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Abstract: A novel time-domain algorithm is proposed in this paper for the iterative estimation of drive
files. A drive file is a synchronized batch of dynamic time series commands that are simultaneously
sent to one or more actuators in a test rig that is designed for service environment replication (SER).
When drive file commands are input to an SER test rig, the response of the article under test is
similar to what was measured in a service environment. The proposed Pulse Train Filtered-X Least
Mean Square (PT-Fx-LMS) algorithm is based on methods developed for active noise and vibration
control (ANVC). A time-domain PT-Fx-LMS algorithm is shown through several simulation studies
to rapidly converge to a dynamic solution in a small number of iterations for a one degree-of-freedom
nonlinear suspension. The PT-Fx-LMS algorithm is also shown to enable targeted iteration over
isolated time slices within the data set, which challenges conventional frequency-domain techniques.

Keywords: service environment replication; Fx-LMS; drive file; adaptive signal processing

1. Introduction

Service environment replication (SER) refers to the process of using test machines to
apply controlled dynamic loads to test articles in order to replicate operating conditions that
the article was designed for. Some examples of SER test rigs include shock dynamometers,
flat-track tire test rigs, driving simulators, single- or multi-post dynamic shaker rigs, and
multi-axis shaker tables. SER testing enables repeatable response data to be generated for
cost-effective and efficient optimization, performance, and/or durability studies. For exam-
ple, it is well known that tuning the suspension stiffness and damping will significantly
impact tire grip on a race car. The indoor laboratory testing of suspension components and
sub-assemblies, wheels, brakes, steering systems, seats, engine parts, etc. are commonplace
in the modern automotive industry [1,2], and more recently, the full-scale dynamic testing
of an entire vehicle has been used to analyze the dynamic motions of vehicle and/or sus-
pension components for ride, handling, and durability studies [3–6]. The slow, laborious
approach to maximizing grip would be to instrument a vehicle, make incremental changes
to the suspension, test the vehicle in its actual service environment, post-process the data,
then repeat the process until a desired grip was obtained. This process is clearly more
efficient when implemented on an SER test rig in a controlled environment [7–9].

In order to take advantage of the benefits of SER testing, these test machines typically
require a method for synthesizing command input signals that cause one or more measured
responses to closely match desired target sensor responses, such as what was measured in
an actual service environment. The set of command input signals that are applied to the
test machine is referred to here as a drive file, and the process of determining a suitable
drive file for a particular SER application is known as drive file identification (DFID). A
drive file is a synchronized batch of dynamic time series commands that are sent to the
actuators of the test rig, such that the response of the article under test is similar to what is
measured in a service environment. Once a suitable drive file is generated, it can be played
out many times with different physical setup combinations while recording all pertinent
dynamic motions on a SER test rig [3].
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Cryer et al. [10], Barber [11], and Lund [12] described some common DFID algorithms
for SER applications based on frequency-domain iterative searches. These techniques
necessarily assume linearity in the dynamic system, which is frequently a poor assumption
that can either lead to the divergence of the iterative process or exceptionally large amounts
of iteration time [13]. This condition generally requires highly skilled engineers to manually
“guide” the iteration process.

Several frequency-domain wave form synthesis methods have been proposed for
DFID by filtering the response error through an inverse linear frequency response model
to iteratively estimate the drive file in a batch process [11]. Such techniques also require
a linear frequency response model of the multi-input multi-output (MIMO) dynamic
system that is accurate over a frequency range covering the spectral energy in the target
data, typically from DC to some finite bandwidth [14,15]. Relatively high coherence
(i.e., >0.75) between each sensor and at least one actuator are required for this linear model
to be usable. A variety of system identification methods are available for generating the
inverse linear model [11,12,16,17]. The identification method discussed by [18] extends
the use of inverse linear models for DFID to account for the nonlinearities inherent in a
vehicle simulator setup. Internal model update methods based on predicted and measured
responses on the test rig [19] or tuning the inverse model in the frequency domain based
on a local linearization approach were found to be suitable only for diagonal or weakly
coupled systems. Cuyper et al. [20] presented an augmented, real-time, mixed sensitivity
H∞ feedback controller, but it has limited performance in cases where the system model has
delays or non-minimum phase zeroes. Several time-domain based methods have also been
proposed using ARMAX models with exogenous inputs that allow direct inversion [21],
such as a Multivariable Output-Error State Space (MOESP) Subspace identification method
which frames the DFID problem as a state reconstruction problem solved using the Kalman
filtering framework [22] and other online methods like adaptive inverse controllers [23],
minimal control synthesis algorithms [24], MRAC [25], etc. However, these often carry the
risk of parameter drift, control saturation, and damage to actuators.

MIMO feedback linearization has also been shown to successfully drive sensor re-
sponses on a test rig to track desired target responses [26]; however, in this type of solution,
the dynamics of the test article would be inside the loop and, therefore, dependent on the
feedback loop, which, of course, would not be present in the actual application. Testing
with feedback linearization in the loop would necessarily alter the dynamics of the test arti-
cle, thus rendering any SER test results unusable because they would not be representative
of the actual test article under realistic operating conditions.

A novel time-domain approach is proposed in this paper for the iterative estimation
of drive files. The use of adaptive time domain algorithms is known to be more robust to
a wider class of nonlinearities with improved modeling performance, better control over
inversion algorithms, and the faster convergence of drives that produce acceptable target
responses on test rigs. A time domain-based DFID method would also serve the require-
ment to select unique convergence rates over different time intervals in a test sequence
for which the conventional frequency-domain iterative methods show poor performance.
The initial driving factor for this approach was the recognition of the DFID block diagram
as a representation of the active noise and vibration control (ANVC) dynamics associated
with using secondary path inputs to cancel noise and/or vibration caused by a primary
path [26,27]. Even though the block diagram is essentially the same for both ANVC and
DFID, the nomenclature, objectives, causality, and known solution approaches have sig-
nificant differences. More importantly, there are no known control solutions from ANVC
which can directly be applied to the DFID problem. Even with this apparent limitation,
we will show how the proposed approach can exploit the MIMO ANVC architecture as
indicated in Figure 1. We first start with a brief overview of the standard ANVC control
block diagram.
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Figure 1. Adaptive filter architecture from ANVC applied to the DFID problem.

For MIMO ANVC applications, the signal d in Figure 1 represents a primary distur-
bance noise and/or vibration field measured by P sensors, and the signal y represents
the secondary noise and/or vibration field created by M control actuators to cancel the
disturbance. The symbol w in Figure 1 represents a bank of dynamic filters, typically
Finite Impulse Response (FIR) filters, whose coefficients are updated in response to the
measured error signals. The signal x represents a set of N reference inputs, which, for
ANVC applications, must be mutually independent and highly correlated to the primary
disturbance d [26,27]. The signal u contains the outputs from the bank of adaptive filters in
response to the inputs x. Note that if the reference inputs are chosen to be the target sensor
responses where N = P, or a time-advanced version of them, x(t) = d(t − τ), then the
converged filter bank w represents an approximation to the dynamic pseudo-inverse of the
nonlinear system H [11,12,23,27].

Although both ANVC and DFID seek to drive the output error to zero, or to the
theoretical lower bound, ANVC applications require the real-time determination of the
control inputs, whereas the command inputs resulting from DFID can be synthesized offline
and played out in real-time as a batch that is synchronized with the target data.

For ANVC applications, the adaptation process is typically some form of a gradient
descent algorithm, such as least mean squares (LMS). One common gradient-descent
adaptation solution developed for the block diagram structure in Figure 1 is known as the
Filtered-x LMS (Fx-LMS) algorithm [27,28]. Most commercially available ANVC systems
today only operate on periodic or narrow-band wave forms. Even though the structure
of Figure 1 with Fx-LMS adaptation can theoretically be used with broad-band signals,
such configurations have had very limited success largely because broad-band ANVC
applications have a number of severe physical restrictions such as high modal density, the
existence of a sufficiently correlated upstream reference signal, high computational burden,
or zones of silence with limited spatial extent [28,29].

For the DFID problem, virtually all responses generated from rich excitations will re-
sult in target signals that have broad-band spectral content, thus making DFID a technically
challenging problem. Existing methods from ANVC cannot be used directly.

The proposed Pulse Train Fx-LMS (PT-Fx-LMS) algorithm will use an innovative refor-
mulation of an ANVC adaptation algorithm that was originally developed by Elliott and
Darlington [30] for a completely different application: removing harmonic synchronously
sampled interferences from signals. A review of the existing literature indicates that this
algorithm has not been extended to generate control inputs for MIMO dynamic systems or
to broad-band signals. The strength of the proposed algorithm is derived from its ability
to robustly synthesize arbitrary broad-band time-domain wave forms. Using the newly
proposed formulation, this synchronous harmonic algorithm provides the basis for a new
candidate general purpose DFID solution.

To establish proof-of-concept, the performance of the PT-Fx-LMS algorithm is demon-
strated using a simple single-input single-output (SISO) nonlinear dynamic system exam-
ple: a nonlinear suspension spring supporting a one-DOF vehicle on a test rig. Several
case studies illustrate the performance of the PT-Fx-LMS algorithm in comparison with a
conventional DFID implementation.



Machines 2024, 12, 286 4 of 15

2. Pulse Train Fx-LMS Algorithm

For an SISO dynamic system, and with reference to Figure 1, we have M = P = 1.
Similar to the original development for harmonic synchronous interferences by Elliott and
Darlington [30], the novel aspect of the proposed formulation is to select the reference input
xk to be a unitary pulse train (PT) sequence whose period is equal to the length K of the
target data set.

xk =
[
x1 · · · xq · · · xK

]T

xq =

{
1 if q = k
0 if q ̸= k

(1)

This unique choice of reference input enables the interpretation of the target response
vector d as an FIR filter whose coefficients are identical to the measured set of target data.
Clearly, the output of this FIR filter excited by the unitary pulse train sequence is the target
response dk =

[
d1 · · · dk · · · dK

]T . Now, referring to Figure 2, we define a second

FIR filter wk =
[
w1 · · · wk · · · wK

]T , which is exactly the same length as the target
data set. After convergence, and by construction, the coefficients of w will be the final drive
file.
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Figure 2. Adaptive filter architecture applied to the DFID problem for a nonlinear plant.

An adaptive process is needed to dynamically update the FIR filter coefficients in w.
Following the practice from ANVC [27], a scalar quadratic cost function, J, of the output
error is established, which is to be minimized over time.

ek = dk − yk =
[
e1 · · · ek · · · eK

]T (2)

J = E
{ K

∑
k=1

ek
2
}

(3)

where E{•} is the expectation operator, and yk =
[
y1 · · · yk · · · yK

]T is the response

vector obtained from the dynamic plant to control input uk =
[
u1 · · · uk · · · uK

]T . A
fundamental assumption in the Fx-LMS algorithm derivation is that the FIR filter wk can
be commuted with the plant dynamics, which, of course, requires linearity in the plant as
stated by Widrow and Stearns [27]. In general, commutability will not generally be possible
for nonlinear systems. Disregarding this fact for the moment and ignoring the nonlinear
portion of the dynamics, a Q-coefficient linear FIR filter (Ĝ =

[
ĝ0 ĝ1 · · · ĝQ−1

]T) can
be constructed to model the dynamic plant around an operating point. The application
of the conventional Fx-LMS algorithm in Figure 2 yields the gradient descent method for
updating the FIR filter coefficients [27]:

wk+1 = wk + µekrk (4)

where wk is the entire K-coefficient FIR filter at time step k, µ is a small positive constant
known as the step size, which controls the convergence rate, ek is the instantaneous scalar
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output error, and rk is a vector of length K constructed as the buffered output of the linear
impulse response model Ĝ due to the reference input xk. It has been shown that the step
size µ depends on the inverse of the signal power [27]; however, it is also known that these
relationships do not yield precise constraints. For this study, the step size µ was chosen
via trial-and-error to ensure stability and the fast convergence of the error to zero in a
reasonable number of iterations. The simplicity of the unitary pulse sequence, combined
with the novel structure of the w vector representing the actual drive file and the linear FIR
model Ĝ, can now be exploited to yield a remarkable simplification of the adaptation law
given by the following:

wq
wq−1

...
wq−Q+1


k+1

=


wq

wq−1
...

wq−Q+1


k

+ µek


ĝ0
ĝ1
...

ĝQ−1

 (5)

where q = k mod K

where q is an index into the w vector at the current time step k. It can be seen from the
equation that at any given time step, only a subset (Q-coefficients) of the overall weight
vector w is required to be updated, and the gradient is simply the FIR filter Ĝ multiplied
by the instantaneous error. This update law makes physical sense in that the input action at
any time step will influence the response that lasts for the duration of the impulse response
of the plant. By construction, each weight wq represents an input action at the qth time step.

3. Nonlinear Simulation Model

The nonlinear time-invariant dynamics of the vehicle on the test rig are given by the
symbol H in the previous block diagrams. The nonlinear model H can be represented as
a set of linear dynamics interconnected with a nonlinear feedback path, as indicated in
Figure 3. The representation in Figure 3 reflects the common engineering practice and
desire to develop linear models of the nonlinear system while still acknowledging the fact
that nonlinearities are present in the dynamics. Notice that the block diagram structure in
Figure 3 is actually a generalization of the Lur’e problem described in Vidyasagar [31].

Linear Dynamics

G
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Actuator

Sensor

Responses

P

y
k

u
k

M

Actuator

Command

Inputs

Nonlinear 

Dynamics
y’
k

u’
k

Figure 3. Discretized nonlinear time-invariant dynamics model of vehicle for simulation.

The linear continuous-time model is represented as a state-space representation in
Equation (6), the first-order differential equations of the system in Equation (7), and the
state-space representation in Equation (8), where all the memory-less nonlinearities are
modeled as exogenous inputs to the linear model.

ż = Az + Bu +
[
I 0

]
u′ (6)

ż = Az + Bu + f(z, u)

y = Cz + Du + g(z, u)
(7)
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⇔
[

y
y′

]
=

C
I
0

z +

D
0
I

u +

[I 0
]

0
0

u′

u′ =

[
f(z, u)
g(z, u)

]
=

[
f(y′)
g(y′)

] (8)

It is important to note that the nonlinear model representation above is only used in the
simulation study to provide outputs from the nonlinear dynamics. This particular nonlinear
architecture lends itself nicely to discretization, which, without the loss of generality, more
conveniently integrates with the inherently discrete-time PT-Fx-LMS adaptation law. Note
that neither this model structure nor the explicit form of the nonlinearity were explicitly
used in the PT-Fx-LMS algorithm.

The performance of the proposed PT-Fx-LMS algorithm is demonstrated using a single-
input single-output (SISO) nonlinear dynamic system example. As indicated in Figure 4,
the dynamic system is a primary suspension with a stiffness that is modelled with a cubic
nonlinearity. The nonlinear dynamic system is linearized at an operating displacement
of yB to obtain the Jacobian linear model G in Figure 3. The operating displacement yB
represents the static ride height due to gravity. This is a reasonable representation of a
spring that achieves a binding condition for spring compressions greater than yB.

m

y(t) F(t)

k
s

b

(a)

-0.1 -0.05 0 0.05

Displacement (m)

-10

-8

-6

-4

-2

0

2

4

6

8

10
F

o
rc

e
 (

k
N

)

Nonlinear spring model

Linearized spring model

y
B

(b)

Figure 4. Illustration of suspension model used in simulation and the constitutive relationship of
nonlinear spring. (a) A simple primary suspension model used for simulation with one input F(t) and
one output response y(t). (b) Spring force diagram showing the cubic nonlinear spring characteristic
and the linearized spring model at the binding point yB.

mÿ + bẏ + Fs(y) = F(t) (9)

In the context of this example, the objective of DFID is to synthesize a command
sequence for the applied force F(t) such that the output displacement y(t) tracks a desired
target data set. For the above-described simulation, the parameters of the system and the
constitutive equation of the nonlinear spring are given in Table 1. This is an example of
a duffing oscillator. The operating point around which the nonlinear model is linearized
is yB, and the linearized spring model, G, has a Hooke’s constant given by k J . A smooth,
cubic, nonlinear spring is considered for the test benches presented in this study, but there
can be other classes of nonlinearities like piece-wise nonlinear systems that can also be
considered for simplified suspension models as above.
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Table 1. System parameters for described simulation.

Parameter Details Units

m 200 kg
b 3000 Ns/m
Fs 1.2 × 107y3 + 1.2 × 106y2 + 9.5 × 104y N
yB −0.05 m
k J 6.5 × 104 N/m

4. Results and Discussion of Performance Evaluation Case Studies

In all the case studies below, the desired target data set was chosen to be an exper-
imental displacement measurement from an actual vehicle suspension collected during
a 25 s lap around a test track. The data were acquired at a sample rate of 1000 Hz. A
series of simulation case studies was performed to document the proposed PT-Fx-LMS
DFID method. The results from three of these studies are presented below to illustrate the
features of the method operating in the more typical batch mode.

For the proposed time domain PT-Fx-LMS method, the linear dynamics Ĝ must be
estimated for implementation. For the purpose of simulation, as described in Section 3,
the linear dynamics G were estimated through the Jacobian linearization of the nonlinear
spring model at yB. A band-limited excitation that produces a response from the system
around the operating point yB was designed, and the actual response of the nonlinear
dynamic system was obtained for this particular excitation. An adaptive Least Mean
Squares System Identification algorithm, as described by Widrow and Stearns [27], was
used to estimate a Q-coefficient FIR filter representing Ĝ. For the spring–mass system
chosen in this paper, a 1000 coefficient FIR filter Ĝ was determined to capture the linear
dynamics of the system.

A useful metric to compare the adaptation performance is the normalized error energy
(NEE), which is defined for each batch loop iteration, i, as

NEEi =
ei

Tei

dTd
(10)

where ei is the entire error signal vector at the end of each batch loop iteration i. NEE is a
normalized measure of the mean square error averaged over the entire batch of data and is
usually expressed on a decibel scale. NEE essentially measures how close the SER test rig
response data are to the desired target data, and the same metric is also used to characterize
the derived FIR model using the LMS system identification method, as shown in Figure 5,
which shows the modeling performance for both the purely linear plant with the spring
constant k J and the cubic nonlinear plant characterized by the force curve given by Fs. The
difference in modeling quality is also useful to gauge the robustness of the proposed DFID
method in the presence of modeling errors. The model identification result expressed in
NEE is also presented for the conventional frequency-domain H1 estimation method [32]
using the same band-limited excitation to illustrate the improved modeling performance of
the iterative adaptive filtering-based method.

As with most real-world DFID processes, the adaptive algorithm is terminated when
the error is smaller than a predefined threshold. For the case studies described in this paper,
the threshold was set to a 40 dB reduction in the NEE.
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Figure 5. NEE reduction through the 100 iterations of the LMS system identification process and
the final output NEE achieved by the H1 estimation model. (a) Purely linear plant. (b) Cubic
nonlinear plant.

4.1. Setup of Comparative Method

The performance of the proposed PT-Fx-LMS method is compared against an existing
DFID formulation that forms the basis of commercial DFID solutions like MTS Remote
Parameter Control. While the exact formulation is proprietary, the workflow of the DFID
process and the adaptive algorithm used to arrive at a suitable drive file is well documented
in [11]. The process involves filtering the target response through an inverse frequency
response model of the plant to derive the drive file. This initial drive file is played through
to the actual plant and the response is compared to the target response. The error between
the two is used to calculate the drive file correction and added to the previous drive file in
an adaptive process to drive the response error to zero or to an acceptable lower bound
defined by a threshold appropriate to the application. Many formulations exist for this
identification of the inverse linear model, including conventional techniques of calculating
an inverse FRF of a linear system model derived from a system identification procedure on
the nonlinear plant, the direct calculation of the forward linear model via the linearization
of the nonlinear model equations followed by conventional inversion, etc. In this paper, a
time-domain delayed adaptive inverse method described by [23] is used to calculate the
static inverse linear model using the previously described Ĝ forward linear model. The
inverse linear model identified is a 5000 coefficient FIR filter, with a 1000 coefficient delay,
and it is observed to converge within 100 iterations with a white noise reference input for
the identification process and a choice of iteration coefficient that maintains stability and
provides necessary performance and fast convergence. Further insight into the choice of the
iteration coefficient that ensures stability and enhances convergence rate for a conventional
DFID process for a nonlinear system using remote parameter control is provided by Li and
Zhang [33].

4.2. Case Study 1

In the first study, the drive signal was initialized at zero and the adaptation step size
was chosen to be relatively conservative to balance stability and fast convergence; in this
case, µ = 4.8 × 109. At the end of each batch loop, the final drive signal was used as the
initial drive signal for the next batch loop. The adaptive algorithm was run until the NEE
reached the threshold of 40 dB reduction. In Figure 6b, the first subplot presents the final
drive file after the final batch loop adaptation. The response of the dynamic system to
this final drive file is given in the second subplot along with the error between the actual
and desired responses. The third subplot shows the reduction in the NEE throughout the
batch iterations of the adaptation process. Since the purpose of the DFID process is only to
synthesize control inputs that would generate a response as close to the desired response
as possible, the convergence of the algorithm is not shown in Figure 6. Simulations were
nevertheless carried out for a large number of batch loops to check for the stability and
convergence of the algorithm, and it was found that for the system under test and choice
of step size used here, the NEE converges to −70 dB after approximately 2000 iterations,
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which is far greater than what would be feasible due to time and cost constraints on a
real-world test rig for the DFID process.
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Figure 6. Performance of the proposed PT-Fx-LMS method for DFID compared with a conventional
DFID method showing the final drive file, response, error, and the reduction of the NEE up to a
threshold of −40 dB, marked by red dashed line. (a) Conventional DFID method. (b) Proposed
time-domain PT-Fx-LMS method.

As can be seen, at the end of the simulation presented, the proposed method achieves
a final response which is very close to the desired response with a low misadjustment,
which, as defined by Widrow and Stearns [27], is a dimensionless measure of the excess
mean square error caused by gradient estimation noise relative to the minimum mean
square error produced by an optimal Weiner filter. Widrow and Walach [23] showed
that misadjustment increases with an increase in the speed of adaptation and/or the
number of filter coefficients. The parameters for both the proposed time-domain PT-Fx-
LMS method and the conventional DFID process described in Section 4.1, with its results
shown in Figure 6a, were tuned in order to achieve rapid reduction in NEE to reach the
error threshold in the least number of iterations. In the DFID process, each simulated
batch loop corresponds to a physical test on the SER test rig (‘Batch Loop index’ in the
subsequent figures), and there is a strong desire to minimize the number of experimental
tests in order to save time and money. Considering the least squares nature of the adaptive
algorithm, the presence of measurement noise is known to only increase the final achievable
misadjustment level and is not considered in these validation simulation test benches.

The reduction in the NEE is plotted in Figure 7 along with the maximum absolute
response error within each batch loop iteration. As can be seen, the performance of
the proposed method, with no actuator authority limitations, is demonstrably good for
the parameters used in this simulation study in the sense that it reaches the 40 dB NEE
reduction threshold with fewer iterations, at 9 iterations compared to 22 iterations for the
conventional DFID method.

Figure 8a presents the progression of the response measured at the end of batch
iteration in the time domain, and Figure 8b presents the similar progression using the
power spectrum, computed using a window size of 8192 samples and 50% overlap. The
least squares adaptive algorithm always targets the peaks in the spectrum first in order to
drive the MSE to zero. The output response obtained from the final drive derived using
the PT-Fx-LMS method converges to use most of the batch iterations to attenuate the error
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when the response is lower than the binding point of the nonlinear spring where the force
curve exhibits the most stiffening property. In the spectrum, the actual response deviates
the most from the target response in the 7–15 Hz range, which has a spectrum magnitude of
at least 25 dB smaller than the peak for the model and target data considered in this study.
Targeted improvements can be made by increasing the coherence of the identified model in
the required frequency bands via excitation shaping during the system identification step.
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Figure 7. Error analysis for Case Study 1. (a) Normalized error energy comparison between the two
methods with the target of achieving an NEE reduction of 40 dB, threshold marked by red dashed
line. (b) Comparison of maximum absolute error at the end of each physical test for the two methods.

Figure 8. Response analysis for Case Study 1 using the PT-Fx-LMS method. (a) Time sequence
progression of actual response through the first nine batch iterations. (b) Power spectrum with linear
vertical scale of the target responses, actual responses, and final error sequence.

Although the proposed method in this paper does show performance improvement
over the conventional DFID method, it is important to note that such a result is to be
expected because the conventional DFID method heavily depends on the accuracy of
the inverse linear model that is generated, in this case, an inverse of a forward model
Ĝ of the nonlinear plant using an adaptive inverse method, instead of conventional FRF
inversion methods. With the system identification process for the forward model Ĝ and
the subsequent inversion process being tuned for best performance, it can also be expected
that the two DFID methods compared here would show much more similar performances
for linear plants (a linear spring in Figure 4) under study or for less harsh nonlinearities.
Such a scenario was investigated further by considering a linear spring model for the plant,
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where the spring stiffness is given by the Jacobian spring model, k J , from Table 1 and using
the same simulation parameters as discussed above. With much more accurate models
derived for this linear plant, the conventional DFID method was able to reach the 40 dB
NEE reduction threshold in just six iterations, whereas the proposed PT-Fx-LMS method
needed eleven iterations to reach the same level of misadjustment. This shows that the
proposed method, while being comparable and usable but not outperforming conventional
DFID methods for simple linear systems, can be extremely powerful for nonlinear systems,
as most real-world dynamical systems are.

4.3. Case Study 2

In many practical DFID applications, it is often useful or necessary to have the ability
to fine-tune sections of the drive file by focusing on specific intervals in time. Frequency-
domain techniques typically have difficulty focusing on select time intervals without per-
turbing the response outside those intervals. To illustrate the ability of the PT-Fx-LMS DFID
method to focus on specific time intervals, another series of case studies was performed.

In this first time-slice study, the optimal drive signal from the previous evaluation
(Figure 6) was artificially perturbed by zeroing out the drive signal over two time intervals:
5–7 s and 12–15 s. This perturbed drive signal was then used as the initial control sequence,
and the adaptation process was iterated to see if the drive file would return to the original
solution. Partially zeroing out the control sequence in intervals is an extreme test to evaluate
how well the algorithm works within time slices while also not affecting the converged
drive file outside these regions. In order to avoid sharp discontinuities in the initial drive
file that could lead to large spikes in actuator authority, the transitions at the intervals were
smoothed. The simulations were similarly stopped when an NEE threshold of −40 dB was
achieved.

As can be seen from the results in Figure 9, the proposed PT-Fx-LMS algorithm
returned to a solution with low misadjustment and without significantly affecting the
response outside the intervals of interest after only nine batch loop iterations. The largest
magnitude of errors, which are still an order of magnitude smaller than the response,
were observed at the edges of the perturbation window without increasing the errors
significantly outside these intervals. This clearly demonstrates that the response of the
proposed method in one time interval is relatively independent of the response in another.
It can also be seen in Figure 9b that the conventional DFID method yields larger magnitude
errors even outside the bounds of the perturbed intervals (see time interval 7–10 s and
15–20 s) despite the adaptation for both methods starting from the same perturbed drive
signal. The error energy comparison also shows that the proposed PT-Fx-LMS method
descends to the threshold NEE much quicker using the same adaptation parameters as in
Case Study 1.

4.4. Case Study 3

As an extension of the previous case study, a more extreme perturbation test was
performed in which the original optimal final drive from Case Study 1 (Figure 6) was
chosen to be the initial drive signal. However, for this study, the target response was zeroed
out over the same two time intervals: 5–7 s and 12–15 s. As in Case Study 2, the transition
in the interval was smoothed to prevent large spikes in the response or actuator authority.
This is an intentionally contrived example whose sole purpose is to illustrate the capability
of the method. The simulations were similarly stopped when the NEE threshold of −40 dB
was achieved.

As can be seen from Figure 10, the PT-Fx-LMS algorithm yields a response from the
actual dynamical system with a small mean squared error at the end of simulation, much
fewer iterations, and virtually no impact on the response outside the perturbed intervals,
except around the boundaries of the intervals. On the other hand, the conventional DFID
method produces larger disturbances in the response outside the perturbed intervals, as
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can be seen in the error signals in Figure 10b between 7–10 s and 15–20 s, and achieves the
threshold NEE at a slower rate, as can be seen in Figure 10c.
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Figure 9. Results of Case Study 2 with zeroed control intervals at the beginning of adaptation. (a) The
final drive file obtained using the proposed PT-Fx-LMS method with the modified initial drive. The
initial drive is perturbed in the intervals of 5–7 s and 12–15 s, marked by green dashed lines. (b) Final
error signals for both the methods considered in the study. (c) NEE comparison of the two methods
considered in the study with the target of reaching a threshold of −40 dB, marked by red dashed line.
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Figure 10. Results of Case Study 3 with a modified target response. (a) The final response obtained
using the final drive files from the proposed PT-Fx-LMS method. The target response is perturbed in
the intervals of 5–7 s and 12–15 s, marked by green dashed lines. (b) Final error signals for both the
methods considered in the study. (c) NEE comparison of the two methods considered in the study
with the target of reaching a threshold of −40 dB, marked by red dashed line.

In both Case Studies 2 and 3, the PT-Fx-LMS adaptation process was iterated over the
entire time series without a priori knowledge of the two perturbed intervals. The unique
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structure of the PT-Fx-LMS algorithm enables a user to specify the limits of one or more time
slice intervals within which the adaptation will occur. Outside these time slice intervals,
the adaptation will be suppressed. This allows an even more computationally efficient
implementation without any negative impact on the resulting drive file identification.

5. Conclusions

A new algorithm has been proposed for the identification of drive files for service
environment replication applications. The proposed Pulse Train Fx-LMS algorithm is
derived from a synchronous ANVC adaptive filtering algorithm that is modified to handle
the broad-band drive file identification application for nonlinear plants. The two key
modifications that enable PT-Fx-LMS to be useful for DFID applications are as follows:
(1) the use of a unitary pulse train reference input of the same length as the batch target
data set, which results in (2) a simplified adaptation methodology.

The PT-Fx-LMS algorithm was validated on a simple but representative SISO nonlin-
ear suspension using actual suspension displacement time series data from a race car. In
addition to demonstrating the iterative operation of the proposed algorithm, its perfor-
mance was evaluated and compared against a conventional drive file identification method.
The linear model used by the PT-Fx-LMS algorithm for the gradient estimate is shown to
work quite well for this nonlinear plant example. As is common for conventional Fx-LMS
algorithms, linear models used in the gradient estimate are often more than sufficient for
nonlinear systems due to the iterative nature of the algorithm.

In order to more thoroughly evaluate the PT-Fx-LMS algorithm, several extreme tests
were performed. These tests were created specifically to highlight a common problem that
conventional frequency-domain DFID methods have difficulty performing, i.e., focusing
the iterative update on isolated time slices in the target data without perturbing the con-
verged response outside those time slices. In one case, the converged control solution was
artificially perturbed (set to zero) in two isolated time segments. In the second case, the
target data were artificially perturbed (set to zero) in two isolated time segments, and the
control solution started from its original converged values. In both cases, the PT-Fx-LMS
algorithm was able to converge to the appropriate solution in a small number of iterations
without perturbing the existing converged response.

Further methods to improve the DFID are being considered involving completely
offline batch iterations using the identified linear model of the plant using finer step sizes
in a simulation domain to derive the control sequence that will be played out to the actual
plant, with appropriate corrections to the target signal for each simulation sequence being
made based on the actual responses measured on the physical test article. Deficiencies
in the model could lead to divergence in the adaptation process for which protections
can be built in using a termination criterion or using the many variable step size Fx-LMS
algorithms available in the literature.

The success of the PT-Fx-LMS algorithm in the simulated case studies above clearly
establishes proof-of-concept for this method. The next step is to expand the PT-Fx-LMS
algorithm to multiple-inputs and multiple-outputs as well as other classes of nonlinearities
that are commonly found in SER applications.
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Abbreviations
The following abbreviations are used in this manuscript:

ANVC Active Noise and Vibration Control
DFID Drive File Identification
DOF Degree of Freedom
Fx-LMS Filtered-X Least Mean Square
FIR Finite Impulse Response
FRF Frequency Response Function
LMS Least Mean Square
MIMO Multi-Input Multi-Output
MSE Mean Squared Error
NEE Normalized Error Energy
PT-Fx-LMS Pulse Train Filtered-X Least Mean Square
SER Service Environment Replication
SISO Single-Input Single-Output

References
1. Goktan, A.G.; Yetkin, A. Road Load Data Estimation on Multiaxial Test Rigs for Exhaust System Vibrations. SAE Trans. 2002,

111, 1194–1201.
2. Mianzo, L.; Fricke, D.; Chabaan, R. Road profile control methods for laboratory vehicle road simulators. In Proceedings of the

1998 IEEE AUTOTESTCON Proceedings. IEEE Systems Readiness Technology Conference. Test Technology for the 21st Century
(Cat. No.98CH36179), Salt Lake City, UT, USA, 25–27 August 1998; pp. 222–228. [CrossRef]

3. Boggs, C.; Ahmadian, M.; Southward, S. Application of System Identification for Efficient Suspension Tuning in High-Performance
Vehicles: Full-Car Model Study. SAE Int. J. Passeng. Cars Mech. Syst. 2009, 2, 622–635. [CrossRef]

4. Southward, S.C.; Boggs, C.M. Comparison of the Performance of 7-Post and 8-Post Dynamic Shaker Rigs for Vehicle Dynamics
Studies. SAE Int. J. Passeng. Cars Mech. Syst. 2008, 1, 1319–1324. [CrossRef]

5. Kowalczyk, H. Damper Tuning with the use of a Seven Post Shaker Rig. SAE Trans. 2002, 111, 1182–1193.
6. Cambiaghi, D.; Gadola, M.; Vetturi, D. Suspension System Testing and Tuning with the Use of a Four-Post Rig. In Proceedings of

the Motorsports Engineering Conference & Exposition, Dearborn, MI, USA, 11–19 November 1998; SAE International: Warrendale,
PA, USA, 1998. [CrossRef]

7. Fricke, D.M.; Hansen, M.D.; Chabaan, R.C. Effective Road Profile Control Method for a Spindle-Coupled Road Simulator. U.S.
Patent 5,610,330, 11 March 1997.

8. Dodds, C.; Plummer, A. Laboratory Road Simulation for Full Vehicle Testing: A Review; The Automotive Research Association of
India: Pune, India, 2001. [CrossRef]

9. Yao, J.; Dietz, M.; Xiao, R.; Yu, H.; Wang, T.; Yue, D. An overview of control schemes for hydraulic shaking tables. J. Vib. Control
2016, 22, 2807–2823. [CrossRef]

10. Cryer, B.W.; Nawrocki, P.E.; Lund, R.A. A Road Simulation System for Heavy Duty Vehicles. SAE Trans. 1976, 85, 1322–1334.
11. Barber, A.J. Generating a Nonlinear Model and Generating Drive Signals for Simulation Testing Using the Same. U.S. Patent

6,285,972, 4 September 2001.
12. Lund, R.A. Method and Apparatus for Generating Input Signals in a Physical System. U.S. Patent 7,031,949, 18 April 2006.
13. Snyder, S.D.; Hansen, C.H. The effect of transfer function estimation errors on the filtered-x LMS algorithm. IEEE Trans. Signal

Process. 1994, 42, 950–953. [CrossRef]
14. Juang, J.N. Applied System Identification; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1994; p. 394.
15. Shen, G.; Zhu, Z.; Li, X.; Li, G.; Tang, Y.; Liu, S. Experimental evaluation of acceleration waveform replication on electrohydraulic

shaking tables: A review. Int. J. Adv. Robot. Syst. 2016, 13, 1729881416662537. [CrossRef]
16. Butterworth, J.; Pao, L.; Abramovitch, D. Analysis and comparison of three discrete-time feedforward model-inverse control

techniques for nonminimum-phase systems. Mechatronics 2012, 22, 577–587. [CrossRef]
17. Tang, Y.; Shen, G.; Zhu, Z.C.; Li, X.; Yang, C.F. Time waveform replication for electro-hydraulic shaking table incorporating

off-line iterative learning control and modified internal model control. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2014,
228, 722–733. [CrossRef]

18. Brudnak, M.J. A Composite Linear and Nonlinear Approach to Full-Vehicle Simulator Control. In Proceedings of the SAE 2005
World Congress & Exhibition, Detroit, MI, USA, 12 April 2005; Volume 1. [CrossRef]

19. Cornelis, B.; Toso, A.; Verpoest, W.; Peeters, B. Adaptive modelling for improved control in durability test rigs. In Proceedings of
the 20th International Congress on Sound and Vibration, Bangkok, Thailand, 7–11 July 2013; pp. 507–516.

20. Cuyper, J.D.; Verhaegen, M.; Swevers, J. Off-line feed-forward and H∞ feedback control on a vibration rig. Control Eng. Pract.
2003, 11, 129–140. [CrossRef]

21. Raath, A.; Waveren, C. A time domain approach to load reconstruction for durability testing. Eng. Fail. Anal. 1998,
5, 113–119. [CrossRef]

http://doi.org/10.1109/AUTEST.1998.713448
http://dx.doi.org/10.4271/2009-01-0433
http://dx.doi.org/10.4271/2008-01-2966
http://dx.doi.org/10.4271/983023
http://dx.doi.org/10.4271/2001-26-0047
http://dx.doi.org/10.1177/1077546314549589
http://dx.doi.org/10.1109/78.285659
http://dx.doi.org/10.1177/1729881416662537
http://dx.doi.org/10.1016/j.mechatronics.2011.12.006
http://dx.doi.org/10.1177/0959651814536553
http://dx.doi.org/10.4271/2005-01-0937
http://dx.doi.org/10.1016/S0967-0661(02)00103-X
http://dx.doi.org/10.1016/S1350-6307(98)00008-9


Machines 2024, 12, 286 15 of 15

22. Cuyper, J.D.; Verhaegen, M. State Space Modeling and Stable Dynamic Inversion for Trajectory Tracking on an Industrial Seat
Test Rig. J. Vib. Control 2002, 8, 1033–1050. [CrossRef]

23. Widrow, B.; Walach, E. Adaptive Inverse Control; Prentice Hall: Upper Saddle River, NJ, USA, 1996.
24. Stoten, D.; Benchoubane, H. Empirical studies of an MRAC algorithm with minimal controller synthesis. Int. J. Control 1990,

51, 823–849. [CrossRef]
25. Dertimanis, V.K.; Mouzakis, H.P.; Psycharis, I.N. On the acceleration-based adaptive inverse control of shaking tables. Earthq.

Eng. Struct. Dyn. 2015, 44, 1329–1350. [CrossRef]
26. Elliott, S.J. Signal Processing for Active Control; Signal Processing and Its Applications; Academic: San Diego, CA, USA, 2001.
27. Widrow, B.; Stearns, S.D. Adaptive Signal Processing; Prentice Hall: Upper Saddle River, NJ, USA, 1985.
28. Elliott, S.J.; Stothers, I.; Nelson, P.A. A multiple error LMS algorithm and its application to the active control of sound and

vibration. IEEE Trans. Acoust. Speech Signal Process. 1987, 35, 1423–1434. [CrossRef]
29. Clark, R.L.; Saunders, W.R.; Gibbs, G.P. Adaptive Structures: Dynamics and Control; Wiley: New York, NY, USA, 1998.
30. Elliott, S.J.; Darlington, P.A. Adaptive cancellation of periodic, synchronously sampled interference. IEEE Trans. Acoust. Speech

Signal Process. 1985, 33, 715–717. [CrossRef]
31. Vidyasagar, M. Nonlinear Systems Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 1978.
32. Bendat, J.S.; Piersol, A.G. Engineering Applications of Correlation and Spectral Analysis; Provided by the SAO/NASA Astrophysics

Data System; Wiley: New York, NY, USA, 1980.
33. Li, M.; Zhang, Y. Convergence Optimization and Verification for Single-Channel Remote Parameter Control of a Nonlinear

System. Appl. Sci. 2019, 9, 549. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1177/107754602029580
http://dx.doi.org/10.1080/00207179008934100
http://dx.doi.org/10.1002/eqe.2518
http://dx.doi.org/10.1109/TASSP.1987.1165044
http://dx.doi.org/10.1109/TASSP.1985.1164596
http://dx.doi.org/10.3390/app9030549

	Introduction
	Pulse Train Fx-LMS Algorithm
	Nonlinear Simulation Model
	Results and Discussion of Performance Evaluation Case Studies
	Setup of Comparative Method
	Case Study 1
	Case Study 2
	Case Study 3

	Conclusions
	References

