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Abstract: The main aim of this article is to derive certain continuity and boundedness properties
of the coupled fractional Fourier transform on Schwartz-like spaces. We extend the domain of the
coupled fractional Fourier transform to the space of tempered distributions and then study the
mapping properties of pseudo-differential operators associated with the coupled fractional Fourier
transform on a Schwartz-like space. We conclude the article by applying some of the results to obtain
an analytical solution of a generalized heat equation.
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1. Introduction

In 1980, Namias [1] formulated the fractional Fourier transform as a path to find
out the solutions of certain differential equations which occasionally appear in quantum
mechanics. Later on, his results were polished by McBride and Kerr [2], who developed an
operational calculus for the fractional Fourier transform.

Due to numerous applications in the area of image processing, signal analysis and
optics, fractional Fourier transform has received more attention in the last several years.
This transform plays an important role for solving various problems in quantum
physics [1,3], signal processing and optics [4-9]. The fractional Fourier transform, which is
a generalization of usual Fourier transform, has been studied in several areas of
mathematical analysis, for instances wavelets [10,11], pseudo-differential operators [12]
and generalized functions [13-15].

The well-known Fourier transform, denoted by F of a function f, is defined as

1 )
F =—70 x)e ) dx, 1
10) = oy fof ) 1)
so that its inverse is given by
1 )
x) = F ey g , 2
f(x) 207 Jew [f1(y) y @

provided the integrals exist.
We recall the one-dimensional fractional Fourier transform [5,14,16,17] of a function
f(x) € LY(R) with angle «,

Flw) = [ fEKu(x ), ©
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where K4 (x,y) is given by
/lfécrf)tzxe—é(x +y? )cotvc+zxycsc1x x # N,
L iy, a=12x,
Ka(x,y) = { v2r° 2 4
5(x—y), a =2nr,
x+y), a=2n—-1)m,n e Z.

Exploiting the tensor product of n copies of the one-dimensional fractional Fourier
transform each of order ay,d = 1,2,...,n [16], the fractional Fourier transform has been
extended to higher-dimensional transform.

We assume that & = (a1,42),x = (x,6),y = (1,0), Ka(xy) = Koy (%,8) - Ky (v, §) =
KM2(x,y,¢,0), where Ky, (x,¢) and Ky, (y, ) defined in (4).

For f(x,y) € L'(R?), two-dimensional fractional Fourier transform is defined as

Fal)E0) = FumNE) = [, Kaloy)f(xy)dxdy
= /I‘gz Icm(x, g)ICaz (}/, g)f(x/]/)dXdy
= /]RZ KA%2(x,y,8,0) f(x, y)dxdy. (5)

The corresponding inversion formula of (5) is given by

f(x/]/) = /1‘{2 ez (x/y/ ¢ C)%!X],ﬂéz (f) (gl @)d@’d@ (6)

It is easy to observe that for #; = ap = 7, the two-dimensional fractional Fourier transform
Say,a, ecomes a classical two-dimensional Fourier transform.

Bhosale [18] discussed the fractional Fourier transform on compact support
distribution. Pathak [15,19] and Prasad [12,20] studied the important properties of
fractional Fourier transform and pseudo-differential operator on certain function spaces
like Schwartz and Sobolev spaces.

Proposition 1. Let K“*2(x,y,,{) be the kernel of the two-dimensional fractional Fourier
transform. Then, for all p(x,y) € S(R?), we have

@) DLy (x,y,8,0) = {i(G cscar + escan) K23, y,8,0),
i) [, @y DL K (x,, 8, Dy = [ K2 (x,,8,8) (DL, 9, v)dxdy,

(i) T o (Diey) (6, 1)}(E,0) = {i(Eesear + L esca2)} (Buy.aa9 (%, 1)) (€, 0),
for all v € N, where Dy, = [% + % + i(xcota; + ycotay)] and

!

D,y = [ax —l———z(xcotoq +ycotay)].
Proof. (i) For the case r = 1, we see that

S x,y,8,0) = i(§ esca — ¥ cota) KM (1,1, 8,0,

and
;le"‘l""?(x, ¥,8,0) = i(fescay — ycotay) K2 (x,y, ¢, 0).

Thus

a 0 ) a0
Bx M +i(xcotay +ycotay) | K2 (x,y,&,0)

={i(Ccscas + {cscap) K2 (x,y,E,0).

DayK 2 (x,y,8,0) =
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The result can be generalized easily for any natural number.
(ii) Integrating by parts, we have

) d
/RZ o(x,y) [ax + 3y +i(x cotay +ycotzx2)] K82 (x,y, &, 0)dxdy

d 0
— — aq,02 . 1
/RZ K (x,y,8,0) [ax + 3y i(x cotay +ycotrx2)] ¢(x,y)dxdy.

Therefore,

[, $) Dy K 1,,8, Oy = [ K02 (9,8, 00Dl 9(x,y)dxdy.

The result can be generalized easily for any natural number.
(iif) Using (5) and Proposition 1(i),(ii), we have

Siaa{ (D) 96, ) HE, O)
= [, K .8, D) (D) L )y

= [, #lr )DL K% (x,y,2, Oy
= [, #lr ) {i(Eescas +Fescar) ) K2 (x,, €, §)ddy

={i(gcsea + Lesea)}' [ plx,y) K (x,, €, 0)dxdy
={i(Z esem +C escz)} Fuyar (1,1)) 6, 0):

This completes the proof. [

In recent articles [14,17,21], Zayed developed a new two-dimensional (coupled)
fractional Fourier transform F,; that is not a tensor product of two copies of
one-dimensional transform but is a transform which depends on two angles «, B that are
coupled so that the transform parameters are v = ‘Hﬁ and g = ﬁ

Choose «, € R in such a way that a + 8 # 2n7‘[ n € Z. The coupled fractional
Fourier transform of a function f(x,y) € L'(R?) is defined by [21,22]

Fap(E0) = [, fxy)Kap(x,y,E, 0)dxdy, 7)
where K, p5(x,y,&06) = del= a(2 P+ 400 +(Extoy)+e(0x—Ey)] g = g(y) = ot p =
b(’)’rﬂ) = lsiﬁs'yﬂ’c = C(’Y/ ’7) = lssllr?'?’d d(,)/) = 2775111"/’7 ‘H_'B and ’7 = %‘B

The corresponding inversion formula of (7) is given by

Fey) = [ FaplF) (@ OK (&0, x,y)dzdo. ®

It can be easily observed that for « = pand « = = 7, the coupled fractional Fourier
transform F, g becomes the tensor product of two one-dimensional fractional Fourier
transforms and the classical two-dimensional Fourier transform, respectively. Throughout
this manuscript, we assume that «, 8 € R with a + g # 2nm,n € Z.

Our main objective of this present article is to investigate the continuity and
boundedness properties of the coupled fractional Fourier transform and
pseudo-differential operator related to it on Schwartz spaces.

2. Coupled Fractional Fourier Transform

In this section, we derive some properties of the kernel IC,W; (x,y,¢,0) of the coupled
fractional Fourier transform that will be used later to extend the transform and its associated
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pseudo-differential operator to certain Schwartz-like spaces. Let us first recall the definition
of the Schwartz space S(R?) for two variables.

Definition 1. The space S(R?) is the collection of all complex valued infinitely differentiable
functions (x,y) € R? for every choice of B1, B2, V1, 72 € No which for

o1 92
T (9) = i Pryfr o Gy (6] < oo )

The Schwartz space S(IR?) is equipped with the topology generated by the semi-norms {T'}")?

BBzt
The space S(R2) becomes a Fréchet space. The dual of S(R?) is denoted by S’ (R?).
If f is a locally integrable and polynomial growth function on R?, then f generates a
distribution in S' (R2) as follows:

(fr9) = |, fxy)p(xy)dxdy, forall ¢ € S(R?). (10)

The elements of S (R?) are known as tempered distributions.

Lemma 1. A function ¢ € S(R?) if it is a member of C* and it satisfies

m 971 972
(1 + x2 +y2) 2 axrh ayﬁw(xly) < o, (11)

e (p) = sup
(x,y)ER?

forall m, 1,72 € Np.

Proof. It is easy to observe that for all 81 + B < m,

B1+B2
2

[xPryPe| < [(2+2) V2B < 1422 497 7 < [T+22+17)2.

Hence, if ¢ satisfies (11), then it satisfies (9).
Next, we assume that ¢ satisfies (9) for all 1,82 € Ny. We observe that for
any k € Ny,

@+ = Y pBLB PR = Y p(Br B2 k) (2P (),

B1+p2=k B1+B2=k

where p(B1, B2, k) = % are constant coefficients. Therefore, for m € Ny,

<1+x2+y2>m—f(T)<x2+y2>k—f )3 (TZ>P(ﬁlfﬁzrk)(xﬁl)z(yﬁz)z

k=0 k=0 B1+B2=k
1 2
m m 2
< (Z X Kk)p(ﬁl,ﬁz,k)} x’gly"o”) :
k=0 B1+pr=k

So that

1

1+ +y)7 < ) Z_k[(’,’f)p(ﬁl,ﬁz,kﬂ “xbiyghe,

Consequently, o/ 2 () < )~ ) |:<;:l>p(ﬁll,32/k):| 71%1;2(4’) N

k=0 B1+B2=k
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Definition 2. The test function space S (R?): This space contains of all those C* complex valued
functions ¢(x,y) € R?, which satisfies

PRICANE P |xP1yP2AL @ (x,y)| < oo, forall By, Ba,r € Ny, (12)
xy)ER
where Ay, = [2 + aa—y +i(x +y) cot].

Proposition 2. Let ICy g(x, Y, ¢, 6) be the kernel of the coupled fractional Fourier transform and
Avy = [% + % +i(x +y) coty]. Then, forall r € Ny

A;,ylctx,ﬁ(x/y/ ‘:ré) = [(b - C)C + (b + C)é]rlca,ﬁ(xl Y 515)/ (13)

where a, b, ¢ are defined as earlier.

Proof. Here, IC, ﬁ(x, v, 0) = de— (P +y?+7+0%)+b(5x+6y)+c(6x—Cy)
We have

0
alCa,/g(x, Y,8,0) = (—ixcoty + bg + cd) Ky p(x,y, ¢, 6). (14)

Similarly, we have,

0 )
@Kﬂé,ﬁ<x’ y/ C’ 5) = (_ly COt’)’ + b5 - Cé)’ClX,ﬁ(xlyr gl 5) (15)

Now adding (14) and (15), we obtain

0 0
a’ctx,ﬁ (x/ Y, C/ 5) + @’C“,ﬁ(xl y/ 6/ 5)
= [—ixcoty +bG +cd — iy coty + bd — c&|ICq p(x, Y, ¢, 6).

Hence, Ay y Ko p(x,y,8,0) = [(b— )G+ (b +c)d]Kyp(x,y,8,0).
Continuing in this way, we have

A Ko p(5,9,E,8) = [(b— O)Z + (b + )] K p (5,4, ,0). (16)

Which completes the proof. [

Remark 1. Let Ky g(x,y, &, 0) be the kernel of the coupled fractional Fourier transform and Ag s
defined as above. Then, for all r € Ny

Dz sKap(x,,6,0) = [(b+c)x + (b — )y Ko p(x,y,8,6), (17)

where a, b, ¢ are defined as earlier.

Proposition 3. Let Ky g(x,y, ¢, 6) be the kernel of the coupled fractional Fourier transform and
A, —[L+ % —i(x +y) coty]. Then, for all (x,y) € S(R?) and r € Ny, we have

xy —
0 [ 8% K5, 8,000y = [ Kap(y,8,0) (8l 9l y)dxdy,

(i) Fup((By)"$(x,9))(E,0) = [(b = )2 + (b + )] Fup(p(x,y) (£, 0),
(ii) A s Fop(9(x,)) (£, 0) = Fup([(b+c)x + (b = )yl ¢ (x,y)) (, ),
(iv)  The operator JFy g is a linear and continuous mapping from S(R?) to S, (R?).
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Proof. (i) First of all, we will prove forr =1,

/]Rz [AxyKap(x,y,8,0)]p(x, y)dxdy = /]R K p(x,,8,6)[Byyp(x,y)]dxdy.

Integrating by parts, we have
/ O O L i(x+y)coty| Kus(x,y,&8)9(x,y)dxd
ax " ay y)coty | Kap(x,y,6,0)p(x, y)dxdy
o  9d .
_/R2 Kap(x,y,8,0) [ax + 3y —i(x+vy) cot’y] ¢(x,y)dxdy.
Therefore,

/]Rz [AxyKap(x,y,8,0)]p(x, y)dxdy = /]R K p(x,,8,6) By yp(x,y)]dxdy.

Hence, in general, we have

[ B Kap ey, 8,00 ey = [ Kop(x,,8,0) (8 )9l )dxdy.
(ii) Exploiting (7), Proposition 2 and Proposition 3(i), we have
(Fup((Bry) 9(x,9)))(E,0)
- / K (6,9,8,0) (Bl ) 9, y)dxdy
= Joo Bxyap (x5, 0)¢(x, y)dxdy
= [,10 =02+ (b+ )] K (x,,8, 6)p(x, y)dxdy

=[(0=e)+ (b +0)I) | Kap(x,y,E 0)¢p(x,y)dxdy
=[b—c)5+(b+ )5]rfaﬁ(¢(x Y)(E,9).

(iif) In viewing Proposition 2, we obtain

85 (Fup(92,9))(E,0)

= [ 884K (x,0,8,0)(x,y)dxdy

= [ [0+ )+ (0 = ) K (x,,8,0)9(x, )y

= [, Kape,80)([(b+)x+ (b= )yl 9(x, ) dxdy
wp ([0 +0)x+ (b= ¢(x,)) (£,0).

(iv) The linearity of F, g is obvious.
Assume that 7, s and t be any three positive integers. Then, by Proposition 3(iii), for any
sequence of functions {¢, },en € S(R?), we have

sup
(¢,6)eR?

&8N 5 [Fap (¢n(x,9)(E,0)

&6 Fup([(b+ )+ (b = )yl (¢n(x,)) (€,0)|.

= sup
(¢,6)eR?

Since ¢ € S(R?), [(b+c)x + (b — c)y]'Pu(x,y) € S(R?).
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S0, Fap([(0+)x + (b= c)yl' (¢n(x,y)) € S(R?).

Hence, :’:Sy}'a,/g(%) = sup
(¢,0)eR?

if ¢, — 01in S(R?).
which shows the continuity of 7, g. [

&0 N 5 (Fappn(x,y)) (E 5)‘ -0

3. Coupled Fractional Fourier Transform of Tempered Distributions

The coupled fractional Fourier transform was orignally defined on L7 (]Rz), 1<p<2
In this section, we extend the domain of the coupled fractional Fourier transform to the
space of tempered distributions using the adjoint method. In order to do that, we need to

examine the action of the coupled fractional Fourier transform on the Schwartz space of
functions, S(R?).

Theorem 1. The coupled fractional Fourier transform defined in (7) is a continuous linear mapping
from S(R?) onto itself.

Proof. In viewing the notations [22]
E(x,y) = ") E-l(x,y) = e 9 b = —ib,¢ = —ic, forall (x,y) € R2, the
coupled fractional Fourier transform can be rewritten as

Fap(@)(E,8) = 2mdET1(E,8) P (8, 9), (18)

where @, 4(8,6) = F(PE1)[—(bE 4 ¢6), — (b6 — &Z)] € S(R?), where F denotes the
Fourier transform.
Now, for all ¢ € S(IR?), we have for any s, € Ny,
0%2
e Fup@)(E9)
0%2
= 27d5 < [E71(G,8)®u,p(C, )]
—2d : E- 72 ®, 4(8,6
Y (5 ) A €0 (2 0)

s—O

/

=2md Z ( ) ( Z mu cot’y)&sg)

5270 s2 =0

’
aSz—Sz

855275

! cDD(,ﬁ (gl 5)/

where m o are constants.
2

So,

051 9%2
agiﬁagsz( Fup($)(G,0)

!
S

= 2md SZZ <SZ>< SZZ m (C0t7)55g>aa§:1 {E_l(ffﬁ)aszijzl Dy p(¢, (5)}

,0 52 5/2/:0 ? C
2 /s, S, 51 s
_ 2nd2<s/>(2m” cotqrész)Z( ) {E (@)
512:0 2 Sy = . ag !

!
95151 aszfs2

X T T
aCSI 751 8552752

{Pap(Z,0)}
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!/ !

s S ” S "
= 27Td 22 (S/2> ( 22 m n (COt"}/)é‘sz) Zl (S})E_l(g,d)( Z noun (COt’)/)gsl)
7 Sy " 52 7 51 51
s,=0 s, =0 s;=0 s, =0
aslfs/1 asz—s/2

agsl 75; 855275;

{®ap(¢,0)},

where n i are constants.
1

Therefore,

01 0%
gtl §t2 8651 %‘F”C/,B (4)) (6, (S) ‘

!

52 s ) " 51 s _
= (o y) Y (j)( Y et 3 (S}>E D)
/ 2 " ! 1

s,=0 s, =0 s,=0

! !
" S1—S Sy —S.
< () e S 2

T T {q>0¢,ﬂ (C! 5) } ‘
" 1 a(’;’sl—sl 9652752

/

5 52 52 S1 Sl

< 2mdcofn Y () X gl 15 ()
sh=0 = =

asl—s; aszfs,2
NG 7 {¢a,ﬁ(§/5)}|-
agsl Sl 8552 SZ

" "
x |§s1 +t 552 +t2

Hence,

T2 (Fup(@)(E6) = sup
(¢,0)er?

> 9%
0 o s (Fap(0)(E.0)

!
S 52 " 51 S1 "
S’ Z ‘mSQ ‘ Z s’ |n51 |
2 " ’ 1
s, =0 s;=0

" " 51*5, Sz—sl
« sup |t 0 g @) (19)
(£,6)€R2 0%517%1 9527 %2

< 0o,

IN

S
2m|d||cot? v| Y
s;:O

because @, g(¢,6) € S(R?). Thus F, 5(¢)(¢,6) € S(R?). Also from (7) and (8), we see that
forall ¢ € S(R?),

(FapFap) (@) = ¢ = (Fo5Fup)(9).
It follows that F, 4 is a one-one mapping from & (R?) onto itself. Clearly, Fu,pis a linear
map. To show that it is continuous, assume that there exists a sequence {¢,} — 0in S(R?),

then from (19), {Fpppn} — 0in S (R?); therefore, the continuity of the coupled fractional
Fourier transform follows. [

Definition 3. The generalized coupled fractional Fourier transform Fy gf of f € S'(R?) is
defined by

(Fupfr0) = (f, Fupp), where p € S(R?). (20)
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In a similar way, we can define the inverse of generalized coupled fractional Fourier transform F - é f
of f € S'(R?) as follows:

(Fupfr®) = (f, Fupd) ¢ € S(R?). (21)

Theorem 2. The generalized coupled fractional Fourier transform F, g is a continuous linear map
of S’ (R2) onto itself.

Proof. Itis easy to observe that F, g is linear on S'(R2).

By the previous Theorem 1, we observe that F, g(¢) € S(R?) for all ¢ € S(R?). The
right-hand side of (20) is well defined. Also, if {¢,} — 0 in S(IR?), then by the continuity of
coupled fractional Fourier transform {F, g(¢n)} — 0, the right-hand side of (20) converges
to zero, which in turn implies that {(F, gf, ¢u)} — 0as n — co. Thus, F, g is continuous

onS (R?). O

Remark 2. The inverse of generalized coupled fractional Fourier transform F é is a continuous

linear mapping from S' (R2) onto itself.
Example 1. Let x(x — p),x(y — q) denote the Dirac Delta functions. Then,

(i) Faplk(x — p)x(y — q)] = Kop(i,0,p,9),1,0,p,9 € R,
(i) Fo gl (X)k ()] (&, 1) = de™ 7).

Proof. (i) Let ¢ € S(R?). Then, we see that

(Faple(x = p)ely —q)l, ¢) = ([x(x = p)e(y — )|, Fapp) = (Fapp)(p,9)
- /R Kap(1,0,p,4)p(u, v)dudo
= (Kep(,v,p,9),¢(u,0)).
(ii) It is easy to prove (if). [

4. Pseudo-Differential Operators

Pseudo-differential operators involving Fourier and fractional Fourier transforms have
been extensively studied [15,20,23-26]. The goal of this section is to extend the notion of
pseudo-differential operators to the coupled fractional Fourier transform and study their
continuity and boundedness on modified Schwartz-type spaces.

Pseudo-differential operator associated with §,, ,: A linear partial differential
operator A(x,y, D;r,y) on R? is given by

m
A(x/y/ Dx,y) = 2 “V(xry)(px,y)rr (22)
r=0

where the coefficients a,(x, y) are functions defined on R? and D;,y is as defined above. If
we replace (D;,y)r in (22) by monomial {i(&cscay + { cscan)}’ in R?, then we obtain the
so-called symbol

m

A(x,y,8,0) = ) ar(x,y){i(Eescay + L escar)}. (23)

r=0

In order to obtain another representation of the operator A(x,y, D;,y), let us take any
function ¢ € S(R?); then, using (5), (6) and Proposition 1(iii), we have
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(A(x,y,Dyy)p) (x,y) = go ar (2, 9) B,y S (D) (3, )
=Y a2, y) T, {i(E cscay + L esc ) Y (Fay (%)) (E, )
r=0

= [ K, 8 DAY, 2, 0) (o) (6,0)GAL.

So, we have represented the partial differential operator A(x,y, D;,y) by means of
two-dimensional fractional Fourier transform. If we replace the symbol A(x,y,¢,{) by a
more general symbol a(x, y, ¢, {) which is no longer polynomial in , {, we obtain operators
more general than a partial differential operator. The operators so obtained are called
pseudo-differential operators.

Pseudo-differential perator associated with 7, z: Following the similar procedure, a

linear partial differential operator G(x,y, Alx,y) of order m on R? is given by

(x,y,4 Z gr(x,y)( (24)

If we replace (A, )" in (24) by monomial [(b —¢)¢ + (b +¢)d]" in RR?, then we obtain the
so-called symbol

(x,y,¢,6) Zgr X, y)[(b—c)E+ (b+c)é]". (25)

In order to obtain another representation of the operator G(x,y, Alx,y), let us take any
function ¢ € S(R?); then, by (7), (8) and Proposition 3(ii), we have

(G(x, ¥, Byy) Zgr X ) F 5 Fap(By) 9, y)
= /R K p(E0,2,9)G(x,y,8,0) (Fup) (€, 6)dEds,

where K_, (5,0, x,y) is as (8).

So, we have expressed the partial differential operator G(x, y, A;,y) by means of the
coupled fractional Fourier transform. If we replace the symbol G(x,y, ¢, ) by the more
general symbol g(x,y,¢,J), that satisfies a certain growth condition, which is no longer
polynomial in ¢, 6, so we obtain operators more general than partial differential operators.
The operators so obtained are called pseudo-differential operators associated with coupled
fractional Fourier transform. We see that this operator is more generalized than the operator
defined by means of two-dimensional fractional Fourier transform gy, 4,

Definition 4. Let my, my € R. Then, we define symbol class TS™1"2 to be the set of all functions
g(x,y,¢,0) € C®°(R x R x R x R) such that for any natural numbers s1, sy, s3, Sa, there exists a
non-negative constant Cs, s, s, s, depending on sy, sy, s3, 54 only, such that

051 952 953 Q4
5 2y s o S 9/ 69)
< Csy sy (L) (14 []) ™%, (26)

forall x,y,¢,6 € R.
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Definition 5. Let g be a symbol satisfying (26). Then, the pseudo-differential operator Gg s g is
defined by

(Gg,oc,ﬁ(l))(x/y) = /]RZ ’C—a,—ﬁ(gr S, x,y)g(x,}/, ‘515) (Fa,ﬂ(P)(ér‘s)déd& (27)

For the sake of the study of continuity of the pseudo-differential operator G, 5, we
need to redefine the Schwartz-type space as follows:

Definition 6. An infinitely differentiable complex valued function ¢(x,y) is a member of Sy, .(R?)
if for every choice of B1, B2, 71, 72 € Ny, it satisfies

b1 9b2

Y172 —
Y ((P) - Sup axﬁl ayﬁz

P(x,y)| < oo, (28)
P2 (%) €Ay (R?)

XMk 1 (Y)

where Ay (R?) ={(x,y) € R?: |bx — cy| > |bx| and |by + cx| > |by|} and

~Jyiflyl > 1
k’YZ/,Bl (y) - {y72+/31,1f‘y| S 1

We shall make use of the following Lemma 2 to prove Theorem 3.
Lemma 2. Let ,B/l, Y2, o be natural numbers; then, we have

9P

9P

[(—by _ Cx)*(Vsz)ea(§2+52+x2+y2)*b(éxwy)ﬂ(éxféy)]

"

‘B/ f ‘B// " IB
Zl (ﬁl) Zl (5}/) eu(§2+(52+x2+y2)_b(§x+§y)—c(5x—§y) t as, (cot’y)xsl
B, =0

n
B! =0 B1 " B1 51=0

br— o)l i (22 B =B =D s )
X (=b& —cd)P17P1 cP1mP1 (2 +5— 1) (=by — cx) 17P1),

Proof. Using the Leibnitz formula, we obtain

8131/ [(7by7Cx)—(72+sz)ea(€2+62+x2+y2)—b(¢x+5y)‘C(‘Sx‘éy)]
axﬁl
& (/ﬁ/) oh [+ b —cox—2)|
" ,81 axﬁl
p1=0
5 L_ﬁl“ ((—by — cx)*(”JFSZ))
oxPr=F
) ()2 B
/3'1':0 131 18'1”:0 ,31 dxP1 dxP1—P1
« ﬂ ((—by —~ cx)‘(“’2+52))
oxPr=F1
ﬁ, / 18” ., ﬁ/”
_ i <ﬁ/1,> 21 (ﬁ}/)ea(czwzﬂzwqb(gx+5y)c(z5x§y) t as, (cot y)x™
g0 \P1/ gy \P -

P +52_|_‘B/ _‘BU _1)l _ T
(—bE — c\Br B prpy (72 1~ P by — cx) - (a2t Bi—BL)
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This completes the proof. [

Lemma 3. Let g be a symbol belonging to TS™™2 and Gg 4 g be the pseudo-differential operator
defined in (27). Then, for any Br € N, we have

ob2
W(Gg,a,ﬂfp)(xry)
B2 B> B
= d(—q)(—1)n2ts2) /R2 /Z (ﬁ,) ,,Z ( 2) 2 a5, (cot )y (—by — cx) ~(12+%2)
B,=0 2 B, =0 27 5=0
Y2+s2 tr t/z
_ —o(Sxr— Y2 +s t 2,520,202 "
xXe b(§x+5y) C(éx Cy) 2 ( ztz 2> Z <t/2)ea(g +6°+x +]/) Z at,z, (COt’)/)(St2
t2=0 =0 2 £ =0
afz f b2~ By dr2ts2—t

e BB S | 600 B ) 0.

where Asy, A, are constants.
2

Proof. Using (27), we have

b2

w(cg,a,ﬁq))(xry)
B2
L U p (68 g, DI Fu ) O
92 9B2—Bs
= (- [, 2 (ﬁi) = )

X(]"a,,s@(ff 5)dgdos
_ d(—’)/)/ <:BZ> 8152 [ (§2+§2+x2+y2)7b(§x+(5y)7c(§x7§y)]

/32 ay/gz
9B2-PB
x ———[8(x,y,8,0)[(Fapp) (G, 6)dcdo
ayﬁzfﬂz
= d(—f)/)/ % <ﬁ$> % <5g> a’gzﬁ 2620 x4y )}ﬁ[ —b(Gx+0y)
R2 ﬁ/ZZO ,82 ﬁz ayﬁz ayﬁZ ﬁZ
el 9B~
@ Cwla o 80,8 0)](Fap9) (8,0)d2ds
y 2
ﬁz //
= d(—’Y)/ Z <'3> Z <52> (212424 y?) Z as, (cot y)y*?(cg — bo) (By—B2)
182 182 sp=0
—b(Ex-+dy) —c(dx—2y) 35 22

SN P € e,

where a5, are constants.
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It is easy to see that L2-2 [=b(Ex+0y)—e(6x—Ly)| = (—py — cx)12+20=0(Ex+0y)=

- 9572752
Then, the above estimate becomes

o £ (0) £ () s s sacrere

aﬁz—ﬁlz

W) =eOr=tn) T [o(x,, 8, 6))(Fupd) (€ 6)dCdS

972182
9o727F%2 ¥ oyP2—F2

X (_by — Cx)_(')/2+52)

= aemenme [ 5 (2) 3 ; (%) 3 5 tatcot by —ex)- (e
g=0 P27 g0

ﬁz 520

872"”52 |:(C§ B b&)(ﬁ;fﬁ;’)ea(€2+52+x2+y2)

0072152

g(xy,8 5)}(ﬂ,ﬁ¢)<§,é)}d¢d5

o~ b(Ex+8y) —c(6x—Cy)

aﬁz ﬁz
aylg ﬁ2

= d(—)(-1)7+) /RZ ngi:O (g,z) 20 (52) 2 a5, (coty)y2 (—by — cx)~(12+s2)

2 2/ sp=0

2 - B2—B
o E () B 2
th=0 2 ayﬁZ ﬁ

or2ts2—t2 (/5/ *‘BN)
X Senta-t {(CC —bo)P2mh2 (fa,ﬁ¢)(§/5)] dgds

= A0 [ ﬂz( ) - ( )3 5 tatcor by —ex)- e
,=0

Sy= =0
x e~ b(Ex+0y)—c(dx—Cy) 72 (72 + 52) (t ) u(§2+52+x +2 it
th=0 8(5t2

atz b By or2tsa—ts
. tzm{ 80 38.0) ey | (€8 — 00 (5, ) ,0)| e

- iy [ 8 () :

(,,) as, (cot )y (—by — cx) ~(12+%2)

=0 2 52:0

o b(Ex+3y)—c(6x—Cy) Z (72+S2) <t,2)e (248242 +y?) Z ap( co’c’Y)‘St2
t2=0 fy ty =0 2

o2 t ob2 By or2tsa—ta
anWMm“mﬁéammh[ibémmwmmmaﬁw

where a ;/ are constants.

2
This completes the proof. [

c(0x—Ey).

Lemma 4. Let g be a symbol belonging to TS™ "2 and Gg , g be the pseudo-differential operator

defined in (27). Then, for B1, B2 € N, we have
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b1 b2

oxi 5Pz (Caap?) (5:)
- scvcamsan, £ ()6 (8) o
2 27 $=0
722+S2 ('72+Sz> tzz ( ) ZZ J ,BZI B ,szl ‘[3/1
X a //(5 2 ( ; ) ( //)
tr=0 tIZ:O :0 ,31 15,1,:0 1
* Z ( W) Z asl bx+cy) wﬁ_Sl)(*by— Cx)_(’72+52+ﬁ/1—ﬁ,1/)
/3/”—0 lBl 5120
Cﬁl /51 (’)/2 + So +ﬁ1 ﬁl ) §x+§y) (5x7§y) a'}’1+51 |:
(v2 452 = 1)t OE1Fs1
o2 ts2—t2 )

XA (e — B0) PP (F, ) (8, 6) e &) (g — )P P

8131 B o2~ f b2~ B

x,y,¢,0)}|d¢dé.
P a5 e SO )}|ae

Proof. Exploiting (27) and Lemma 3, we have

81 oB2
oxPi 5Pz (Caap®) (x:Y)
"/2+52
= d(—y)(—1)lrt) cotzv/ <§2> Z (ﬁ) ZaszySZ Z (’YZ+52)
2 2 Sp= =0
ty t2 t; a’yz+527t2 -
X /Z <t'2> ( //Z at/z/étz )W |:(C§ — bé)(lgz ﬁ2)<]:0é,f3¢)((:,(5):|
t,=0 ty =0
ob1

— | (=by — —(12+52) La(E2 402 +x2+y?) —b(Ex+8y) —c(5x—Cy)
X&xﬁl [( by — cx)~\12T52)e
atz tlz ob2— .Bz

{8(x,,,6)}|deds
20 E, oy P {8(xy,¢, )}} ¢

= d(—y)(-1)2+=2) cotzfy/ <ﬁ2> Z (ﬁ) Z as,y hisz (’Yz+52)

‘82 520

!

t2 t ) o o2 ts2—t2 U
/Z (2) 2 ”t” Wsztz{(cg_b(s)(ﬁz :32)(‘7?“,‘5(13)(@’/5)]

(/3/1> of1 [(—by _ Cx)—(72+Sz)ea(52+52+x2+y2)—h(éertSy)—C(rFx—Cy)}
A1

aﬁl By afz—f/z aﬁz—ﬁ/z

axﬁl By 9ot~ t ayﬁz B)

9xP1

~{g(x,y,& 6)}dzds.
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Now, using Lemma 2, the above estimate becomes

b1 9Pz

oxPi 5Pz (Caap®) (x:)

) E(5) B T (%07)

520

= () (1) oy [ Y (ﬁ
Bh=0

// a’)/erSz —t

20 (%) ; 0 | (e = 60) P (o) €,0)|

2

"

EOEG) E G Ercio

B B " +Sz+ﬁ,_ﬁ”_l)!
X e c(6x—Cy) bé& — cb /31 B Cﬁl /31 (72 1 1
(e (2t 52— 1)1
" a/sl *,Bll atz—f; a,BZ_IBlz

X (—by — cx)~ (s tFi=pY) Lo _{(x,1, &, 6)}deds,
axﬁl_.Bl a(stZ_tz ayﬁZ_ﬁ2

where a5, is constant.

Since ;g;ﬁ; {e=b(Gx+oy)—c(x=Cy)} — (—px + cy)N1F51eb(Ex+0Y)—c(0x=CY) then the

above expression can be rewritten as

= A () cofy [ Z( ) ﬁZ <ﬁ2> zaszyszhfz (")

520

// a'YerSz tr ’ "
Z < > Z ”t”5 S5 {(cg_b&(ﬁzﬁz)(}'ﬂ(rﬂ(i))(g/(s)]

/

t,=0

EEVEE) £ Ererommits

- oMt (x| (2 52+ By — B — 1)!
- (mts1) 2 | o=b(Gx+dy)—c(ox—Cy) 1M
X (=bx +cy) SETT {e } (2t 1)

X <_b§ —_ C(S)ﬁ’l’ 7.3,1,/ (_by —_ Cx)7(72+52+ﬁ/17ﬁ/1,)
a.Bl*ﬁll atz—flz aﬁz—ﬂlz

X ; ; {g(x,y,& 6)}deds
PP, 2t ayﬁz—ﬁz{g( y,$,0)}dg

s £ () § (5 B

520

CEIEE Bt £ £ ()

ty =0 B,=0

/g " /3 / "
< 3 (1) X0 met (b ) ) by ) s

X Cﬂl 151

(’YZ + 85+ ﬁl 131 — 1) b(x+0dy)—c(dx—Gy) grta |:
(r2+s2—1)! agmne
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Y2t+s2—t2 ’ " "
Xﬁ{(eé—b5><ﬁfﬁz><fa,ﬁ¢>><¢,5>}eﬂ<é‘2+5z+x2+y (~b¢ — c)Pi P

aﬁlfﬁll afz—f/z aﬁz—ﬁ/z
xS {g(x,y,8,0)} | dcdo. 29)
axﬁl */31 a(stZ*tz ayﬁZ*ﬁz

This completes the proof. [

Theorem 3. Let g be a symbol belonging to TS™™2, with my,my < —1. Then, the pseudo-
differential operator Gg g defined in (27) is a continuous linear mapping from Sy, (R?) into itself.

Proof. Let ¢ € S(R?). Then, for any four non-negative integers B1, B2, 71, 72, we need to
verify that

b1 9Bz

sup  [xky, 5, (Y) 55 25 (Gapd) (X, )] < co.
(xy) €A (R2) 12PN G B oyP2 sup

To verify the above inequality, note that from (29)

{(cg - b5)(’5/2*’3,2/)(]-"a,/g4>)(g,5)}ea(§2+52+x2+y2)

QMitst r gr2tsa—t
ogmtsi [85724-52—1‘2

" a,Bl ﬁl atz_tlz aﬁZ /52
x (—bg — co)Fi P r8(%,y,8,0)]
oxB1— B ot~ t ayﬁz B,

_ﬁis] <’h +s1> o' |:ea(é2+(52+x2+y (- bg—as)ﬁl " 8’51 Br gt

=0 3] aétl ax[ﬁ*ﬁl aétzft;
3152 B, ontsi—ti gratsa—t r
ayﬁz [3/2 g<x A% )} ocmtsi—h ggretsa—h {(CC - b(S)(ﬁz ﬁz)(Fa,ﬁ‘P)(éré)}
+ t ! " n
—71251 (7 +Sl) ) (t’l )ﬁ{ea(¢2+52+x2+yz)(bg65)51 )
£,=0 f1/ agh

atﬁtl aﬁfﬁ’l atz—t; aﬁz—ﬁ/z
X 7 7 7 7 {g(x/y/ C/ 5)}
ofh—h 9xP1=P1 9sf2—t gyP2—Fs
ovitsi—t gratsa—t I
% ofmtsi—t ggr2tsa—t {(eg— M)(ﬁz ﬁz)(}—a,ﬁ‘l’) (§,0)}

Y1+851 t t/1 ! £
71 +5s1 t1> <t1) 01 a2+ 42 4y?)
SE (L) L () )

#=0 /=0 1 agh
atl_tl " atl_tll aﬁl_ﬁll atZ*t; aﬁzfﬁ;
x o {(—bE — )PPy T ; ; ~{8(x,y,6,6)}
orhi—h ofhi—h 9xP1=F1 9of2—t gyPa—Fa

ontsi—ti gratsa—t Bamp)
X T ggrreata (66 bO)TRT (Fupd) (8, 0)}
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71151 t t; ! t;, "
7 +s1 t £ 24520020 ;
ECE B EGerer Eoon
=0 Y17 f'=0 M1 t/'=0
% (_b)t;—t'{ (/31,// i) (—bE— cé)ﬁl —B, £+t
(AB] AB] tl + t])’
atl_t; aﬁl—ﬁl atZ*t,z aﬁrﬁ;
X / r—— ——18(xy,§,0)}
ozl 9xP1P1 962712 gyP2—F2
oritsi—ti gratsa—tz _ry
X gmTeh agraratn (6~ b6)\P2P2) (F ) (2,0)}, (30)

where a, " are constants.
Thus, from (30) and (29), we have

b1 pbe
3uPi 3Pz (Caap?) (x:)

ﬁz B /g B2
= atnnmesoy [ 3 (2) 8 (1) 3
ﬁz "_ ,32
B, =0
X

15220 32:0

T2+52 7] t; /5/1 !
RO R L
2 S0V o0t =0 A B/ =0 Ay

13 " Ig ! "
y Zl (/3}/) t a51xsl(_bx+Cy)—(71+sl)(_by_Cx)—(72+52+/51—/51)

ﬁ///: lBl 51=0
+
% BB (r2+s2+ /51 ﬁl ) b(Ex+3y)—c(6x—Cy) ’hzfl (’)’1 + Sl)
Y2+ 82— 1)! =0 h
¢ t/ t//
1 tl 1 tl (§2+52+x2+ 1 ///
X ’ P ) amg1l
B () L (e Lot
£,=0 £/ =0 £'=0

X (—b)h—H (ﬁlm i) (—bE — co)f Bt
(181 ﬁl tl + tl)!
o=t gbi—B1 gh—tr BB
X / 1 7 ! {g(xry/gra)}
agtl_tl axﬂl_ﬁl ost2—t ayﬁZ_.Bz
gritsi—ti grats2—ty Yy
X ag’yl-‘rsl—fl 85’)/2-1—52—1’2 {(Cg - bé) (ISZ ﬁZ)(]:“,,B4)) (6’ 5)}d§d5

Therefore,

b1 9b2
XMk, 5, (¥) 9xP1 ayPr (Ggapd)(x,y) ‘

< |d(—'y)cot4ry|ﬁfzi0 (ii) Z, (/32> Z \g52|7zz+s (72+sz> tzz (i/z)

' 2
ty=0
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/!

< 3 layl z [1): i (ﬁ’l) 2 (’?%) 2 o

t;/:(] 131 /// lBl
ron g ) r1ts1 51 tll t,
<|c|Fi =P (12 +52+p —f = 1! 5 (’h +S1) 5 (h) 3 ( 1)
(,)’2 + 57 — 1)' =0 tl / tl 1" t/l,

t=0 #=0

tl , 1 n
X Z \ame|t1_t1 (nBl nBl)

F R T ]

|51 (bx — y)—(71+51)y52+vz+3

, ) ¢ 7t, vy ' —t/ vy
x(by+cx)—(72+52+ﬁ1—ﬁ1)‘/ o™ 1/ o1 /51, 9z 2, of ﬁz, {g(x,y,&,6)}
B2 ghi—h gxP1=F1 9ot —ta gyP2—F2

a'YlJFSl*tl 872+52*t2 1l N
e e e (68— 16) P 82) (F 5) (8,6)} (66 + co)i 1 i

x&h 6 dgds.

Since |bx — cy| > |bx| and |by + cx| > |by|, then the above inequality becomes

T2+s2

et £ () £ (8) £ E (1) £ ()

52=0 & =0 &
/

B £ LG E G Em

" N/

ty =0

/ " ¢ !
X \qﬁ%ﬁ’f (r2+s2+p - —1)! ﬁisl <’71 +51> i (f1> i <t1)
(72 +s2—1)! h t ]

H=0 I "_
1 =0 t; =0

tl n
< 3 Lol ns_ BB s
/N_O (181 161 t +t )
atlff; aﬁlfﬁ& afZ*f/z aﬁrﬁ; {
R2 agtl—f; oxP1—B1 gst2—t2 ayﬁz—5,2
9ritsi—ti gratsa—tz i
xg(xy, ‘:’5)] SETe i agnateh W6 T bs)\P27P2) (Fo 59) (8,6}

x (bZ + cé)ﬁ'f*ﬁ’luf'fi“i’ & o deds

) cotd 9] Z ( ) Z, (/32> Z ‘,132|722+52 <72+Sz> tZZ (Z)

t,=0

x 2 i (0) £ <§§> () & e

" ///

ty =0

> ‘by‘—(72+sz+ﬂl1_5/1/)

IN
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"

/ " / , ;
X(72+52+‘Bl 7131 71)' 7f1 (’)/1 +sl) tzl (t1> Z1 (t1> i
_ | ! "
(v2 +s2—1)! 10 f /o t) ot t o
X|at///||b‘tllftglffyl751*72*52*ﬁ,1+/3/1, (ﬁl ﬁl )
1

(By =1 —t +1)!

atl_tll aﬁl—ﬂll atrt; aﬁz*ﬁz Jnitsi—h gratsa—h
X/ ; ; , 8y, 8 0) o s e
R2 agtlftl axﬁlfﬁl ot~ ayﬁzfﬁz a(;“/l 1—t1 gyr2ts2—t2

x{(cg = b0) P2F2) (F, ) (2,0)} (b + o) =P = gh oz dgas.
Now exploiting (26), we have

of1 B2

Y
| 1k72/ﬁ1 (v) oxb1 ayﬁz

(Gg,tx,ﬁ(p) (x/ ]/) |

IN

Sp=! =0 t;:()

Eaa £ () £ () £ () L wers

ty =0

xm“ﬁﬁ*ﬁ'f*”’“ﬁl " E e
_ | / "
(,)/2 + 52 1) . t1=0 tl t; —0 tl t;’:O tl t/1”:0

n
X ‘Ht/// | ‘bltg*t;lfryl —S51 *72*52*/3/14‘/3/1, (181,// lBl ) .
! (By — By —t+1)!

(14 &)=+ (1 4 [g])ma—tatta

8 /Rz Cﬁl—ﬁlyﬁz—ﬁ;,tl—t;,tz—t;
gntsi—h grnts—h o
X SETTS R gg T h {(cg - b(S)(ﬁz ﬁZ)(Fa,ﬁ(P)@,(S)}

x (b + c8)P1 ~B1 ~tr+h gti' 512 s,

Since (¢g — bé)(ﬁ;_ﬁg) (Fap$)(S,0) € S(R?), the last integral is convergent. Hence,

b1 9b2
P [k 0) g o (G )] <

This completes the proof. [

5. Application of the Coupled Fractional Fourier Transform to a Generalized
Heat Equation

e £ (2) £ (5) B E (707 £

Example 2. Using the coupled fractional Fourier transform, we investigate the solution of the

generalized heat equation

20y D) = (B, Poley 1) —e<xy<w0<t<os,
$(x,y,0) = f(x,y).

(31)

Taking the coupled fractional Fourier transform from both sides of (31), we have

L Ko (0, 8,8) 305, 0}y = (Fap(B L3, 0))(E,5,).
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References

So that,

5 L 0,005, )y = {(b = T+ (b + ISP Fupl9x,3, 1)) 6,6,1).

Therefore,

D Fup@lryIE 0,0 = (b= )2+ (b+ OV (Fupl9ly,)(E6.0).
Which gives
Fap(@®)(E,0,1) = C(&,8) exp[{(b— )& + (b +c)d}?t]. (32)

So, (Fup(¢))(S,6,0) = C(¢,0). But

Fap(9))(E,0,0) =

2

Kap(x,y,8,0)p(x,y,0) dxdy
K

, Kap(x,y,8,6)f(x,y) dxdy
B()(E,9).

T

I
o

So, C(E,0) = Fap(f))(S,0).

From (32), we have

Fap($)(E,6,t) = exp[{(b— )& + (b+ )8}t Fup (f)(E,0). (33)

Now applying (8) of both sides of (33), we have

D, 1) = Fop (expl{(b — )z + (b + )01 Fup(£)(E0)) (x,9).

6. Conclusions

In this study, we extended the coupled fractional Fourier transform to a Schwartz-
like space and exploit the adjoint method of the said transform to a space of tempered
distributions. We derived certain fruitful properties of the kernel of the coupled fractional
Fourier transform. Pseudo-differential operators involving coupled fractional Fourier
transform is introduced. Moreover, it is shown that the pseudo-differential operators
associated with coupled fractional Fourier transform create a continuous mapping on a
suitably designed Schwartz-like space. This article concluded with an application of the
coupled fractional Fourier transform to solve a generalized heat equation.
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