGM for non-
quadratic objective function (see page 195 of [15]) and our extensive empirical simulation
experience, the performance of the β return by the CGM usually is not very different from
(or better than) that of the initially selected β0. To achieve better performance for the WLS,
we modified the LST of Zuo and Zuo [8] and utilized it as the initial β0 for CGM. Results for
the three methods and different ns and ps and contamination levels ε are listed in Table 1.

Inspecting the table reveals that (i) LS is the fastest in all cases considered and the
best performer for pure normal data sets, except the case p = 20 and n = 200, where
WLS is even slightly more efficient. It, however, becomes the worst performer when there
is contamination (except the ε = 0.30 cases, where the LTS and MM surprisingly become
the worse performers. In theory, both MM and LTS can resist up to 50% contamination
without breakdown). (ii) WLS has the smallest EMSE when there is contamination and
this is true even with no contamination when p = 20 and n = 200. It is also the second
fastest performer (except in the case ε = 0.3 and p = 5 or 10, where MM is faster). (iii) LTS
is inferior to WLS in all cases and so is the MM (except it runs faster when ε = 0.3 and
p = 5 or 10). (iv) MM performs better than LTS in TT and in EMSE (except when p = 20
and ε = 0.0, 0.10, or 0.20).
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Table 1. EMSE, TT (s), and RE for MM, LTS, WLS, and LS based on all 1000 samples for various ns,
ps, and contamination levels.

Normal Data Sets, Each with ε Contamination Rate

p n Method EMSE TT RE EMSE TT RE

ε = 0% ε = 10%

5 50 mm 0.3356 9.9427 0.9767 0.3357 9.8483 2.9876
wls 0.3309 7.3604 0.9905 0.3324 9.4740 3.0178
lts 0.3975 15.883 0.8246 0.3670 15.957 2.7326
ls 0.3278 1.4243 1.0000 1.0030 1.2834 1.0000

ε = 20% ε = 30%

5 50 mm 0.3565 9.8519 5.3673 8.4738 10.532 0.3311
wls 0.3546 12.329 5.3951 0.3711 15.846 7.5618
lts 0.6546 16.662 2.9228 27.223 17.026 0.1030
ls 1.9132 1.3549 1.0000 2.8060 1.3472 1.0000

ε = 0% ε = 10%

10 100 mm 0.2378 21.421 0.8839 0.2372 20.892 5.5816
wls 0.2105 11.112 0.9985 0.2226 15.680 5.9499
lts 0.2919 48.648 0.7201 0.2584 49.615 5.1245
ls 0.2102 1.3298 1.0000 1.3242 1.2542 1.0000

ε = 20% ε = 30%

10 100 mm 0.2410 20.669 10.244 5.1124 21.891 0.6979
wls 0.2372 20.535 10.407 0.2600 29.146 13.724
lts 0.2635 55.018 9.3714 40.403 64.803 0.0883
ls 2.4691 1.2462 1.0000 3.5680 1.2626 1.0000

ε = 0% ε = 10%

20 200 mm 0.2429 84.709 0.6564 0.2183 83.525 6.6713
wls 0.1592 28.664 1.0021 0.1726 39.100 8.4390
lts 0.2208 259.21 0.7224 0.2015 293.40 7.2261
ls 0.1595 1.4936 1.0000 1.4564 1.4775 1.0000

ε = 20% ε = 30%

20 200 mm 0.5299 78.387 5.1922 20.908 90.385 0.1899
wls 0.1875 51.280 14.677 0.2126 71.148 18.672
lts 0.1983 387.56 13.877 33.918 832.75 0.1170
ls 2.7512 1.4566 1.0000 3.9694 1.4300 1.0000

Example 3 (Performance when β0 is given). In the calculation of EMSE above, one assumes
that β0 = 0 in light of regression equivariance of an estimator t. In this example, we will provide β0

(for convenience, write it as β0) and calculate yi using the formula yi = (1, x⊤i )β⊤
0 + ei, where we

simulate xi from a normal distribution with a zero mean vector and an identical covariance matrix.
ei follows a standard normal distribution.

We set p = 10, n = 100 and β0 = (1, 1, 1, 1, 1,−1,−1,−1,−1,−1). There is a ε =
10% contamination for each of 1000 normal samples (generated as in Example 2) with
the contamination scheme as follows: we randomly select m = ⌈nε⌉ points out of {zi,
i ∈ {1, · · · , n}} and replace them by (4.5, 4.5, · · · , 4.5)⊤. We then calculate the squared
deviation (SD) (β̂i − β0)

2 for each sample, the total time (TT) consumed by each procedures
for all 1000 samples, and the relative efficiency (RE) (the ratio of EMSE of LS vs. EMSE of a
procedure). The performance of three procedures for different criteria are displayed via the
boxplot in Figure 6.
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Figure 6. Performance of four procedures with respective to 1000 normal samples (points are highly correlated)
with p = 10 and n = 100, each sample suffers 10% contamination.

Inspecting the figure reveals that (i) in terms of squared deviations, LTS and LS perform
the same, where both have a wide spread and a high EMSE, whereas MM has a much
smaller EMSE, and WLS has the smallest EMSE (in fact, the EMSE for the four (mm, wls, lts,
ls) are (1.188640, 1.037962, 2.245551, 2.245551)). (ii) In terms of total time consumed, LS is
the absolute winner, LTS is the absolute loser, and WLS is much better than LTS and slightly
better than MM. (iii) In terms of relative efficiency, LTS is the loser (performs as bad as the
LS), whereas WLS earns the trophy and is much more robust against 10% contamination.
MM is the second best.

Up to this point, we have dealt with synthetic data sets. Next, we investigate the
performance of MM, WLS, LTS, and LS with respect to real data sets in high dimension.

Example 4 (Performance for a large real data set). Boston housing is a famous data set (see [17])
and studied by many authors with different emphasizes (transformation, quantile, nonparametric
regression, etc.) in the literature. For a more detailed description of the data set, see http:// lib.stat.
cmu.edu/datasets/ accessed on 19 March 2024.

The analysis reported here does not include any of the previous results but consists of
just a straight linear regression of the dependent variable (median price of a house) on the
thirteen explanatory variables as might be used in an initial exploratory analysis of a new
data set. We have sample size n = 506 and dimension p = 14.

We assess the performance of the MM, the LST, the WLS, and the LS as follows.
Since some methods depend on randomness, we run the computation R = 1000 times to
alleviate the randomness. (i) We compute the β̂ with different methods, and we do this
1000 times. (ii) We calculate the total time consumed (in seconds) by different methods for
all replications and the EMSE (with true β0 being replaced by the sample mean of 1000 β̂s
from (i)), which is the sample variance of all β̂s up to a factor 1000/999. The results are
reported in Table 2.

Table 2. EMSE, TT (seconds), and RE for MM, LTS, WLS, and LS based on Boston housing real data set.

Performance Measure MM WLS LTS LS

EMSE 4.352446 × 10−5 0.0000 4.619404 × 101 0.0000
TT 120.368098 161.465350 125.707603 1.487204
RE 0 NaN 0 NaN

http://lib.stat.cmu.edu/datasets/
http://lib.stat.cmu.edu/datasets/


Axioms 2024, 13, 295 12 of 18

Inspecting the table reveals that (i) WLS and LS produce the same β̂ for each sample,
so there is no variance, whereas this is not the case for MM and LTS. (ii) LS is the fastest
runner followed by MM, LTS, and WLS. (iii) The relative efficiency of MM and LTS is 0%
since the sample variance of LS is 0, whereas the RE of WLS and LS is undefined (not a
number) since 0 appeared in the denominator. On the other hand, one can interpret WLS
as being as good as LS in this case with RE 100%.

Example 5 ((Performance for a real data set which is known to contain outliers). We examine
the data set of Buxton (1920) [18], which has been studied repeatedly in the literature, see Hawkins
and Olive (2002) [19], Olive (2017) [20], Park, Kim, and Kim (2012) [21], Olive and Hawkins
(2011) [22].

We fit the different methods to the Buxton data, which is a 87 by 7 matrix (original row
9 was deleted), with height as the response variable and other four variables as predictor
variables (two variables are excluded due the missing values) as Olive did. For more
explanations , see Olive’s website at http://parker.ad.siu.edu/Olive/buxton.txt accessed
on 19 March 2024.

We list in Table 3 the output of the methods (mm, lts, lms wls, ls, hbreg, and rm-
reg2), where the last two methods are proposed by Olive and Hawkins (2011) and Olive
(2017) [20,22], respectively.

Table 3. Outputs of different methods based on Buxton data set.

Methods Intercept Head Nasal Bigonal Cephalic

hbreg 1546.3737947 −1.1288988 6.1133570 −0.5871985 1.1263726
rmreg2 807.3303643 1.7963508 4.8262483 −0.1481552 3.9353752

wls 1437.3761729 −1.1107210 5.2669763 0.9199388 0.9766958
lts 1066.188018 −1.104774 6.476802 2.523815 2.623706

lms 449.515 −1.061 7.317 6.215 4.790
mm 1511.5503972 −1.1289155 6.5942674 −0.6341536 1.2965989

ls 1546.3737947 −1.1288988 6.1133570 −0.5871985 1.1263726

With great help from Dr. Olive, we were able to have the pairwise scatter plots of
points of (ŷi, yi), namely, fitted values versus observed values and fitted values versus
fitted values of different methods. The plot is given in Figure 7 (lms is omitted; it performs
much the same as most other robust ones).

Inspecting Figure 7 reveals that there are five obvious outliers on response variable
y. Further examining the data set confirms that observations 61:65 have unusual small
response values from 18 to 19, while all others are in between 1500 and 1800 and have
unusual, larger head length values. The first row of Figure 7 is (ŷi, yi) for different methods.
It is seen that five out of six methods perform much the same, while rmreg2 performs
remarkably different.

The latter produces much larger fitted values for the five outliers which might be
interpreted as the method resisting the influence of the outliers while others cope with
the five outliers and produce fitted values that are in the same order in magnitude as the
observed values, which might be interpreted as these methods being heavily influenced by
the five outliers.

To better understand the performance of the six methods, we produced a classic
fitted value versus the standardized residuals plot in Figure 8, which clearly identifies five
outliers and performance difference between the six methods (rmreg2 performs remarkably
different from all others).

http://parker.ad.siu.edu/Olive/buxton.txt
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Figure 7. Pairwise plots of fitted values versus observed values and fitted values versus values for six different
methods.
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Figure 8. Fitted values versus standardized residuals plot for six different methods.

Furthermore, to better appreciate the hyperplanes induced from β̂ in Table 3 and to
take the two-dimensional graphic visualization advantage, we look at the two-dimensional
vertical cross-section of hyperplanes in the fifth dimension (restricted/project to y versus
x3 dimension) and plot the lines (intercept and head) based on Table 3 by different methods
(they are different from the regression lines based on (x3, y) by different methods) in
Figure 9. From the Figure, we obtain a better understanding of the behavior of different
methods. All seven lines but the one from rmreg2 have a negative slope.

Note that both hbreg and rereg2 functions output more than one solution. We chose
hbreg$coef (which is identical to ls) and rmreg2$Bhat in this data set case. The lines from
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hbreg, wls, and lts are almost parallel, while lines from mm and lms are also almost parallel
to the majority but far away from the data cloud and should be discarded in this case.
Similar plots with other variables could also be constructed.

Lines in Figure 9 are induced from the hyperplanes in Table 3 by projection to the
(head, height)-dimension in the five-dimensional space. One naturally wonders: are they
the same as the lines from direct regression on (head, height) by different methods? To
appreciate the difference between two types of lines, we fit (head, height) [as (x, y)] with
different methods, and the lines are given in Figure 10. Inspecting the figure reveals that all
the lines perform the same but the line induced from rmreg2.
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Figure 9. Restricted to (head length, height)-space, the two-dimensional vertical cross-section of
hyperplances of seven different methods.
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Figure 10. Regression lines based on (x = head length, y = height) by seven different methods.
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6. Concluding Remarks
With a novel weighting scheme, the proposed weighted least squares estimator per-

forms as efficiently as the classic least squares (LS) estimator for perfect normal data, while
being more efficient than MM and much more efficient than the LTS estimator. It is much
more robust than the LS when there is contamination or outliers (it is also more robust than
MM and LTS when the contamination level is 30%). It performs as robustly as the LTS and
the MM while being more efficient than MM and LTS when there are outliers. It possesses
the best finite sample breakdown point robustness while achieving high efficiency and
computability. It could serve as a robust alternative to the LTS and the MM in practice.
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Appendix A. Proofs of Main Results

Proof of Theorem 1. For a given z(n) and any β, write M := ∑n
i=1 y2

i ≥ ∑n
i=1 w(y2

i /c∗)y2
i =

O(0p×1, z(n)). For a given β ∈ Rp, hereafter assume that Hβ is the hyperplane determined
by y = w⊤β, and let Hh be the horizontal hyperplane (i.e., y = 0, the w-space).

Partition the space of βs into two parts, S1 and S2, with S1 containing all βs such that
Hβ and Hh are parallel and S2 consists of the rest of βs so that Hβ and Hh are not parallel.

If one can show that there are minimizers of O(β, z(n)) over Si i = 1, 2, respectively,
then one can have an overall minimizer.

Over S1, β = (β0, 0⊤(p−1)×1)
⊤ and ri = yi − β0. If the minimizer does not exist,

then it means that any bounded β0 cannot minimize O(β, z(n)), and the absolute value
of the minimizer β∗

0 must be greater than any M∗ > 0. We seek a contradiction now.
Denote the minimizer as β∗ = (β∗

0, 0⊤(p−1)×1)
⊤. Define β∗

1 = (2β∗
0, 0⊤(p−1)×1)

⊤, then it

is readily seen that r2
i (β∗

1) > r2
i (β∗) for large enough β∗

0. By lemma 1 below, one has
O(β∗, z(n)) > O(β∗

1 , z(n)). A contradiction is obtained.
Over S2, denote by lβ the intersection part of Hβ with the horizontal hyperplane Hh

(we call it a hyperline, though it is p − 1-dimensional). Let θβ ∈ (−π/2, π/2) be the acute
angle between the Hβ and Hh (and θβ ̸= 0). Consider two cases.

Case I. All wi = (1, x⊤i )
⊤ with r2

i /c∗ ≤ c on the hyperline lβ, where ri = yi − w⊤
i β.

Then, we have a vertical hyperplane that is perpendicular to the horizontal hyperplane Hh
(y = 0) and intersect Hh at lβ, But this contradicts A1. We only need to consider the other
case.

Case II. Otherwise, define

δ =
1
2

inf{τ, such that N(lβ, τ) contains all wi with r2
i /c∗ ≤ c},

where N(lβ, τ) is the set of points in w-space such that each distance to the lβ is no greater
than τ. Clearly, 0 < δ < ∞ (since δ = 0 has been covered in Case I and δ ≤ maxi{∥wi∥} <
∞, where i satisfies r2

i /c∗ ≤ c , and the first inequality follows from the fact that the
hypotenuse is always longer than any legs).

We now show that when ∥β∥ > (1 + η)
√

M/δ, where η > 1 is a fixed number, then

O(β, z(n)) =
n

∑
i=1

w(r2
i /c∗)r2

i (β) > M ≥ O(0p×1, z(n)). (A1)
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That is, for the solution of the minimization of (5). One only needs to search over
the ball ∥β∥ ≤ (1 + η)

√
M/δ, a compact set. Note that O(β, z(n)) is continuous in β since

ri(β) and w(r2
i /c∗) are. Then, the minimization problem certainly has a solution over the

compact set.
The proof is complete if we can show (A1) when ∥β∥ > (1 + η)

√
M/δ. It is not

difficult to see that there is at least one i0 such that r2
i0

/c∗ ≤ c and wi0 ̸∈ N(lβ, δ) since
otherwise, it contradicts the definition of δ above. Note that θβ is the angle between the
normal vectors (−β⊤, 1)⊤ and (0⊤, 1)⊤ of hyperplanes Hβ and Hh, respectively. Then,
| tan θβ| = ∥β∥ (see [8]) and (see Figure A1)

|w⊤
i0 β| > δ| tan θβ| = δ∥β∥ > (1 + η)

√
M.

Now, we have

|ri0(β)| = |w⊤
i0 β − yi0 | ≥

∣∣|w⊤
i0 β| − |yi0 |

∣∣ > (1 + η)
√

M − |yi0 |. (A2)

Therefore,

O(β, z(n)) =
n

∑
j=1

w(r2
j /c∗)r2

j (β) ≥ w(r2
i0 /c∗)r2

i0(β) = r2
i0(β)

>
(
(1 + η)

√
M − |yi0 |

)2
≥

(
(1 + η)

√
M −

√
M
)2

= η2M > M ≥ O(0p×1, z(n)).

That is, we have certified (A1).
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Figure A1. A two-dimensional vertical cross-section (that goes through points (wt
i , 0) and (wt

i , wt
i β)) of a figure
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Proof of Lemma 1. Write w(r2/c∗)r2 = c∗w(r2/c∗)r2/c∗ := c∗w(x2)x2, where x = |r|/
√

c∗
and x2 = r2/c∗ > c. It suffices to show that w(x2)x2 is strictly decreasing in x (this intu-
itively is clear from Figure 2), or equivalently, to show that the derivative of w(x2)x2 is
negative. A straightforward calculus derivation yields(

w(x2)x2
)′

= 2x/(1 − e−k)
(

e−k(1−c/x2)2(
1 − 2kc/x2(1 − c/x2)

)
− e−k

)
.

Now it suffices to show that(
e−k(1−c/x2)2(

1 − 2kc/x2(1 − c/x2)
)
− e−k

)
< 0.

Or, equivalently, it suffices to show that

ek((1−c/x2)2−1) > 1 − 2kc/x2(1 − c/x2).

For convenience, write t := c/x2. Then, t → 0 as x2 → ∞. Now, we want to show that

e−tk(2−t) > 1 − 2kt(1 − t). (A3)

A straightforward Taylor expansion of ex = 1 + x + x2/2! + x3/3! + · · · to the left-
hand side (LHS) of (A3) yields

e−tk(2−t) = 1 + (−2kt + kt2) + (−2kt + kt2)2/2 + (−2kt + kt2)3/3! + (−2kt + kt2)4/4! + · · ·

> 1 + (−2kt + kt2) + (−2kt + kt2)2/2 + (−2kt + kt2)3/3!

= 1 − 2kt(1 − t)− kt2 + (−kt(2 − t))2/6 + 2(−kt(2 − t))2/6 + (−kt(2 − t))3/6

= 1 − 2kt(1 − t) + kt2
(

k(2 − t)2/6 − 1
)
+ k2t2(2 − t)2(2 − kt(2 − t)

)
/6

> 1 − 2kt(1 − t) (A4)

where the first inequality follows from the fact that

(−kt(2 − t))2n

(2n)!
+

(−kt(2 − t))2n+1

(2n + 1)!
=

(−kt(2 − t))2n(2n + 1 − kt(2 − t))
(2n + 1)!

> 0,

for n ≥ 2 and small enough t. And the last inequality in (A4) follows the facts (i) k(2 −
t)2/6 − 1 > 0 (if t < 2 −

√
6/k) and (ii) 2 − kt(2 − t) > 0 (if t < 1 −

√
1 − 2/k).

Combining (A4) with (A3), we complete the proof.

Proof of Theorem 3. It suffices to treat the case p > 1, and furthermore by Theorem 4 on
p. 125 of [9], it is sufficient to show that m = ⌊(n − p)/2⌋ contaminating points are not
enough to break drown β̂wls. Assume it is otherwise. This implies that either

(I) |β̂n
wls((z

(n)
m )j)1| → ∞ and ∥β̂

n
wls((z

(n)
m )j)2∥ is finite, or

(II) ∥β̂
n
wls(z

(n)
m )j)2∥ =

∣∣ tan
(

θ
β̂

n
wls(z

(n)
m )j)

)∣∣ → ∞,

along a sequence of (z(n)m )j as j → ∞, where the subscripts 1 and 2 correspond to the
intercept and non-intercept terms, respectively, as in the case β = (β1, β⊤

2 )
⊤ in Rp. We seek

a contradiction for both cases. For description simplicity, write βj := β̂
n
wls((z

(n)
m )j)

Case (I). For simplicity, write βj = (β1, β⊤
2 )

⊤ and βjj = (2mβ1, β⊤
2 )

⊤. Then, it is
readily seen that r2

i (βj) < r2
i (βjj) for large positive m. In light of Lemma 1, one has that

O(βj) > O(βjj); a contradiction is obtained.
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Case (II). This case implies there is a sequence of hyperplanes induced from β̂
n
wls((z

(n)
m )j)

that tend to the eventual vertical position as j → ∞. Denote by Hj those hyperplanes. Let
Hj intercept with the horizontal hyperplane Hh at ℓj, the hyperlines (or the common part of
Hj and Hh).

For simplicity, write the minimizer βj = (β1, β⊤
2 )

⊤ := β̂
n
wls((z

(n)
m )j). Introduce a new

hyperplane determined by βjj = (αβ1, κβ⊤
2 )

⊤ (κ > 1 is a positive integer). This βjj amounts
to tilting Hj (corresponding to βj) along ℓj to a more vertical position Hjj (corresponding to
βjj). Note that it is possible that there are no data points touched during the titling process
except those originally on the Hj since both hyperplanes are almost vertical. It is readily
seen that r2

i (βjj) > r2
i (βj) → ∞ except those points (x⊤i , yi))

⊤ that originally lie on the ℓj

with a zero residual. By Lemma 1, O(βj) > O(βjj), a contradiction is reached.

References
1. Huber, P.J. Robust estimation of a location parameter. Ann. Math. Statist. 1964, 35, 73–101. [CrossRef]
2. Rousseeuw, P.J. Least median of squares regression. J. Amer. Statist. Assoc. 1984, 79, 871–880. [CrossRef]
3. Rousseeuw, P.J.; Yohai, V.J. Robust regression by means of S-estimators. In Robust and Nonlinear Time Series Analysis; Lecture

Notes in Statist; Springer: New York, NY, USA, 1984; Volume 26, pp. 256–272.
4. Yohai, V.J. High breakdown-point and high efficiency estimates for regression. Ann. Statist. 1987, 15, 642–656. [CrossRef]
5. Yohai, V.J.; Zamar, R.H. High breakdown estimates of regression by means of the minimization of an efficient scale. J. Amer.

Statist. Assoc. 1988, 83, 406–413. [CrossRef]
6. Rousseeuw, P.J.; Hubert, M. Regression depth (with discussion). J. Am. Statist. Assoc. 1999, 94, 388–433. [CrossRef]
7. Zuo, Y. On general notions of depth for regression. Stat. Sci. 2021, 36, 142–157. [CrossRef]
8. Zuo, Y.; Zuo, H. Least sum of squares of trimmed residuals regression. Electron. J. Stat. 2023, 17, 2416–2446. [CrossRef]
9. Rousseeuw, P.J.; Leroy, A. Robust Regression and Outlier Detection; Wiley: New York, NY, USA, 1987.
10. Maronna, R.A.; Martin, R.D.; Yohai, V.J. Robust Statistics: Theory and Methods; John Wiley & Sons: Hoboken, NJ, USA, 2006.
11. Müller, C. Redescending M-estimators in regression analysis, cluster analysis and image analysis. Discuss. Math. Stat. 2004, 24,

59–75. [CrossRef]
12. Zuo, Y. Projection-based depth functions and associated medians. Ann. Statist. 2003, 31, 1460–1490. [CrossRef]
13. Donoho, D.L.; Huber, P.J. The notion of breakdown point. In A Festschrift foe Erich L. Lehmann; Bickel, P.J., Doksum, K.A., Hodges,

J.L., Jr., Eds.; Wadsworth: Belmont, CA, USA, 1983; pp. 157–184.
14. Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004.
15. Edgar, T.F.; Himmelblau, D.M.; Lasdon, L.S. Optimization of Chemical Processes, 2nd ed.; McGraw-Hill Chemical Engineering Series;

McGraw-Hill: New York, NY, USA, 2001.
16. Gilbert, J.C.; Nocedal, J. Global Convergence Properties of Conjugate Gradient Methods for Optimization. Siam J. Optim. 1992, 2,

21–42. [CrossRef]
17. Harrison, D.; Rubinfeld, D.L. Hedonic prices and the demand for clean air. J. Environ. Econ. Manag. 1987, 5, 81–102. [CrossRef]
18. Buxton, L.H.D. The Anthropology of Cyprus. J. R. Inst. Great Br. Irel. 1920, 50, 183–235. [CrossRef]
19. Hawkins, D.M.; Olive, D.J. Inconsistency of Resampling Algorithms for High Breakdown Regression Estimators and a New

Algorithm, (with discussion). J. Am. Stat. Assoc. 2002, 97, 136–159. [CrossRef]
20. Olive, D.J. Robust Multivariate Analysis; Springer: New York, NY, USA, 2017.
21. Park, Y.; Kim, D.; Kim, S. Robust Regression Using Data Partitioning and M-Estimation. Commun. Stat. Simul. Comput. 2012, 8,

1282–1300. [CrossRef]
22. Olive, D.J.; Hawkins, D.M. Practical High Breakdown Regression. 2011. Available online: http://www.math.siu.edu/olive/

pphbreg.pdf (accessed on 19 March 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1214/aoms/1177703732
http://dx.doi.org/10.1080/01621459.1984.10477105
http://dx.doi.org/10.1214/aos/1176350366
http://dx.doi.org/10.1080/01621459.1988.10478611
http://dx.doi.org/10.1080/01621459.1999.10474129
http://dx.doi.org/10.1214/20-STS767
http://dx.doi.org/10.1214/23-EJS2164
http://dx.doi.org/10.7151/dmps.1046
http://dx.doi.org/10.1214/aos/1065705115
http://dx.doi.org/10.1137/0802003
http://dx.doi.org/10.1016/0095-0696(78)90006-2
http://dx.doi.org/10.2307/2843379
http://dx.doi.org/10.1198/016214502753479293
http://dx.doi.org/10.1080/03610918.2011.598994
http://www.math.siu.edu/olive/pphbreg.pdf
http://www.math.siu.edu/olive/pphbreg.pdf

	Introduction
	A Class of Weighted Least Squares
	A Class of Weight Functions
	Weighted Least Squares Estimators

	Properties of the bold0mu mumu section"0362bold0mu mumu sectionwls
	Existence
	Equivariance
	Robustness

	Computation of the WLS
	Examples and Comparison
	Performance Criteria
	Examples

	Concluding Remarks
	Appendix A
	References 

