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Abstract: In this paper, the sampling and reconstruction problems in function subspaces of Lp(Rn)

associated with the multi-dimensional special affine Fourier transform (SAFT) are discussed. First, we
give the definition of the multi-dimensional SAFT and study its properties including the Parseval’s
relation, the canonical convolution theorems and the chirp-modulation periodicity. Then, a kind of
function spaces are defined by the canonical convolution in the multi-dimensional SAFT domain, the
existence and the properties of the dual basis functions are demonstrated, and the Lp-stability of the
basis functions is established. Finally, based on the nonuniform samples taken on a dense set, we
propose an iterative reconstruction algorithm with exponential convergence to recover the signals
in a Lp-subspace associated with the multi-dimensional SAFT, and the validity of the algorithm is
demonstrated via simulations.

Keywords: the multi-dimensional special affine Fourier transform; nonuniform sampling; canonical
convolution; iterative reconstruction algorithm
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1. Introduction

The well-known Shannon sampling theorem had a great impact on many engineering
fields, such as communication and information processing, which provides a basic bridge
between discrete and continuous signals [1]. However, it is not suitable for numerical
realization due to the slow decay of the sinc function generating the bandlimited signal
space. Moreover, many signals in the practical applications are not bandlimited. With the
development of wavelet analysis, many sampling results have been generalized to more
general shift-invariant spaces [2–11]. However, most results are studied in the framework
of classical Fourier transform (FT).

In recent years, many sampling theories have been attempted to be established in the
setting of more general integral transforms including the fractional Fourier transform (FrFT),
the linear canonical transform (LCT) and the special affine Fourier transform (SAFT) [12–21].
The SAFT was first proposed in [22] for modeling optical systems and had been generally
applied to signal processing, communications and quantum mechanics, which is a six-
parameter integral transform and can contain many classical transforms as special cases,
such as the FT, the FrFT, the Laplace transform and the LCT [23–25]. These results indicate
that the studies related to one-dimensional signals in the SAFT domain have been relatively
complete, but the results of multi-dimensional signals are rarely seen.

The SAFT is also called the offset linear canonical transform (OLCT) because it can
be seen as a time-shifted and frequency-modulated version of the four-parameter LCT by
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introducing two extra flexible parameters. The LCT, as a tool for signal processing, had been
intended to analyze multi-dimensional signals in the sense that a product of n-copies of the
usual one-dimensional LCT was used [26,27]. Supported by the sampling theory, it has been
widely applied to images and audio [28,29]. With the development of the sampling theory,
the sampling of multi-dimensional signals will also have more potential applications,
such as image scaling, and image super-resolution [27,30–32]. In addition, the conversion
between different sample rates also plays an important role in communication, image
processing, etc. All kinds of classical transform domains such as FT, FrFT, LCT and
other one-dimensional sampling rate conversions or multi-dimensional extractions or
interpolations with integer matrices are also proposed [33–36]. The SAFT, as the offset
version of the LCT, is more flexible, so it is necessary to discuss the problems related to
multi-dimensional signals in the SAFT transform domain.

As an extension of bandlimited signals in the SAFT domain, different function spaces
associated with various types of convolutions are defined to model non-bandlimited signals, and
the corresponding sampling theories are studied, such as the canonical convolution [14,16,17]
and the SAFT-convolution [12,19]. However, all the involved function spaces are L2-
subspaces, and the discussion in the Lp-setting is still not explored. Motivated by the above
observations, we will devote ourselves to the following problems:

� State the definition of the multi-dimensional special affine Fourier transform with
multi-dimensional kernel and establish some basic conclusions including the inverse
transform formula, the Parseval’s relation, the canonical convolution theorems and
the chirp-modulation periodicity.

� Based on the proposed multi-dimensional SAFT and the canonical convolution in the
multi-dimensional SAFT domain, introduce a class of Lp-subspaces and discuss the
corresponding properties including the existence of the dual basis functions and the
Lp-stability of the basis functions.

� The theory of nonuniform sampling in shift-invariant spaces of the Lp-setting associ-
ated with the classical FT has acquired great achievements [2,3]. Taking the existing
results as a reference, consider the nonuniform sampling and reconstruction of signals
in the Lp-subspaces associated with the multi-dimensional SAFT.

The paper is organized as follows. In Section 2, we give the definition of the multi-
dimensional SAFT and its properties. In Section 3, a class of subspaces Vp(ϕ) of Lp(Rn)
associated with the canonical convolution in the SAFT domain are discussed. In Section 4,
an iterative reconstruction algorithm based on nonuniform samples is proposed to recover
the signals living in the space Vp(ϕ).

2. The Multi-Dimensional Special Affine Fourier Transform

In this section, we will give the definition of the multi-dimensional special affine
Fourier transform and introduce its properties. Let

M =

[
A B p
C D q

]
. (1)

Here, A, B, C, D are n ∗n real matrices, p, q are n ∗ 1 column vectors, and M1 =

[
A B
C D

]
is

a symplectic matrix, that is, MT
1 JM1 = J, where J =

[
0 In

−In 0

]
and In is a n-dimensional

identity matrix. In the following, we only care about the case of det B ̸= 0.

Definition 1. For f ∈ L2(Rn), the multi-dimensional SAFT with respect to the matrix M is
defined as
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FM(w) =
∫
Rn

f (t)KM(w, t)dt

= ρ(n, B)
∫
Rn

f (t) exp
{

j
2
(wT DB−1w + ΩB−Tw + tT B−1 At + 2pT B−1t − 2wT B−Tt)

}
dt, (2)

where ρ(n, B) = 1

(2π)
n
2 |det B|

1
2

, Ω = 2(Bq − Dp)T , t = (t1, t2, · · · , tn)T and w =

(w1, w2, · · · , wn)T .

Similarly, for a sequence { f (k)}k∈Zn ∈ ℓ2(Zn), the multi-dimensional SAFT transform
is defined by

F̃M(w) = ∑
k∈Zn

f (k)KM(w, k). (3)

Lemma 1. Let

M−1 =

[
DT −BT Bq − Dp
−CT AT B−TCT Bp − B−T AT Bq

]
. (4)

Then the multi-dimensional SAFT kernel satisfies the following properties:
(i) KM−1(t, w) = KM(w, t).
(ii)

∫
Rn KM(w, t)KM−1(z, w)dw = δ(t − z).

Proof. (i) Since M1 satisfies MT
1 JM1 = J, we have AT D − CT B = In. Then

KM−1(t, w) = ρ(n, B) exp

{
j
2

(
tT AT(−B−T)t + 2tT(−B−T)

(
(−BT)(B−TCT Bp − B−T AT Bq)

− AT(Bq − Dp)
)
+ wT(−B−T)DTw + 2wT(−B−1)(Bq − Dp)− 2tT(−B−1)w

)}

= ρ(n, B) exp

{
− j

2

(
tT AT B−Tt + 2tT B−Tp + wT B−T DTw + 2wT B−1(Bq − Dp)

− 2tT B−1w
)}

= ρ(n, B) exp

{
− j

2

(
tT B−1 At + 2pT B−1t + wT DB−1w + 2(Bq − Dp)T B−Tw

− 2wT B−Tt
)}

= KM(w, t).

(ii) It follows from (i) that
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∫
Rn

KM(w, t)KM−1(z, w)dw

=
∫
Rn

KM(w, t)KM(w, z)dw

= ρ2(n, B)
∫
Rn

exp
{

j
2
(wT DB−1w + ΩB−Tw + tT B−1 At + 2pT B−1t − 2wT B−Tt)

}
· exp

{
− j

2
(wT DB−1w + ΩB−Tw + zT B−1 Az + 2pT B−1z − 2wT B−Tz)

}
dw

= ρ2(n, B) exp
{

j
2

(
tT B−1 At + 2pT B−1t − zT B−1 Az − 2pT B−1z

)}
·
∫
Rn

exp{−jwT B−T(t − z)}dw. (5)

Let w1 = B−1w. We can rewrite (5) as∫
Rn

KM(w, t)KM−1(z, w)dw

=
1

(2π)n|det B|
exp

{
j
2

(
tT B−1 At + 2pT B−1t − zT B−1 Az − 2pT B−1z

)}
·
∫
Rn

exp{−jw1
T(t − z)}|det B|dw1

= δ(t − z).

Lemma 2. For f , g ∈ L2(Rn), one has

⟨FM, GM⟩L2(Rn) = ⟨ f , g⟩L2(Rn). (6)

Proof. Note that

FM(w) =
1

|det B|
1
2
F
[

f (t) exp
{

j
2

(
tT B−1 At + 2pT B−1t

)}]
(B−1w)

· exp
{

j
2

(
wT DB−1w + ΩB−Tw

)}
. (7)

lThen, it follows from the Parseval’s formula in the FT domain that

⟨FM(w), GM(w)⟩

=

〈
F
[

f (t) exp
{

j
2

(
tT B−1 At + 2pT B−1t

)}]
(w1),

F
[

g(t) exp
{

j
2

(
tT B−1 At + 2pT B−1t

)}]
(w1)

〉
=

〈
f (t) exp

{
j
2

(
tT B−1 At + 2pT B−1t

)}
, g(t) exp

{
j
2

(
tT B−1 At + 2pT B−1t

)}〉
= ⟨ f (t), g(t)⟩.

When f = g, then the relation is the Plancherel’s formula in the multi-dimensional SAFT domain.
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By the item (ii) of Lemma 1, one can obtain the inverse SAFT as∫
Rn

FM(w)KM−1(t, w)dw =
∫
Rn

∫
Rn

f (x)KM(w, x)dxKM−1(t, w)dw

=
∫
Rn

f (x)
∫
Rn

KM(w, x)KM−1(t, w)dwdx

=
∫
Rn

f (x)δ(t − x)dx

= f (t). (8)

Definition 2 ([37]). Let N be a real and non-singular matrix of order n. Define the lattice generated
by N as

L(N) = {Nk; k ∈ Zn}. (9)

For the lattice L(N), the unit-cell U(N) ⊂ Rn is defined as

⋃
x∈L(N)

{
U(N) + x

}
= Rn (10)

and {
U(N) + x

}⋂{
U(N) + y

}
= ∅ f or x ̸= y ∈ L(N). (11)

The most convenient unit-cell is the parallelepiped given by

U(N) =
{

Nx; x = (x1, x2, · · · , xn)
T , 0 ≤ xi ≤ 1, i = 1, · · · , n

}
. (12)

Example 1. If n = 2 and N =

[
1 0
0 2

]
, then

L(N) =
{

Nk = (k1, 2k2)
T ; k = (k1, k2)

T ∈ Z2
}

and U(N) = (0, 1]× (0, 2].

Lemma 3. For p, q ∈ ℓ2(Zn), one has〈
P̃M, Q̃M

〉
L2(U(2πB))

= ⟨p, q⟩ℓ2(Zn). (13)

Proof. Let p̃ be a sequence such that

p̃(k) = p(k) exp
{

j
2
(kT B−1 Ak + 2pT B−1k)

}
, k ∈ Zn. (14)

Note that

P̃M(w) =
1

|det B|
1
2
F̃ [ p̃](B−1w) exp

{
j
2

(
wT DB−1w + ΩB−Tw

)}
,
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where F̃ is the discrete FT. Then, one has

⟨p, q⟩ℓ2(Zn) = ⟨ p̃, q̃⟩ℓ2(Zn)

=
〈
F̃ [ p̃], F̃ [q̃]

〉
L2([0,2π]n)

=
〈
|det B|

1
2 P̃M(Bw), |det B|

1
2 Q̃M(Bw)

〉
L2([0,2π]n)

= |det B|
∫
[0,2π]n

P̃M(Bw)Q̃M(Bw)dw. (15)

Note that

{Bx : x = (x1, x2, · · · , xn), 0 ≤ xi ≤ 2π}
= {2πBx : x = (x1, x2, · · · , xn), 0 ≤ xi ≤ 1}
= U(2πB). (16)

This together with (15) gives

⟨p, q⟩ℓ2(Zn) =
∫

U(2πB)
P̃M(w)Q̃M(w)dw =

〈
P̃M, Q̃M

〉
L2(U(2πB))

.

The proposed multi-dimensional SAFT reduces to some special transforms when

the sub-matrices of the matrix M take the particular forms. When M =

[
A B 0
C D 0

]
,

the transform falls back to the multi-dimensional LCT

LM[ f ](w) = ρ(n, B)
∫
Rn

f (t) exp
{

j
2
(wT DB−1w + tT B−1 At − 2wT B−Tt)

}
dt (17)

defined in [37]. In particular,
if A = D = 0 and B = −C = In, it returns to the classical n-dimensional Fourier

transform

F (w) =
1

(2π)
n
2

∫
Rn

f (t) exp
{
−jwTt

}
dt. (18)

Definition 3. For f , g ∈ L2(Rn), the canonical convolution in the multi-dimensional SAFT
domain is defined by

( f Θg)(t) =
∫
Rn

f (x)g(t − x) exp
{
− j

2

(
tT B−1 At − xT B−1 Ax + 2pT B−1(t − x)

)}
dx. (19)

Lemma 4. Let h(t) = ( f Θg)(t). Then, the multi-dimensional SAFT of h satisfies

HM(w) = (2π)
n
2 FM(w)G(B−1w), (20)

where G is the multi-dimensional Fourier transform of g.

Proof. It follows from the definition of the multi-dimensional SAFT that
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HM(w) =
∫
Rn

h(t)KM(w, t)dt

= ρ(n, B)
∫
Rn

∫
Rn

f (x)g(t − x) exp
{
− j

2

(
tT B−1 At − xT B−1 Ax + 2pT B−1(t − x)

)}
· exp

{
j
2
(wT DB−1w + ΩB−Tw + tT B−1 At + 2pT B−1t − 2wT B−Tt)

}
dxdt

= ρ(n, B)
∫
Rn

f (x) exp
{

j
2
(wT DB−1w + ΩB−Tw + xT B−1 Ax + 2pT B−1x − 2wT B−Tx)

}
·
∫
Rn

g(t − x) exp{−jwT B−T(t − x)}dtdx

= (2π)
n
2 FM(w)G(B−1w). (21)

Similarly, the semi-discrete and discrete forms of the canonical convolution can be defined as

(cΘ f )(t) = ∑
k∈Zn

c(k) f (t − k) exp
{
− j

2

(
tT B−1 At − kT B−1 Ak + 2pT B−1(t − k)

)}
and

(cΘd)(k) = ∑
m∈Zn

c(m)d(k − m) exp
{
− j

2

(
kT B−1 Ak − mT B−1 Am + 2pT B−1(k − m)

)}

for c, d ∈ ℓ2(Zn) and f ∈ L2(Rn), , respectively.

Lemma 5. Let h(t) =
(
{ f (k)}k∈Zn Θg(·)

)
(t). Then, the multi-dimensional SAFT of h satisfies

HM(w) = (2π)
n
2 F̃M(w)G(B−1w). (22)

Lemma 6. Let h(k) =
(
{ f (m)}m∈Zn Θ{g(m)}m∈Zn

)
(k). Then, the multi-dimensional SAFT

of {h(k)}k∈Zn satisfies

H̃M(w) = (2π)
n
2 F̃M(w)G̃(B−1w), (23)

where G̃ is the multi-dimensional Fourier transform of the sequence g.

Lemma 7. The SAFT of { f (k)}k∈Zn ∈ ℓ2(Zn) satisfies the chirp-modulation periodicity as

F̃M(w + 2πBm) exp
{
− j

2

(
(w + 2πBm)T DB−1(w + 2πBm) + ΩB−T(w + 2πBm)

)}
= F̃M(w) exp

{
− j

2

(
wT DB−1w + ΩB−Tw

)}
, (24)

where m = (m1, m2, . . . , mn)T ∈ Zn.

Proof. By the definition of the multi-dimensional SAFT, one has
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F̃M(w + 2πBm)

= ρ(n, B) ∑
k∈Zn

f (k) exp
{

j
2
(
(w + 2πBm)T DB−1(w + 2πBm) + ΩB−T(w + 2πBm) + kT B−1 Ak

+ 2pT B−1k − 2(w + 2πBm)T B−Tk
)}

= ρ(n, B) ∑
k∈Zn

f (k) exp
{

j
2
(
wT DB−1w + ΩB−Tw + kT B−1 Ak + 2pT B−1k − 2wT B−Tk

)}
· exp

{
j
2

(
2π(Bm)T DB−1(w + 2πBm) + wT DB−12πBm + ΩB−T2πBm − 2(2πBm)T B−Tk

)}
= exp

{
j
2

(
2π(Bm)T DB−1(w + 2πBm) + wT DB−12πBm + ΩB−T2πBm

)}
F̃M(w)

= exp
{

j
2
(
(w + 2πBm)T DB−1(w + 2πBm) + ΩB−T(w + 2πBm)

)}
· exp

{
− j

2

(
wT DB−1w + ΩB−Tw

)}
F̃M(w).

The desired result can be obtained by transposition.

3. The Space Associated with the Canonical Convolution

In this section, we will define a class of subspaces in Lp(Rn) which is related to the
canonical convolution in the multi-dimension SAFT domain.

Let 1 ≤ p ≤ ∞. Define

Vp(ϕ) =
{

cΘϕ(t) : c ∈ ℓp(Zn)
}

=

{
∑

k∈Zn
c(k)ϕ(t − k) exp

{
− j

2

(
tT B−1 At − kT B−1 Ak + 2pT B−1(t − k)

)
: c ∈ ℓp(Zn)

}}
. (25)

In the following, we will give a sufficient and necessary condition for the stability of
the basis functions of V2(ϕ).

Theorem 1. Let ϕk(t) = ϕ(t − k) exp
{
− j

2
(
tT B−1 At − kT B−1 Ak + 2pT B−1(t − k)

)}
. Then,

{ϕk(t)}k∈Zn is the Riesz basis of V2(ϕ) if and only if there exist constants 0 < A1 ≤ B1 < ∞
such that

A1 ≤ Gϕ,M(w) ≤ B1, w ∈ U(2πB), (26)

where Gϕ,M(w)
de f
= ∑

m∈Zn

∣∣Φ(B−1w + 2πm)
∣∣2 and Φ is the FT of ϕ.

Proof. For any f ∈ V2(ϕ), there exists a sequence q ∈ ℓ2(Zn) such that

f (t) = ∑
k∈Zn

q(k)ϕk(t). (27)

It follows from Lemma 5 that

FM(w) = (2π)
n
2 Q̃M(w)Φ(B−1w). (28)
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Moreover, we know from Lemmas 2 and 7 that

∥ f ∥2
L2(Rn) = ∥FM∥2

L2(Rn)

=
∫
Rn

∣∣∣(2π)
n
2 Q̃M(w)Φ(B−1w)

∣∣∣2dw

= (2π)n ∑
k∈Zn

∫
U(2πB)

∣∣∣Q̃M(w + 2πBk)
∣∣∣2∣∣∣Φ(

B−1w + 2πk
)∣∣∣2dw

= (2π)n
∫

U(2πB)

∣∣∣Q̃M(w)
∣∣∣2 ∑

k∈Zn

∣∣∣Φ(
B−1w + 2πk

)∣∣∣2dw

= (2π)n
∫

U(2πB)

∣∣∣Q̃M(w)
∣∣∣2Gϕ,M(w)dw. (29)

Similarly, it follows from the Parseval’s formula in Lemma 3 that

∥q∥2
ℓ2(Zn) =

∥∥∥Q̃M

∥∥∥2

L2(U(2πB))
=

∫
U(2πB)

∣∣∣Q̃M(w)
∣∣∣2dw. (30)

This together with (29) obtains the desired result.

Theorem 2. Suppose that {ϕk(t)}k∈Zn is the Riesz basis of the space V2(ϕ), there exist the dual
basis {ψk(t)}k∈Zn of V2(ϕ) with

ψk(t) = ψ(t − k) exp
{
− j

2

(
tT B−1 At − kT B−1 Ak + 2pT B−1(t − k)

)}
such that for f (t) ∈ L2(Rn), the orthogonal projection operator P on V2(ϕ) can be given by

P f (t) = ∑
k∈Zn

⟨ f , ψk⟩ϕk(t) = ∑
k∈Zn

⟨ f , ϕk⟩ψk(t). (31)

Moreover, one has

Ψ
(

B−1w
)
=

Φ(B−1w)

(2π)nGϕ,M(w)
, (32)

where Ψ is the FT of ψ.

Proof. Since ψk(t) ∈ V2(ϕ), then there exists a sequence r ∈ ℓ2(Zn) such that

ψ0(t) = ψ(t) exp
{
− j

2
(tT B−1 At + 2pT B−1t)

}
= ∑

k∈Zn
r(k)ϕk(t) = rΘϕ(t). (33)

Taking the SAFT on both sides of (33), it follows from Lemma 5 that

ρ(n, B) exp
{

j
2
(wT DB−1w + ΩB−Tw)

}
Ψ(B−1w) = R̃M(w)Φ(B−1w). (34)

Note that

⟨ψm, ϕk⟩ = exp
{
− j

2
(mT B−1 Ak + kT B−1 Am − 2mT B−1 Am)

}
⟨ψ0, ϕk−m⟩.

Then, one has
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δ(k) = ⟨ψ0, ϕk⟩

=

〈
∑

m∈Zn
r(m)ϕm(t), ϕk(t)

〉
= ∑

m∈Zn
r(m)⟨ϕm(t), ϕk(t)⟩

= ∑
m∈Zn

r(m)λ(k − m) exp
{
− j

2

(
kT B−1 Ak − mT B−1 Am + 2pT B−1(k − m)

)}
= {r(m)}m∈Zn Θ{λ(m)}m∈Zn(k), (35)

where λ(k − m) = ⟨ϕ(t − m), ϕ(t − k)⟩. Taking the SAFT on both sides of (35), it follows
from Lemma 6 that

ρ(n, B) exp
{

j
2
(wT DB−1w + ΩB−Tw)

}
= (2π)

n
2 R̃M(w)Λ̃(B−1w), (36)

where Λ̃ is the discrete FT of λ. Moreover, we have

λ(k − m) = ⟨ϕ(t − m), ϕ(t − k)⟩

=
〈

exp
{
−jwTm

}
Φ(w), exp

{
−jwTk

}
Φ(w)

〉
=

∫
Rn

|Φ(w)|2 exp
{

jwT(k − m)
}

dw

= ∑
m1∈Zn

∫
[0,2π]n

∣∣Φ(w + 2πm1)
∣∣2 exp

{
jwT(k − m)

}
dw

=
∫
[0,2π]n

∑
m1∈Zn

∣∣Φ(w + 2πm1)
∣∣2 exp

{
jwT(k − m)

}
dw. (37)

Then, we can obtain

Λ̃
(

B−1w
)
= (2π)

n
2 Gϕ,M(w). (38)

This together with (34) and (36) obtains

Ψ
(

B−1w
)
=

Φ(B−1w)

(2π)nGϕ,M(w)
, (39)

which means that the function ψ exists because Gϕ,M(w) satisfies (26).

Now, we introduce the Wiener amalgam space, more details can be found in [2]. A
measurable function f belongs to W(Lp(Rn)), 1 ≤ p < ∞, if it satisfies

∥ f ∥p
W(Lp(Rn))

= ∑
k∈Zn

ess sup
{
| f (t + k)|p; t ∈ [0, 1]n

}
< ∞. (40)

If p = ∞, a measurable function f belongs to W(L∞(Rn)) if it satisfies

∥ f ∥W(L∞(Rn)) = sup
k∈Zn

{
ess sup{| f (t + k)|; t ∈ [0, 1]n}

}
< ∞. (41)

Note that W(L∞(Rn)) coincides with L∞(Rn). Let W0(Lp(Rn)) be the subspace of continu-
ous functions in W(Lp(Rn)).
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Lemma 8 ([2]). If ϕ ∈ W(L1(Rn)), then the autocorrelation sequence

ak =
∫
Rn

ϕ(t)ϕ(t − k)dt (42)

belongs to ℓ1(Zn), and we have

∥a∥ℓ1(Zn) ≤ ∥ϕ∥2
W(L1(Rn)). (43)

Lemma 9 ([2]). If f ∈ Lp(Rn) and g ∈ W(L1(Rn)), then the sequence d defined by dk =∫
Rn f (t)g(t − k)dt belongs to ℓp(Zn), and we have

∥d∥ℓp(Zn) ≤ ∥ f ∥Lp(Zn)∥g∥W(L1(Rn)), 1 ≤ p ≤ ∞. (44)

Lemma 10 ([22]). (Wiener’s Lemma) If f (w) = ∑
k∈Zn

ak exp{jwTk} is an absolutely convergent

Fourier series with coefficient sequence a = (ak)k∈Zn ∈ ℓ1(Zn) and if f (w) ̸= 0 for all w ∈ Rn,
then 1

f also has an absolutely convergent Fourier series 1
f (w)

= ∑
k∈Zn

bk exp{jwTk} with coefficient

sequence b = (bk)k∈Zn ∈ ℓ1(Zn).

Lemma 11. If f ∈ Lp(Rn) and g ∈ W(L1(Rn)), then the sequence d defined by

dk =
∫
Rn

f (t)g(t − k)exp
{

j
2

(
tT B−1 At − kT B−1 Ak + 2pT B−1(t − k)

)}
dt (45)

belongs to ℓp(Zn), and we have

∥d∥ℓp(Zn) ≤ ∥ f ∥Lp(Rn)∥g∥W(L1(Rn)), 1 ≤ p ≤ ∞. (46)

Proof. Note that
|dk| ≤

∫
Rn

| f (t)g(t − k)|dt.

It follows from Lemma 9 that the result holds.

Lemma 12. Let 1 ≤ p ≤ ∞. If ϕ ∈ W(L1(Rn)) and c ∈ ℓp(Zn), then the function

f (t) = ∑
k∈Zn

c(k)ϕ(t − k) exp
{
− j

2

(
tT B−1 At − kT B−1 Ak + 2pT B−1(t − k)

)}
belongs to W(Lp(Rn)) and

∥ f ∥W(Lp(Rn)) ≤ ∥c∥ℓp(Zn)∥ϕ∥W(L1(Rn)). (47)

Proof. Let bk = ess sup
t∈[0,1]n

|ϕ(t + k)| and dk = ess sup
t∈[0,1]n

| f (t + k)|. Note that

dk = ess sup
t∈[0,1]n

∣∣∣∣∣ ∑
m∈Zn

c(m)ϕm(t + k)

∣∣∣∣∣
≤ ess sup

t∈[0,1]n
∑

m∈Zn
|c(m)||ϕ(t + k − m)|

≤ ∑
m∈Zn

|c(m)|bk−m (48)

and ∥b∥ℓ1(Zn) = ∥ϕ∥W(L1(Rn)). Then, we can obtain

∥ f ∥W(Lp(Rn)) = ∥d∥ℓp(Zn) ≤ ∥c∥ℓp(Zn)∥b∥ℓ1(Zn) = ∥c∥ℓp(Zn)∥ϕ∥W(L1(Rn)).
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Theorem 3. Suppose that ϕ ∈ W(L1(Rn)) and {ϕk(t)}k∈Zn is the Riesz basis of V2(ϕ), then the
dual basis ψ is also in W(L1(Rn)).

Proof. It follows from Theorem 2 that there exists a c ∈ ℓ2(Zn) such that

ψ0(t) = ψ(t) exp
{
− j

2
(tT B−1 At + 2pT B−1t)

}
= ∑

k∈Zn
c(k)ϕ(t − k)exp

{
− j

2

(
tT B−1 At − kT B−1 Ak + 2pT B−1(t − k)

)}
, (49)

which is equivalent to

ψ(t) = ∑
k∈Zn

c(k) exp
{

j
2
(kT B−1 Ak + 2pT B−1k)

}
ϕ(t − k)

=: ∑
k∈Zn

c1(k)ϕ(t − k). (50)

Moreover, we know from Theorem 2 that the FT of {c1(k)}k∈Zn is

C̃1(w) =
1

(2π)
3n
2 ∑

k∈Zn
|Φ(w + 2πk)|2

, w ∈ [0, 2π]n. (51)

By the Poisson summation formula, one has

∑
k∈Zn

|Φ(w + 2πk)|2 = ∑
k∈Zn

⟨ϕ, ϕ(· − k)⟩ exp{jwTk}. (52)

It follows from Lemma 8 that{
⟨ϕ, ϕ(· − k)⟩

}
k∈Zn

∈ ℓ1(Zn). (53)

This together with (51) and Lemma 10 obtains c1 ∈ ℓ1(Zn). Then, c ∈ ℓ1(Zn). Finally,
ψ ∈ W(L1(Rn)) follows from (50) and Lemma 12.

Theorem 4. Suppose that ϕ ∈ W(L1(Rn)), then
(i) The space Vp(ϕ) is a subspace of Lp(Rn) and W(Lp(Rn)) for 1 ≤ p ≤ ∞.
(ii) If {ϕk(t)}k∈Zn is a Riesz basis of V2(ϕ), then there exist constants 0 < mp ≤ Mp < ∞ such
that for any c ∈ ℓp(Zn), one has

mp∥c∥ℓp(Zn) ≤
∥∥∥∥∥ ∑

k∈Zn
c(k)ϕk(t)

∥∥∥∥∥
Lp(Rn)

≤ Mp∥c∥ℓp(Zn). (54)

(iii) If f ∈ Vp(ϕ), then we have the norm equivalences

∥ f ∥Lp(Rn) ≈ ∥c∥ℓp(Zn) ≈ ∥ f ∥W(Lp(Rn)). (55)

Proof. Note that

∥ f ∥Lp(Rn) ≤ ∥ f ∥W(Lp(Rn)), 1 ≤ p ≤ ∞. (56)

This together with Lemma 12 obtains (i) and the right side of (54) holds.
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Now, we prove the left side of (54). Define the operator

Tϕc = ∑
k∈Zn

c(k)ϕ(t − k)exp
{
− j

2

(
tT B−1 At − kT B−1 Ak + 2pT B−1(t − k)

)}
, c ∈ ℓp(Zn)

and the operator

(
T∗

ψ f
)

k
=

∫
Rn

f (t)ψ(t − k)exp
{

j
2

(
tT B−1 At − kT B−1 Ak + 2pT B−1(t − k)

)}
dt, f ∈ Lp(Rn).

It follows from Lemmas 11 and 12 that Tϕ is a bounded map from ℓp(Zn) to Lp(Rn) and T∗
ψ

is also a bounded map from Lp(Rn) to ℓp(Zn).
Let f (t) = ∑

k∈Zn
c(k)ϕk(t) ∈ Vp(ϕ). Since {ϕk(t)}k∈Zn and {ψm(t)}m∈Zn are biorthog-

onal, c(k) = ⟨ f , ψk(t)⟩ =
(

T∗
ψ f

)
k

. Then

∥c∥ℓp(Zn) ≤
∥∥∥T∗

ψ

∥∥∥
op
∥ f ∥Lp(Rn).

Choosing mp =
∥∥∥T∗

ψ

∥∥∥−1

op
obtains the desired result. The norm equivalences (55) follows

from (54) and Lemma 12.

Theorem 5. Let 1 ≤ p ≤ ∞. Suppose that ϕ ∈ W0(L1(Rn)) and {ϕk(t)}k∈Zn are the Riesz
basis of V2(ϕ), then Vp(ϕ) ⊂ W0(Lp(Rn)).

Proof. It is obvious that Vp(ϕ) ⊂ W(Lp(Rn)) follows from Lemma 12. Note that

∥ f ∥L∞(Rn) ≤ ∥ f ∥W(Lp(Rn)), 1 ≤ p ≤ ∞. (57)

Let f (t) = ∑
k∈Zn

c(k)ϕk(t) ∈ Vp(ϕ) and fN(t) = ∑
∥k∥∞≤N

c(k)ϕk(t). If 1 ≤ p < ∞, then it

follows from Lemma 12 and (57) that

∥ f − fN∥L∞(Rn) ≤

 ∑
∥k∥∞>N

|c(k)|p
 1

p

∥ϕ∥W(L1(Rn)), (58)

which means that fN(t) uniformly converges to the continuous function f (t).

Now, we will prove for the case p = ∞. Since ϕ ∈ W0(L1(Rn)), there exists a sequence
φN of continuous function with compact support such that

lim
N→∞

∥ϕ − φN∥W(L1(Rn)) = 0. (59)

Let

gN(t) = ∑
k∈Zn

c(k)φN(t − k)exp
{
− j

2

(
tT B−1 At − kT B−1 Ak + 2pT B−1(t − k)

)}
.

Then, gN is continuous because the sum is locally finite. Using Lemma 12, we have

∥ f − gN∥L∞(Rn)

=

∥∥∥∥∥ ∑
k∈Zn

c(k)(ϕ − φN)(t − k) exp
{
− j

2

(
tT B−1 At − kT B−1 Ak + 2pT B−1(t − k)

)}∥∥∥∥∥
L∞(Rn)

≤ ∥c∥ℓ∞(Zn)∥ϕ − φN∥W(L1(Rn)).
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This together with (59) shows that gN(t) uniformly converges to continuous function f (t).

4. Sampling and Reconstruction in Vp(ϕ)

In this section, we will discuss the sampling and reconstruction of signals in the
space Vp(ϕ).

Definition 4 ([2]). A set X = {ti : i ∈ I} is γ0-dense in Rn if

Rn =
⋃
i∈I

Bγ(ti) ∀γ > γ0, (60)

where Bγ(ti) is a sphere with ti as the center and γ as the radius.

Definition 5 ([2]). We call {βi}i∈I a bounded partition of unity associated with X = {ti : i ∈ I},
if
(i) 0 ≤ βi ≤ 1 for all i ∈ I;
(ii) suppβi ⊂ Bγ(ti);
(iii) ∑

i∈I
βi ≡ 1.

Moreover, we define the operator QX as

QX f = ∑
i∈I

f (ti)βi. (61)

Theorem 6. Suppose that ϕ ∈ W0(L1(Rn)), {ϕk(t)}k∈Zn is a Riesz basis of V2(ϕ) and
{ψk(t)}k∈Zn ∈ V2(ϕ) is the dual basis of {ϕk(t)}k∈Zn . Then the orthogonal projection oper-
ator

P : f −→ ∑
k∈Zn

⟨ f , ψk⟩ϕk(t) (62)

is a bounded projection from Lp(Rn) onto Vp(ϕ) for 1 ≤ p ≤ ∞.

Proof. Note that

P f = ∑
k∈Zn

⟨ f , ψk⟩ϕk(t) = TϕT∗
ψ f , f ∈ Lp(Rn). (63)

Then, the desired result follows from the boundedness of the operators Tϕ and T∗
ψ in the

proof of Theorem 4.

Lemma 13 ([2]). Suppose that φ ∈ W0(L1(Rn)) and {φ(t − k) : k ∈ Zn} are the Riesz basis of

V2
F (φ) =

{
∑

k∈Zn
c(k)φ(t − k) : c ∈ ℓ2(Zn)

}
. Then, there exists a density γ > 0 such that any f

belonging to

Vp
F (φ) =

{
∑

k∈Zn
c(k)φ(t − k) : c ∈ ℓp(Zn)

}
(64)

can be recovered from its samples { f (ti) : ti ∈ X} on any γ-dense set X = {ti : i ∈ I} by the
iterative algorithm {

f1 = PFQX f ,

fk+1 = PFQX( f − fk) + fk,
(65)
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where PF is the bounded projection from Lp(Rn) onto Vp
F (φ). Moreover, fk uniformly converges to

f and

∥ f − fk∥Lp(Rn) ≤ ∥ f − fk∥W(Lp(Rn)) ≤ C∥ f ∥Lp(Rn)α
k, (66)

where α = α(γ) < 1.

Define an operator MS as

MS f (t) = exp
{
− j

2

(
tT B−1 At + 2pT B−1t

)}
f (t). (67)

Then, we can provide the following iterative reconstruction algorithm.

Theorem 7. Suppose that ϕ ∈ W0(L1(Rn)) and {ϕk(t)}k∈Zn are the Riesz basis of V2(ϕ).
Then, there exists a density γ > 0 such that any f ∈ Vp(ϕ) can be recovered from its samples
{ f (ti) : ti ∈ X} on any γ-dense set X = {ti : i ∈ I} by the iterative algorithm{

f1 = PMSQXM−1
S f ,

fk+1 = PMSQXM−1
S ( f − fk) + fk.

(68)

Moreover, fk uniformly converges to f and

∥ f − fk∥Lp(Rn) ≤ ∥ f − fk∥W(Lp(Rn)) ≤ C∥ f ∥Lp(Rn)α
k, (69)

where α = α(γ) < 1.

Proof. Note that

f (t) = ∑
k∈Zn

c(k)ϕk(t)

= ∑
k∈Zn

c(k)ϕ(t − k)exp
{
− j

2

(
tT B−1 At − kT B−1 Ak + 2pT B−1(t − k)

)}
(70)

is equivalent to

exp
{

j
2

(
tT B−1 At + 2pT B−1t

)}
f (t)

= ∑
k∈Zn

c(k)exp
{

j
2

(
kT B−1 Ak + 2pT B−1k

)}
ϕ(t − k). (71)

Let

g(t) = exp
{

j
2

(
tT B−1 At + 2pT B−1t

)}
f (t)

and c2(k) = c(k) exp
{

j
2
(
kT B−1 Ak + 2pT B−1k

)}
. Then, g(t) ∈ Vp

F (ϕ). Since the FT of

ϕ satisfies (26), {ϕ(t − k) : k ∈ Zn} is the Riesz basis of V2
F (ϕ). Then it follows from

Lemma 13 that g can be recovered from its samples

g(ti) = exp
{

j
2

(
tT
i B−1 Ati + 2pT B−1ti

)}
f (ti)

by the iterative algorithm {
g1 = PFQXg,

gk+1 = PFQX(g − gk) + gk.
(72)
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Moreover, gk uniformly converges to g and

∥g − gk∥Lp(Rn) ≤ ∥g − gk∥W(Lp(Rn)) ≤ C∥g∥Lp(Rn)α
k, (73)

where α = α(γ) < 1. Note that

PF f (t) = ∑
k∈Zn

⟨ f , ψ(t − k)⟩ϕ(t − k)

= ∑
k∈Zn

〈
exp

{
− j

2

(
tT B−1 At + 2pT B−1t

)}
f , ψ(t − k) exp

{
− j

2

(
tT B−1 At − kT B−1 Ak

+2pT B−1(t − k)
)}〉

ϕ(t − k)exp
{
− j

2

(
tT B−1 At − kT B−1 Ak + 2pT B−1(t − k)

)}
· exp

{
j
2

(
tT B−1 At + 2pT B−1t

)}
= ∑

k∈Zn

〈
exp

{
− j

2

(
tT B−1 At + 2pT B−1t

)}
f , ψk

〉
ϕk(t)exp

{
j
2

(
tT B−1 At + 2pT B−1t

)}
= exp

{
j
2

(
tT B−1 At + 2pT B−1t

)}
P
(

exp
{
− j

2

(
tT B−1 At + 2pT B−1t

)}
f
)
(t),

which means that

exp
{
− j

2

(
tT B−1 At + 2pT B−1t

)}
PF f (t)

= P
(

exp
{
− j

2

(
tT B−1 At + 2pT B−1t

)}
f
)
(t). (74)

Therefore, the algorithm (72) can be rewritten as{
MSg1 = PMSQXM−1

S f ,

MSgk+1 = PMSQXM−1
S ( f − MSgk) + MSgk.

(75)

Let fk = MSgk. Then, (75) is equivalent to{
f1 = PMSQXM−1

S f ,

fk+1 = PMSQXM−1
S ( f − fk) + fk.

(76)

Note that
| f − fk| = |MS(g − gk)| = |g − gk|.

Then, ∥ f − fk∥Lp(Rn) = ∥g − gk∥Lp(Rn) and ∥ f − fk∥W(Lp(Rn)) = ∥g − gk∥W(Lp(Rn)). Finally,
the desired result follows from (73).

Finally, we will give simulations to verify the proposed methods. Consider the matrix

M, where the elements are A =

[ 1
4 0
0 1

2

]
, B =

[
1 0
0 1

]
, C =

[
0 0
0 0

]
, D =

[
4 0
0 2

]
,

p =

[
1
0

]
, q =

[
0
1

]
and a signal

f (t) = sinc(t1)sinc(t2) exp
{
− j

2

(
1
4

t2
1 + 2t1

)}
exp

{
− j

2

(
1
2

t2
2 + 2t2

)}
which is bandlimited in the multi-dimensional SAFT domain. Then, we use the proposed
iterative algorithm (68) to reconstruct the signal f . The special affine spectrum of f ,
the sampled signal and the reconstructed signal are shown in Figures 1–4.
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Figure 1. The real and imaginary parts of f .

Figure 2. The real and imaginary parts of the SAFT of f .

Figure 3. The real and imaginary parts after sampling f .

Figure 4. The real and imaginary parts of the reconstructed signal.
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