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Abstract: The continuous evolution of modern technology has led to the creation of increasingly
complex and advanced systems. This has been also reflected in the technology of Unmanned
Aerial Vehicles (UAVs), where the growing demand for more reliable performance necessitates
the development of sophisticated techniques that provide fault diagnosis and fault tolerance in
a timely and accurate manner. Typically, a UAV consists of three types of subsystems: actuators,
main structure and sensors. Therefore, a fault-monitoring system must be specifically designed
to supervise and debug each of these subsystems, so that any faults can be addressed before they
lead to disastrous consequences. In this survey article, we provide a detailed overview of recent
advances and studies regarding fault diagnosis, Fault-Tolerant Control (FTC) and anomaly detection
for UAVs. Concerning fault diagnosis, our interest is mainly focused on sensors and actuators, as
these subsystems are mostly prone to faults, while their healthy operation usually ensures the smooth
and reliable performance of the aerial vehicle.

Keywords: fault diagnosis; fault tolerant control; anomaly detection; unmanned aerial vehicles

1. Introduction

From their first appearance until today, the utilization of Unmanned Aerial Vehicles
(UAVs) has exhibited a rapid increase. Their use ranges from military applications to enter-
tainment, photography, product transportation, inspection and surveillance, agricultural
applications, wireless communication networks and more. Considering their astonishing
evolution in recent years, UAVs have become an important field of research.

Nowadays, UAVs are used in a variety of civilian applications [1]. This is mainly due
to their mechanical construction which makes them flexible and efficient as well as their
reasonable cost. They are mainly distinguished for operating in various modes such as
flying at different speeds, hovering over a target, maintaining a stable position, performing
complex maneuvers, avoiding obstacles, etc. They also have the ability to fly and perform
missions in both indoors and outdoors environments.

Their supremacy makes them convenient in replacing humans in tasks that can be
monotonous, difficult or even dangerous for people to undertake. At the same time, the
standards for their reliability and performance are increasing. Regrettably, despite any
technological advances, the appearance of faults is inevitable. This is primarily attributable
to the fact that UAVs embed a variety of subsystems, sensors, actuators and components
that are susceptible to failures. In addition, unforeseeable conditions and events can occur
in their operating environment [2]. This reality poses new demands for designing and
applying fault diagnosis approaches, that will contribute timely and accurately in the fault
detection and isolation process both at the sensor and actuation levels of UAVs.

Moreover, an important factor that poses further challenges and difficulties in fault
diagnosis is that all flight and mission tasks are integrated into the vehicle’s embedded
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control systems, while any intervention by the ground operator is usually limited, most
likely insufficient or even overdue. Thus, it is crucial for the UAV to self-track its operation,
so that any faults can be addressed before they lead to disastrous consequences.

UAVs are classified into three major categories [3]: rotary wing, fixed wing and
flapping wings, as shown in Figure 1. Rotary wings also known as vertical take-off and
landing (VTOL) UAVs and are usually employed for missions that involve hovering. For
long-range missions and high altitudes, fixed-wing UAVs are most frequently used. They
are usually suitable for research and military purposes. Finally, flapping-wing UAVs
attempt to imitate the way that birds and insects fly. They are characterized by limited
payload capabilities and low endurance.

Figure 1. Unmanned aerial vehicles classification.

1.1. Glossary

In order to facilitate the introduction of the readers to the relevant concepts reviewed
by this survey study, and helping them identify the relevant references that might become
useful in their specialized research, it is briefly presented below a glossary of the most
relevant terms:
• Fault: An unpermitted deviation from the normal, acceptable, usual, and standard

behavior [4].
• Failure: A permanent interruption of a system’s ability to perform a require function

under specified operating conditions [4].
• Malfunction: An intermittent irregularity in the fulfillment of a system’s desired

function [4].

The overall concept of Fault Diagnosis consists in the following essential tasks [2]:

• Fault detection: detection of the occurrence of faults in the functional units of the
process, which lead to undesired or intolerable behavior of the whole system.

• Fault isolation: localization (classification) of different faults.

In Figure 2, the general scheme of fault detection and isolation architecture is illustrated.
Diagnostic techniques are classified in a variety of ways, depending on the study

field [2,4,5]. The suggested categorization in this survey is depicted in Figure 3 and is divided
into three categories: hardware redundancy, analytical redundancy and signal processing.

• Hardware redundancy: consists in the reconstruction of the process components us-
ing the identical (redundant) hardware components. A fault in the process component
is then detected if the output of the process component is different from the one of its
redundancy. The main advantage of this scheme is its high reliability and the direct
fault isolation.

• Analytical redundancy: makes use of the model of the process where process model is
a quantitative or a qualitative description of the process dynamic and steady behavior.
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In this review the analytical redundancy is divided into two categories: model-based
methods and knowledge-based.

– Model-based methods are based on a mathematical model obtained through
physical laws or system identification methods and fault diagnosis is achieved
using residual that are formed by the difference between the measured signals
and the signals generated by the mathematical model.

– Knowledge-based methods are not dependent on the system model and require
a significant amount of previous system performance data while the expert
knowledge and expertise may be effectively used in the diagnostic procedure.

• Signal processing: uses signal measurements instead of a system model. The mea-
sured signals are considered to contain information about faults that exist in the
system in a form of symptoms. From these signals, their characteristics are extracted
and the fault diagnosis is made with appropriate signal processing, symptom analysis
and prior knowledge of the symptoms of healthy systems [6].

Figure 2. General Scheme of Fault Detection and Isolation (FDI) Architecture.

Figure 3. Fault Detection and Isolation (FDI) Methods Classification.
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Fault diagnosis is the first of two steps of an integrated approach to the robust and
reliable operation of an unmanned aerial vehicle. The next equally important step concerns
fault accommodation and it is achieved through fault tolerant control. It comprises different
sophisticated control algorithms that provide possible solutions for fault compensation and
controlling the system with acceptable performance. The general scheme of fault tolerant
control architecture is depicted in Figure 4.

Figure 4. General Scheme of Fault-Tolerant Control (FTC) Architecture.

There are two types of FTC systems: passive and active systems.

• Passive FTC: A control system that does not rely on faulty information to control the
system and is closely related to robust control where a fixed controller is designed to be
robust against a predefined fault in the system and usually redundancy is integrated
into the passive FTC scheme to make it resilient against faults [7].

• Active FTC: A control system that uses an FDI module to detect and isolate the
fault while a supervisory controller decides how to modify the control structure and
parameters to compensate for the occurred fault in the system [7].

In this survey article, we make an attempt to provide the latest research studies on
fault diagnosis and fault tolerant control methods in the field of UAVs, which are classified
as shown in Figures 3 and 5 respectively.

Figure 5. Fault-Tolerant Control (FTC) Techniques.
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In addition to the classic methodologies for fault diagnosis in unmanned aerial vehicles
sensors and actuators, a UAV contains various others subsystems such as components,
structures, communication and data transmission systems, etc. The proper operation of all
the above is considered extremely important, and it is crucial for the system to be able to
detect any malfunctions, in a timely manner, that could cause deviation from the vehicle’s
acceptable and expected flight.

In this direction, and given the large volume of data and the tendency towards higher
levels of UAVs autonomy, intelligent methodologies and techniques are being developed
that aim to detect anomalies, i.e., to detect operations and events that are abnormal.

Anomaly detection refers to the problem of finding patterns in data that do not
conform to expected behavior. These nonconforming patterns are often referred to as
anomalies, outliers, discordant observations, exceptions, aberrations, surprises, peculiari-
ties or contaminants in different application domains [8].

The requirement in the direction of higher levels of UAVs autonomy, forged the
path for intelligent methodologies and techniques able to detect anomalies in the vehicle
behavior, and through this perspective our review extends in this area as well. The most
common anomaly detection techniques are briefly presented in Figure 6. More details
regarding these techniques including their definitions can be found in [9].

Figure 6. Anomaly Detection Techniques.

We concentrated our survey in associated studies starting from 2010 and afterwards.
Conference and Journal papers were examined on the subject. The databases and keywords
for this survey are presented in Table 1.

1.2. Outline

The remainder of the paper is structured as follows. Section 2 addresses detailed
surveys in fault diagnosis and FTC of UAVs. Section 3 reviews the most recent research
studies in the area of sensors fault diagnosis. Section 4 includes a comprehensive survey
of the various methods for actuators fault diagnosis. Section 5 presents methodologies of
FTC for UAVs. Research studies regarding anomaly detection for UAVs are presented in
Section 6. Finally, Section 7 concludes the paper.
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Table 1. Search procedure.

Databases

IEEE Xplore
ScienceDirect

Web of Science
Semantic Scholar

ENGnetBASE
Google Scholar

Keywords

Fault Diagnosis and UAV
Survey and Fault Diagnosis and UAV

Survey and UAV
Sensors and Fault Diagnosis and UAV

Actuators and Fault Diagnosis and UAV
Fault-Tolerant Control and UAV

Anomaly Detection and UAV

Search Date January–August 2021

2. Existing Survey Studies

In the area of fault diagnosis there is a great development of research efforts in various
scientific fields. Particularly, in the case of UAVs, there has also been an increase of relative
research work. However, after extensive literature research, limited research surveys have
been found, which we will present in this section and are summarized in Table 2.

Table 2. Existing surveys.

Reference Brief Summary Objective

Shraim et al. [3] A Survey on Quadrotors
Sensors and Actuators

Fault Diagnosis and
Fault-Tolerant Control

Gao et al. [10] UAV Sensor Fault Diagnosis
Sensor Fault Diagnosis

and Tolerant Control

Qi et al. [11]
Fault Diagnosis and

Fault-Tolerant Control Methods Single-Rotor Aerial Vehicles

Sadeghzadeh et al. [12] A Review on Fault-Tolerant Control Unmanned Aerial Vehicles (UAVs)

In [3], the authors present a survey that concerns different research aspects of quadro-
tors which constitute a specific class of UAVs. Among them, there exist a limited section
referring to fault diagnosis and fault-tolerant control. In particular, the authors cite various
research papers related to fault diagnosis on sensors (mainly for IMUs) and actuators.

The survey paper in [10] provides a comprehensive report of methodologies for
sensors fault diagnosis. These faults are categorized according to their generation reason
and a relative mathematical expression is provided. In the sequel, the three major methods
regarding sensors fault detection and isolation that can be employed in UAVs are explained:
model-based, signal processing and knowledge-based. Last, challenges and future research
directions are discussed.

The review article in [11] offers an outline of research efforts regarding fault diagnosis
and fault-tolerant control techniques on single-rotor vehicles such as helicopters. The
papers include references for both unmanned and manned vehicles. Furthermore, the
fault diagnosis methods concern both sensors and actuators. Furthermore, the approaches
categorized according to the three fault diagnosis types (analytical model-based, signal
processing-based and knowledge-based) are provided. As it turns out, most research efforts
for unmanned vehicles concern model-based as well as signal processing-based methods,
while only one work is related to the knowledge-based approach.
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Finally, the authors of [12] provide an overview of the progress and important issues of
existing studies in the field of UAVs fault tolerant control. In addition, they present a brief
overview of concepts related to FTC Systems as well as definitions and categorizations.

3. Sensors Fault Diagnosis

In order to strengthen their operation capabilities or for data collection purposes,
aerial vehicles employ a wide variety of navigation and payload sensors. The performance
of these vehicles significantly depends on the proper and reliable operation of the on-board
sensor suite. The provided measurements are used for control, navigation, monitoring,
supervision, etc. The UAVs sensors, however, are frequently exposed to unexpected
condition changes and in combination with the demanding flight environment the risk
of failure inevitably increases, a fact that might lead to total loss of the vehicle. As an
example, incorrect flight altitude measurements may result in a vehicle crash, with major
consequences, such as vehicle destruction, property damage and/or human injuries. To
ensure the safety of a flight, reliable operation and accomplishment of planned missions
must be guaranteed via timely sensor fault diagnosis. Next, we present an overview
of the research work related to fault diagnosis in UAV sensors. A categorization of the
methods is provided in Table 3 while the recording of the research works is in line with the
classification of FDI methods in Figure 3.

In [13], an algorithm for fault diagnosis and FTC on a quadrotor altitude sensor is
displayed. In the suggested technique, three altitude sensors’ hardware redundancy was
used. The three altitude measurements produced the corresponding residuals that served
for the isolation of the malfunctioned sensor. The performance of the suggested approach
was achieved through flight experiments.

A redundant system consisting of three gyroscopes is presented in [14]. The parity
test approach was used to diagnose faulty gyroscopes, and a relative algorithm was sug-
gested. Simulation results illustrate that the approach can reliably detect the malfunction
of the gyroscope.

In [15], the authors suggest a fault diagnosis algorithm based on adaptive nonlinear
proportional-integral (PI) observer for continuous time system applied to a fixed-wing
unmanned aerial vehicle. Their approach was evaluated through simulation.

In [16], the authors address the issue of fault diagnosis for Inertial Measurement
Units (IMU) employed in the attitude control system. They propose a model-based Fault
Detection and Isolation (FDI) approach, while they use the Unknown Input Observer (UIO)
methodology in order to provide the FDI system with state observations.

In [17], a scheme that provides analytical redundancy using the differential flatness
property of flat systems was presented. This approach is able to provide the required
residuals for fault diagnosis on sensors as well as actuators for multi-rotor vehicles. Both
simulation and real experiments certified the proposed method.

The authors of [18] designed an LPV robust observer to diagnose sensors faults for a
quadrotor aerial vehicle. For this purpose, a bank of observers was created, which generates
a set of residuals in a way that every residual is affected only by one fault. The performance
of their proposition is realized through simulation.

In [19], an approach based on state and input estimation for sensors fault diagnosis
was proposed. The method uses the proportional and multiple integral (PMI) for input
estimation and a fault detection filter (FDF) for states estimation. Five malfunctioned sen-
sors were considered throughout the study during UAV flight experiments. The proposed
technique was assessed on Pitot tube and accelerometers.

The work in [20] addresses the issue of sensor anomaly detection in a fix-wing aircraft
using maximum likelihood and particle filters method. To demonstrate the efficacy of the
proposed algorithm, simulation results are presented.
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Table 3. Sensors fault diagnosis research works.

Reference Sensor Type FDI Method UAV Type

Hardware Redundancy

Drak et al. [13] Altitude Sensor Hardware Redundancy Quadrotor

Shi et al. [14] Gyroscope Hardware Redundancy Quadrotor

Analytical Redundancy

Model-Based

Miao et al. [15] Inertial Measurement Units (IMU)
Model-Based/Adaptive Nonlinear
Proportional Integral (PI) Observer Fix-Wing

Zuo et al. [16] Inertial Measurement Units (IMU) Model-Based/Unknown Input Observer (UIO) Quadrotor

Saied et al. [17] Position-Orientation and Motors Model-Based Hexarotor

López-Estrada et al. [18] Position-Orientation Model-Based/Bank of Observers Quadrotor

Guo et al. [19] Pitot Tube and Accelerometers Model-Based/Kalman-Based Quadrotor

Deghat et al. [20] Roll Model-Based/Particle Filter, Maximum Likelihood Delta-Wing

Samy et al. [21]
Pitch Gyro, Angle

of Attack, Normal Accelerometer Model-Based/NN Fix-Wing

Younes et al. [22] Position Model-Based Quadrotor

Xu et al. [23] X-axis and Y-axis Angular Velocity Model-Based Single-Rotor

D’Amato et al. [24] Inertial Measurement Units (IMU) Model-Based Multi-Rotor, Tricopter

Avram et al. [25] Inertial Measurement Units (IMU) Model-Based/Sliding Mode Observer Quadrotor

Simlinger et al. [26] Gyroscope Model-Based/KF Fix-Wind

Sun et al. [27] Wheel Velocity of ABS Model-Based/Sliding Mode Observer Fix-Wing

Tan et al. [28]
Airborne Sensor

(IMU, GPS, Attitude, Angle of Attack) Model-Based/Kalman-Bussy undefined UAV

Mouhssine et al. [29] Inertial Measurement Units (IMU) Model-Based Quadrotor

Suarez et al. [30] Position Model-Based/EKF Quadrotor

D’Amato et al. [31] Inertial Measurement Units (IMU) Model-Based Quadrotor
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Table 3. Cont.

Reference Sensor Type FDI Method UAV Type

Hansen et al. [32] Airspeed Model-Based Fix-Wing

Fravolini et al. [33] Airspeed Model-Based Fix-Wing

Vitanov et al. [34] Inertial Navigation System (INS) Model-Based/Unscented H∞ Filter (UHF) Quadrotor

Yoon et al. [35] Inertial Measurement Units (IMU) Model-Based/Parity Space and Signal-Based Fix-Wing

Knowledge-Based

Guo et al. [36] Gyroscope Knowledge-Based Quadrotor

Fravolini et al. [37] Airspeed, Angle of Attack, Sideslip angle Knowledge-Based Fix-Wing, Semi-Autonomous

Crispoltoni et al. [38] Inertial Measurement Units (IMU) Knowledge-Based/Fuzzy Logic Fix-Wing, Semi-Autonomous

Sun et al. [39] Navigation GPS/IMU
Knowledge-Based/Adaptive Neuron

Fuzzy Inference System (ANFIS) Quadrotor

Chen et al. [40,41] Gyroscope Knowledge-Based undefined UAV

Olyaei et al. [42]
Angle of Attack, Pitch Angle,
Pitch Angular Rate, Height Knowledge-Based/Deep Learning Fix-Wing

Gao et al. [43] Angular Rate
Knowledge-Based/Least Squares

Support Vector Machine (LS-SVM),
Principal Component Analysis (PCA)

Fix-Wing, Aerosonde
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In [21], an Extended Minimum Resource Allocating Network (EMRAN) Radial Basis
Function (RBF) Neural Network (NN) was selected for multiple fault detection at the angle of
attack, the pitch gyro and the normal accelerometer sensors of a fixed-wing UAV model. The
achievability of the considered method was demonstrated via Matlab/Simulink simulations.

An intelligent output estimator (iOE) for residual generators was used to achieve
sensor fault detection and isolation in [22]. The proposed estimator is applied to estimate
the output in contrast to the observers that estimate the state. The proposed scheme was
evaluated for bias sensor faults on the vehicle position, through real flight tests using a
Qball-X4 quadrotor.

In [23], the authors present an observer-based controller. The aim is to accomplish at
the same time the control of the ducted coaxial-rotor UAV and the low-frequency sensor
fault detection. The methodology was tested by simulations in MATLAB.

According to the proposed methodology in [24], the sensors fault detection can be
achieved by comparing similar sensors output while an extended Kalman filter (EKF) was
applied for the biases of gyroscopes. The measurement of the biases norms provided by
EKFs, serves to gyros fault isolation. Regarding fault isolation on magnetometers and
accelerometers, a set-based technique involving the solution of a Linear Programming (LP)
problem on a moving time window was employed. A series of simulations containing
experimental data obtained during flights of a tricopter UAV was explored in order to
illustrate the realistic applicability and robustness against measurement noise and various
kinds of faults.

The authors of [25], based on sliding-mode observer technique, propose a fault diag-
nosis approach for bias fault on inertial measurement unit of a quadrotor. The effectiveness
of the discussed scheme was proved on data from real flights of a quadrotor.

A vision-based fault diagnosis scheme for UAV is introduced in [26] for applications
in real-time. At first step, the attitude of the UAV is calculated independently of every
other sensor using visual data from a horizon tracking algorithm. At the second level, two
Kalman filters are used for fault diagnosis in two gyroscopes. The methodology was tested
through ROS in a real-time framework.

A sliding mode observer for fault diagnosis of a wheel velocity sensor in an anti-
skid braking system (ABS) of the landing system of a UAV was proposed in [27]. The
methodology was combined with a fault-tolerant control scheme. The feasibility of the
suggested approach was illustrated via simulation.

In [28], a malfunction modeling and analysis of sensor device is conducted using aerody-
namic parameters of UAV, and a state estimator using the Kalman–Bussy filter was developed.
The findings of the simulation indicate the effectiveness of the discussed approach.

The work in [29] addresses the fault detection and isolation of faults on sensors in
a quadrotor UAV. The suggested architecture is developed based on nonlinear analytical
redundancy (NLAR) relations. Simulations that conducted in MATLAB environment
adopting faults on the IMU, showed the feasibility of this approach.

A Fault Detection, Identification and Recovery (FDIR) framework for Multi-UAV
operations is developed in [30]. In order to detect malfunctions in the attitude and location
sensors of the participating vehicles, the system utilizes data generated on-board by the
sensors of the UAVs group. The proposed approach has been experimentally tested with
quadrotors in indoors environment.

In [31], the authors investigate the use of an Unscented Kalman Filter (UKF) for fault
diagnosis of Hardware Duplex IMU as a different solution regarding the common Hard-
ware Triplex IMU. The experiments performed on real flights confirming the effectiveness
of their method.

The work in [32] deals with the fault diagnosis of airspeed sensor. The approach is
based on adaptive observers to produce analytical redundancies and to create residuals.
The technique was tested using simulations as well as actual data of the airspeed sensor of
the UAV.



Machines 2021, 9, 197 11 of 34

In [33], a research for fault diagnosis of airspeed sensor was performed. The authors
presented two solutions, the first one adopted model-based technique while in the second,
the parameters were identified from flight data. The fault was detected using the ‘CUSUM’
filter. A simulation analysis performed on a WVU YF-22 aircraft, assessed the efficiency of
the developed scheme.

An implementation of the Unscented H∞ Filter (UHF) to a bank of observers for the
fault diagnosis of an inertial navigation system (INS) was proposed in [34]. The suggested
method was evaluated via simulations on real navigation data.

The proposed research in [35] refers to an experimental assessment of a fault diagnosis
method for three consecutive faults at inertial sensors of a fixed-wing UAV. The approach
combines the parity space method with the in-lane monitoring method based on the
discrete wavelet transform. The experiments were conducted on a fixed-wing aircraft.

The research study in [36] suggests a sensor fault detection strategy using a classifier
without negative samples, which can be used as a local density regulated optimization in a
single class support vector approach. Simulation findings were used to demonstrate its
efficacy and supremacy on a real flight control system platform for gyroscope faults.

The authors of [37] designed a fault detection method for the Air Data Sensors (ADS)
using Interval Models (IMs) and a nonlinear-in-the-parameter Neural Network. The
proposed approach was validated on real flight data from a semi-autonomous aircraft.

The work in [38] introduces interval fuzzy models as a data-based method for applica-
tion on the fault detection of the IMU. The method was tested on real flight data from a
semi-autonomous aircraft.

The authors of [39] proceed with the the development of a data-driven Adaptive
Neuron Fuzzy Inference System (ANFIS) for fault detection of navigation sensors. The
approach provides the ability for fast and precise fault detection, and therefore may be
used in real-time applications.

The authors of [40] developed a backpropagation (BP) neural network that uses a
Genetic Algorithm (GA) for its optimization. As input to the neural network for its training,
wavelet packets were used for the extraction of the fault energy characteristics. The method
was applied to the pitch rate signal of speed gyroscope, while MATLAB simulations proved
its effectiveness.

A similar methodology of wavelet entropy energy feature extraction was proposed
in [41], in order to acquire the fault feature vector, as well as for updating the weight
and threshold of the neural network the authors adopt the adaptive fireworks algorithm.
Simulations demonstrate the accuracy and robustness of the AFWA-BP neural network.

The authors of [42] present a fault detection and identification method for sensors and
actuators on a fixed-wind vehicle, based on deep learning. For faults classification, they
introduced an algorithm called Color Images obtained from Time-Frequency-Amplitude
(CITFA) while the simulations give accuracy of 98%.

In [43], a combination of principal component analysis (PCA) and least squares sup-
port vector machine (LS-SVM) was used in order to conduct fault diagnosis and signal
reconstruction of an angular rate sensor. Initially, the LS-SVM approach produced the
residuals for fault detection. Then, PCA carried out the fault isolation. The methodology
was evaluated through simulations on a aerosonde UAV.

4. Actuators Fault Diagnosis

Actuators are critical electromechanical components which are responsible for the
control of the unmanned aerial vehicle. Possible malfunctions can cause flight problems
that in turn may lead to vehicle crashing with possible disasters and serious injuries to
civilians. Therefore, it becomes obvious that the diagnosis of faults in actuators is crucial
and the development of appropriate methodologies is required. In the continuation of this
section, we will present research results related to the detection and isolation of faults in
actuators. These are also summarized in Table 4.



Machines 2021, 9, 197 12 of 34

Table 4. Actuators fault diagnosis research works.

Reference Actuator Type FDI Method UAV Type

Hardware Redundancy

Lieret et al. [44] Rotor Hardware Redundancy Multirotor

Analytical Redundancy

Model-Based

Xiao-Lu Ren [45] Rotor Model-Based/H∞ Observer Quadrotor

Zhang et al. [46] Rotor Model-Based/KF Quadrotor

Guzmán-Rabasa et al. [47] Rotor Model-Based/H∞ Observer Quadrotor

Lijia et al. [48] Altitude System (Ailerons, Elevators, Rudder)
Model-Based/Robust Adaptive

Observer & Radial Basis Function
Neural Network (RBFNN)

Fixed-Wing

Yin et al. [49] Rotor Model-Based/Interval Observer VTOL

Li et al. [50] Rotor Model-Based Fix-Wing

Ma et al. [51]
Biases in Position Sensors and

Balance Sensors/External Inputs,
Electric Regulator, Bias in Motor Torques

Model-Based/Observer-Based Quadrotor

Zhong et al. [52] Motor & Altitude Sensor Model-Based/Interacting Multiple Model (IMM) Quadrotor

Zhong et al. [53] Propellers, Motors Model-Based, Adaptive Augmented State KF Quadrotor

Hajiyev [54] Elevator, Ailerons, Rudder Model-Based Fix-Wing

Hasan et al. [55] Motors
Model-Based/Nonlinear

Thau Observer & Linearized KF Multi-Rotor, Quadrotor

Bauer et al. [56] Elevons Model-Based/Multiple Model Adaptive Estimation Fixed-Wing

Su et al. [57] Rotor Analytical Redundancy Hexacopter

Avram et al. [58] Rotor Model-Based/Adaptive Estimators Quadrotor

Ortiz-Torres et al. [59] Propellers, Motors Model-Based Planar VTOL

Cao et al. [60] Rotor Model-Based Fix-Wing
Rotondo et al. [61] Rotor, Icing Model-Based/PI-UIO Fix-Wing
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Table 4. Cont.

Reference Actuator Type FDI Method UAV Type

Liu et al. [62] Control Vanes (CVs) Model-Based, UKFs Ducted Fan

Saied et al. [63] Rotor Model-Based/Sliding Mode Observer Octorotor

Kugler et al. [64] Sensors and Actuators Model-Based Fix-Wing

Yang et al. [65] Aileron and Elevator Model-Based/Unscented Kalman Filter (UKF) Fix-Wing

Zhaohui et al. [66] Rotor Model-Based/Nonlinear Observer Quadrotor

Cen et al. [67] Rotor Model-Based, Adaptive Thau Observer (ATO) Quadrotor

Ducard [68] Ailerons, Elevators, Rudder Model-Based Fix-Wing

Tousi et al. [69] Rotor, Icing Model-Based/Observer Fix-Wing, Aerosonde

Ma et al. [70] Elevators Model-Based/Dual Unscented Kalman Filter (DUKF) Fix-Wing

Knowledge-Based

Fu et al. [71] Rotor Knowledge-Based/CNN-LSTM Six-Rotor

Younes et al. [72] Rotor Knowledge-Based/Output Estimator Quadrotor

Hansen et al. [73] Airspeed & Control Surface Actuator Knowledge-Based undefined UAV
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Using a redundant flight control architecture, the authors of [44] present a fault
detection architecture for autonomous multirotor systems. They designed and implement
an inexact voter to continuously compare the states and functionalities of each one of three
different flight control units (FCU). The proposed scheme was evaluated on real flights of
an hexarotor.

In [45], the authors deal with the fault estimation of a quadrotor actuator, proposing a
scheme with an H∞ observer that at the same time can estimate the faulty actuator and the
system state. The methodology was evaluated through simulations.

In [46], a method for faulty actuator diagnosis based on Interacting Multiple Model
(UIMM) using Kalman filters is presented. The simulation findings confirm that a single
actuator fault can be diagnosed.

An FDI architecture for partial and total actuator faults of a quadrotor was proposed
at [47]. An H∞ observer was used to residual generations while the UAV was modeled as
an LPV system. The scheme efficacy was demonstrated via simulations.

In [48], the authors proposed a combination of a robust adaptive observer and a Radial
Basis Function Neural Network (RBFNN) for fault detection on the attitude mechanism of
a fixed-wing aircraft. Simulations were performed to demonstrate the effectiveness of the
control law.

A fault detection approach that uses an interval observer for actuators faults in UAVs
formation is developed in [49]. Within this scheme, residuals as well as thresholds can be
created. MATLAB simulations in a formation of five VTOLs, proved the performance of
the proposed method.

As in previous work, the work in [50] refers to the actuator fault diagnosis of only
one UAV that participates to a formation. The proposed method involves the unknown
input observer and a distributed fault detection technique. The proposed architecture was
assessed through simulations in MATLAB environment.

Both sensors and actuators faults were taken into account in [51], where authors
applied an adaptive observer for fault estimation. Furthermore, a fault-tolerant control
scheme for fault accommodation was developed. Both simulations and actual vehicle
flights were realized to support the efficacy of the method.

Using the Interacting Multiple model (IMM) methodology, the authors of [52] ad-
dressed the multiple fault diagnosis issue for actuators and sensors of a quadrotor vehicle.
The usefulness of the proposed architecture was confirmed by simulations.

The work in [53] introduces a comprehensive actuator fault diagnosis scheme of a
quadrotor vehicle in the existence of extraneous disruptions. More specifically, the authors
developed an adaptive three-state Kalman filter, which in addition to the diagnosis of
actuator defects, was also able to evaluate magnitudes, even when external disruptions
impacted the vehicle. The simulation findings showed the reliability of the suggested
approach and the efficiency of the method was tested in various fault scenarios.

In [54], additional changes to the system model were adopted and an algorithm with
Multiple System Noise scale Factors (MSNSF) was presented. This methodology, given
that the actuator/surface faults produce the additive changes in the mathematical model of
the UAV, may be used for actuator/surface fault diagnosis. The simulations demonstrate
the effectiveness of the method in simultaneously diagnosing actuator/surface faults.

A nonlinear Thau observer combined in a cascaded form with a linearized Kalman
filter was introduced in [55], in order to diagnose faulty actuators on a multi-rotor UAV.
Simulation analysis demonstrated that the suggested procedure may diagnose a faulty
actuator within a reasonable degree of precision.

In [56], the issue of the stuck control surface (elevon) of a fixed-wing unmanned aerial
vehicle is presented. The diagnosis is achieved by applying the Multiple Model Adaptive
Estimation method, using LTI Kalman Filters and a Posterior Probability Evaluator that
processes their residuals. The method was evaluated via simulations.

In [57], a Nonlinear Analytical Redundancy (NLAR) method was proposed for resid-
ual generation regarding fault diagnosis on the actuators of a hexacopter. Authors also
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employed a Butterworth filter for signal reconstruction. The method was evaluated through
real experiments.

The work in [58] describes the application of adaptive estimation techniques for Fault
Diagnosis and Accommodation (FDA) on a quadrotor actuator system. Real experiments
conducted with a quadrotor in an indoors environment which demonstrated the efficacy of
the algorithm.

An approach employing a linear observer was developed in [59], in order to diagnose
Planar Vertical Take-off and Landing (PVTOL) aircraft actuator faults. The approach was
evaluated through simulations.

The research work in [60] introduces an improvement of the Sequence Probability
Ratio Test (SPRT) algorithm, which can be applied for actuators fault diagnosis. Its speed
and efficiency were demonstrated through simulations.

In [61], a linear parameter varying Proportional Integral Unknown Input Observer
(PI-UIO) was proposed for diagnosing both actuator faults and vehicles icing. The data
obtained from a simulator were used to verify the feasibility of the suggested solution.

Based on unscented Kalman filters, an Unscented Multiple Model Adaptive Estimation
(UMMAE) method was developed in [62]. The suggested approach offers a parallel bank of
filters that are in charge for tracking the operating mode of the respective actuator. Through
simulation tests it turns out that the proposed method provides minor uncertainty in fault
diagnosis, fast response and low computational load.

A sliding mode observer was proposed in [63] for actuators fault diagnosis in an
octarotor. This approach utilizes the characteristics of the output for calculating the equiva-
lent uncertain inputs. Simulations in Matlab/Simulink as well as a true experiments on an
octarotor demonstrated the efficacy of this method.

In [64], the authors present and explain the characteristics of the integrated auto flight
system software of the SAGITTA Demonstrator UAV. The system has been enriched with a
fault diagnostic unit to monitor the operation of various subsystems such as sensors and
actuators, in order to enhance the reliability of the vehicle.

Using an Unscented Kalman Filter (UKF), in combination with the Bayesian Classifier
(BC) method, the authors in [65] present an algorithm for actuator fault diagnosis of
fixed-wing unmanned aerial systems. The effectiveness of the proposed scheme was
demonstrated via simulations.

A nonlinear observer is used in [66] for actuator fault diagnosis on a quadrotor. The
method was applied on a real system using data from real experiments. The results prove
that the method displays reasonable fault diagnosis precision.

The aim of the work in [67] is to detect faults concerning partial loss of effectiveness
of quadrotor actuators using the adaptive Thau observer technique. Various simulations
were performed to demonstrate the method’s efficacy and reliability.

In [68], the author discussed an expansion of his previous work relevant to Single
Model Active Fault Detection and Isolation System (SMAC-FDI) for actuators fault diagno-
sis of small unmanned aerial vehicles. The proposed scheme was evaluated via simulation
in MATLAB.

Using observer based methods, a fault detection and isolation architecture was pre-
sented in [69] for application to an aerosonde UAV. The study on the efficiency of the
method was carried out through simulations.

A fault diagnosis approach for application to the NASA Generic Transport Model
(GTM) unmanned aerial vehicle was described in [70]. The methodology was implemented
using a Dual Unscented Kalman Filter (DUKF) and a Baysian rule. The experimental
simulations confirmed the efficiency of the method for successful and timely diagnosis of
faulty actuators.

A deep learning approach that utilized a hybrid Convolutional Neural Network and
Long Short-Term Memory (CNN-LSTM) technique was developed in [71], for the fault
diagnosis of actuators on a six-rotor vehicle. Experimental results proved the effectiveness
of the technique.
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Concerning the diagnosis of a faulty actuator, the study in [72] proceeds to the design
of an algorithm that comes from the combination of a model free method and a state
observer, called intelligent Output Estimator (iOE). The proposed algorithm was evaluated
through real experiments on a quadrotor vehicle.

In [73], a methodology that provides the ability to diagnose faults in control surfaces
and air system sensors using data from a swarm of UAVs was discussed.

5. Fault Tolerant Control Methods in UAVs

After the successful diagnosis of a fault, the next stage refers to the implementation
of an appropriate fault tolerant methodology. Fault-Tolerant Control (FTC) is related to a
control strategy that is capable to compensate the appearance of faults in such a way, so that
the unmanned aerial vehicle continues its flight mission (even in an acceptable degradation
mode) or to land safely. Therefore, in order to improve the autonomy, viability and
reliability of UAVs, sophisticated control methodologies are necessary. In the following,
the findings of this survey related to the FTC methods are presented. These are also
summarized in Tables 5 and 6.

In [74], using chaos particle swarm technique for PID controller parameter optimiza-
tion, an architecture of a fault-tolerant control methodology was proposed. According to
simulation tests, the proposed solution has positive effects on the standard UAV flight, and
also a high fault tolerance impact on actuator faults.

The piecewise linear assumption that allows the fault tolerant control problem to be
cast as a nonlinear control allocation problem was presented in [75]. The approach was
applied to the Solar-Powered HALE UAV, with control effectors failures. The efficiency of
the method was evaluated through simulations.

Using fuzzy logic, a FTC approach for Micro Aerial Vehicles (MAV) was presented
in [76]. As inputs, two constraints were used: the degree of ability to hover and the battery
percentage. The goal was to develop a Fuzzy Logic Controller to determine whether a
MAV must abort or continue its mission in accordance with the aforementioned restrictions.
The methodology was evaluated through simulations in MATLAB.

In [77], a FTC technique that splits the dynamics of the system to a fully actuated
subsystem and an under-actuated subsystem in a cascaded structure was proposed. The
method uses two corresponding controllers: one Nonsingular Fast Terminal Sliding Mode
Controller (NFTSMC) and an Under-actuated Sliding Mode Controller (USSMC). The
Particle Swarm optimization (PSO) algorithm was used to set the controllers’ parameters.
Simulations proved the robustness and the effectiveness of the suggested approach.

A similar approach, where the FTC scheme is based on a Super-Twisting (STW)
algorithm with an Integral Terminal sliding mode controller, was proposed in [78] with
simulations on the same quadrotor as in [77].

Additionally, in [79], a fault tolerance scheme for actuator faults of a quadrotor using
a Backstepping Integral Nonsingular Fast Terminal Sliding Mode Controller (BINFT-SMC)
was presented. Simulations proved the effectiveness of the suggested approach.

A nonlinear FTC structure was designed in [80] in order to keep the tri-rotor UAV’s
attitude stable when the rear servo is stuck. The fault was estimated using an adaptive
sliding mode based observer while the accommodation was performed using a feedback
linearization controller. The effectiveness of the proposed scheme was validated with
numerical simulations.

The work in [81] studies the attitude stabilization control for a quadrotor aerial vehicle
using integral-type sliding mode control in the presence of external disturbances and
actuator faults. The proposed methodology was verified through simulations.
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Table 5. Fault-tolerant control research efforts.

Reference Method Type FTC Method UAV Type

Passive FTC

Jun et al. [74] Passive PID Controller Parameter Optimization Quadrotor

Wang et al. [75] Passive Nonlinear Control Allocation Fixed-Wing

Padilla et al. [76] Passive Fuzzy-Based Micro AV (Quadrotor)

Mallavalli et al. [77,78] Passive
Nonsingular Fast Terminal Sliding Mode
Controller (NFTSMC) & Under-actuated

Sliding Mode Controller (USSMC)
Quadrotor

Mallavalli et al. [79] Passive Nonsingular Fast Terminal Sliding Mode Controller (NFTSMC) Quadrotor

Hao et al. [80] Passive
Adaptive Sliding Mode-Based Observer

& Feedback Linearization-Based Controller Tri-rotor

Gong et al. [81] Passive Sliding Mode Quadrotor

Xian et al. [82] Passive Robust Integral of the Signum of the Error (RISE) Tri-rotor

Qu et al. [83] Passive Dynamic Surface Control Fix-Wing

Mallavalli et al. [84] Passive Sliding Mode Quadrotor

Khattab et al. [85] Passive Sliding Mode & Online Control Allocation Spherical

Sorensen et al. [86] Passive L1 Adaptive Backstepping Control & Control Allocation (CA) Fix-Wing

Yu et al. [87] Passive Recurrent Wavelet Fuzzy Neural Network (RWFNN) Fix-Wing

Yu et al. [88] Passive Fractional-Order Sliding-Mode Fault-Tolerant Neural Adaptive Control Fix-Wing

Tan et al. [89] Passive Adaptive Control Quadrotor

Zou et al. [90], Passive Hierarchical Framework VTOL

Qian et al. [91] Passive Adaptive Backstepping Controller Fix-Wing

Song et al. [92] Passive Indirect Neuroadaptive Quadrotor

Avram et al. [93] Passive Adaptive Control Quadrotor

Xue et al. [94] Passive Adaptive Control Fix-Wing

Vural et al. [95] Passive Dynamic Inversion (DI) & Robust Integral of the Signum of Error (RISE) Fix-Wing



Machines 2021, 9, 197 18 of 34

Table 5. Cont.

Reference Method Type FTC Method UAV Type

Hybrid FTC

Xing et al. [96] Passive & Active Sliding Mode Theory Quadrotor

Merheb et al. [97] Passive & Active Sliding Mode Quadrotor

Zhaohui et al. [98] Passive & Active Adaptive Control Quadrotor

Table 6. Fault-tolerant control research efforts (Table 5 cont.).

Reference Method Type FTC Method UAV Type

Active FTC

Xulin et al. [99] Active Control Allocation Quadrotor

Sadeghzadeh et al. [100] Active Gain-Scheduled PID (GS-PID) Controller Quadrotor

Jun et al. [101] Active
PID Controller Parameter Optimization

& Support Vector Machine (SVM) Quadrotor

Sadeghzadeh et al. [102] Active Gain-Scheduled PID (GS-PID) Controller Fix-Wing

Zhong et al. [103] Active Adaptive Control Quadrotor

Cheng et al. [104] Active Sliding Mode Fix-Wing

Hasanshahi et al. [105] Active Adaptive Estimation Quadrotor

Hajiyev [106] Active Reconfigurable Active Controller Fix-Wing

Rudin et al. [107] Active DK-iteration Fix-Wing

Umm-e-Aimen et al. [108] Active Linear Quadratic Gaussian & Integral Reconfiguration Control Fix-Wing, Aerosonde

Vey et al. [109] Active Bank of Observers & Virtual Actuator Hexrotor

Abbaspour et al. [110] Active
Nonlinear Dynamic Inversion Controller

& Adaptive Fault Compensation Feedback Controller Fix-Wing

Nguyen et al. [111] Active Gain-Scheduling, Structured H-Infinity Synthesis Hexacopter

Nguyen et al. [112] Active Control Allocation, Gain-Scheduling, Structured H-Infinity Synthesis Hexacopter
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Table 6. Cont.

Reference Method Type FTC Method UAV Type

F. Liu et al. [113] Active Neuroadaptive sliding Mode Control (SMC) Quadrotor

Younes et al. [22,72] Active intelligent Output-Estimator (iOE) Quadrotor

Hou et al. [114] Active Nonsingular Terminal Sliding Mode Control (NTSMC) Quadrotor

Guiatni et al. [115] Active Fuzzy Logic, Fuzzy PID Controller Quadrotor

Shi et al. [116] Active Radical Basis Function (RBF) Neural Network & Sliding Mode Control (SMC) Quadrotor

Chung et al. [117] Active Optimal Control Quadrotor

Ge et al. [118] Active Integral Sliding Mode Fix-Wing

Ergöçmen et al. [119] Active
(PID)-State-Dependent Riccati Equation

(SDRE) algorithm or PID-Linear Quadratic Tracking/Regulator (LQT/R) Fix-Wing

Yu et al. [120] Active Model Predictive Control (MPC) Quadrotor

Saied et al. [121] Active Sliding Mode Octorotor

Bateman et al. [122] Active State Feedback Controllers Fix-Wing, Aerosonde

Sharifi et al. [123] Active Sliding Mode Quadrotor

Nguyen et al. [124] Active Adaptive Control Multirotor

Cheng et al. [125] Active Non-Singular Fast Terminal Sliding Mode (NFTSM) Fix-Wing

Boche et al. [126] Active Reconfigurable Control Fix-Wing

Wang et al. [127] Active Adaptive Sliding Mode Control Quadrotor

Baldini et al. [128] Active Control Reconfiguration Quadrotor

Pedro et al. [129] Active PID Control, Control Allocation Fix-Wing
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A continuous nonlinear robust FTC structure for handling rear servo’s stuck fault in
conjunction with unknown exogenous disturbances of a trirotor UAV was developed in [82].
The stuck fault and the disturbances were estimated using a supertwisting-based observer
while the fault accommodation was performed using a Robust Integral of the Signum of
the Error (RISE)-based fault-tolerant controller. Real-time testing on an HILS test bed was
carried out in order to confirm the performance of the introduced fault tolerant approach.

The work in [83] presents a finite-time FTC for attitude dynamical systems of a
hypersonic unmanned aerial vehicle (UAV) with actuator loss-of-effectiveness fault. The
FTC that was proposed was derived from the dynamic surface control strategy. For
the attitude dynamical system, a finite-time controller utilizing the nonsingular terminal
sliding mode (NTSM) control method was used. Simulation findings demonstrated the
effectiveness of the suggested approach.

The work in [84] conducts a comparative analysis of three Sliding Mode Control
(SMC)-based fault-tolerant schemes for observing the trajectory of a quadrotor UAV in
the presence of actuator faults. To evaluate the controllers’ efficiency, simulations were
performed and a variety of fault situations were considered. Results concluded that Integral
Terminal SMC was more stable and offered better FTC performance than Conventional
SMC or Integral SMC.

In [85], a FTC scheme for a spherical UAV was studied. The developed FTC method
combines sliding mode control with online control allocation. Simulation findings indicated
good tracking efficiency for a variety of fault/failure situations.

A control allocation scheme combined with an L1 adaptive backstepping controller
was proposed in [86], as a strategy to achieve fault tolerance in an aircraft’s nonlinear
longitudinal motion control. Simulations were performed on a Cessna 182 platform and
showed remarkable outcomes for nominal as well as defective cases.

The work in [87] refers to networked fixed-wing UAVs and a fractional-order (FO)
fault-tolerant synchronization tracking control (FOFTSTC) scheme was proposed to cope
with actuator and sensor faults simultaneously using a recurrent wavelet fuzzy neural
network (RWFNN) learning system with feedback loops. In order to demonstrate the
feasibility of the proposed control system, simulations and hardware-in-the-loop tests were
carried out.

A fractional order sliding-mode fault-tolerant tracking control algorithm with pre-
scribed performance was developed in [88] for a fixed-wing aerial vehicle. To demonstrate
the efficacy of the suggested approach simulation findings were presented.

The work in [89] proposes an adaptive control approach which provides reasonable
trajectory efficiency for a quadrotor vehicle subjected to actuators failures and with time-
varying center of gravity (COG). The results of the simulation show that the proposed
adaptive algorithm is reliable, efficient and robust.

In [90], a robust FTC scheme is presented for a VTOL aerial vehicle subject to both
thrust and torque failures and also disturbances. The algorithm was developed by ap-
plying the hierarchical system stability theory. The proposed method was validated by
simulation results.

An adaptive backstepping control scheme was developed in [91], for a fix-wing aerial
vehicle subject to multiple actuator faults and disturbances. Simulation findings verified
the feasibility of the proposed technique.

In [92], the authors developed an indirect neural network (NN) based adaptive control
scheme, for handling modeling uncertainties and actuator faults. Simulations confirm the
efficiency and advantages of the proposed system.

The work in [93] presents a nonlinear robust adaptive fault-tolerant altitude and atti-
tude tracking scheme to accommodate actuator faults in a quadrotor aircraft without using
a failure diagnostic module. The FTC was designed utilizing back-stepping techniques.
The efficiency of the algorithm was demonstrated by experiments.
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In [94], the authors designed an FTC method using an adaptive control methodology
for application to the automatic carrier landing system subjected to actuators failures.
Simulation results on a fix-wing aircraft verified the suggested approach.

In [95], the dynamic inversion (DI) approach in combination with robust integral of
the signum of the error (RISE) approach was used to introduce a passive FTC scheme for a
fix-wing UAV subject to actuators fault. The efficiency of the algorithm was demonstrated
through simulations.

The work in [96] presents both passive and active FTC laws for actuators in a quadrotor
UAV. Both controllers were developed using the integral sliding mode theory. Simulations
results proved that the two FTC laws can attain a certain degree of fault tolerance, but the
active FTC has better stability and fault tolerance.

Using sliding mode control methods and combining passive and active FTC schemes,
the authors of [97] designed an integrated fault tolerant controller for actuator faults on a
quadrotor UAV. The methodology was tested via simulations in MATLAB.

In [98], a mixed architecture that combines passive and active FTC was proposed for
actuator faults compensation for a quadrotor. Concerning the fault estimation, an adaptive
Thau observer was employed. The suggested approach was evaluated through simulations.

In [99], the authors present a fuzzy active disturbance rejection control method for
controlling a quadrotor UAV with actuator faults and external disturbances. Using an
Luenberger linear state estimator, an actuator fault can be diagnosed from external dis-
ruptions. As fault tolerant control technique the control allocation algorithm was used.
The applicability of the proposed fault-tolerant control scheme was demonstrated by
simulations.

In [100], a Gain-Scheduled Proportional-Integral Derivative (GS-PID) controller was
combined with an on-line Fault Detection and Diagnosis (FDD) module to create an active
FTC. The designed scheme was tested experimentally to a quadrotor helicopter UAV.

The work in [101] discusses a collaborative approach that combines optimization
of a PID controller parameters with a support vector machine (SVM) for partial failure
diagnosis of a quadrotor and a fault-tolerant controller. The potency of the method was
investigated through simulations in MATLAB.

Similarly to their previous work in [100], the authors of [102] concentrated on a
Gain-Scheduled PID (GS-PID) control strategy for handling actuator faults of a fixed
wing unmanned vehicle. The effectiveness of the proposed approach was demonstrated
experimentally on the HK Bixler UAV.

An active fault-tolerant tracking control (AFTTC) approach for actuator faults on a
quadrotor was discussed in [103]. The structure includes a fault detection and diagnosis
(FDD) unit that consists from an adaptive two-stage Kalman filter estimator, a basic con-
troller and an adaptive fault compensator. Simulations validate that the proposed scheme
is effective.

In [104], the authors propose an active fault tolerant controller for the attitude control
system of a fixed wing UAV having actuator faults and external disturbances. Their
approach is based on a neural network-based fault estimation observer and a nonsingular
fast terminal sliding mode control method. The performance of the proposed system was
demonstrated using simulation results.

A robust FTC framework for actuator faults in the presence of external disturbances of
a quadrotor was proposed in [105]. The fault-tolerant controller was designed on basis of
adaptive estimation for actuator faults. The results from simulations showed the efficiency
of the developed technique.

In [106], an active FTC for a Fix-Wing UAV was proposed. Using Kalman Filter,
the elements of the control distribution matrix were identified and thus actuators faults
were diagnosed and a linear quadratic regulator (LQR) controller was reconfigured. The
linearized model of the longitudinal dynamics of the ZAGI UAV was taken into account
in simulations, where the efficiency of the suggested reconfigurable control techniques
was evaluated.
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The work in [107] investigates the design of an active FTC algorithm which is resilient
against small actuator failures that may be undetected so that the controller ensures that
reliability of the FTC forms. The proposed framework was based in three assumptions
while the feasibility of the method was showed by real flight tests.

In [108], a Linear Quadratic Gaussian (LQG) controller with integral action was
proposed as an FTC algorithm to monitor an unmanned aerial vehicle (UAV) with actuator
faults. In order to demonstrate the feasibility of the proposed scheme, simulations were
conducted on an Aerosonde UAV model.

An active FTC scheme was applied to a hexrotor with actuator faults in [109], where
experimental findings were obtained. The approach combines a bank of observers for fault
diagnosis and a virtual actuator for control reconfiguration. Real tests showed that the
suggested FTC system was applicable.

The work in [110] presents an active FTC architecture for actuator faults on a Fix-Wing
UAV. In the developed scheme the FDI, along with a nonlinear dynamic inversion strategy,
was applied for actuator fault accommodation by means of a neural network adaptive
structure. The simulation results indicate that the proposed architecture can effectively
diagnose and compensate actuators faults.

Two active fault-tolerant controllers were introduced in [111]. The suggested archi-
tectures were based on gain-scheduling control as well as on the structured H∞ synthesis.
Furthermore, in [112] the authors studied the application of a control allocation (CA) al-
gorithm for the FTC of actuators faults on a multicopter. The algorithm is also based on
gain-scheduling control in the context of structured H∞ synthesis. Simulations and experi-
ments on a hexacopter UAV demonstrate the usefulness and robustness of these approaches.

In [113], an FTC scheme blends the benefits of the Radial Basis Function (RBF) neural
network with adaptive sliding mode control (SMC), which has advantages in terms of
quadrotor uncertainty and external disturbances. The proposed method was confirmed by
simulation results.

An active FTC algorithm for both sensors and actuator faults on a quadrotor was
proposed in [22,72], respectively. The method includes a fault detection and diagnosis
(FDD) estimator that is called intelligent Output Estimator (iOE). Real flight tests verified
the performance of the proposed methodologies.

The work in [114] proposes a fault-tolerant flight controller for a quadrotor with
a complete rotor loss relying on nonsingular terminal sliding mode control (NTSMC).
Simulation findings indicated the performance of the proposed flight control method.

A Fuzzy PID controller was applied in [115] to the framework of an FTC approach for
a quadrotor subject to Loss of Actuator Effectiveness (LOE) faults. The nominal controller
was developed using fuzzy logic and a model based motor speed analysis was used for the
fault diagnosis system. The proposed method was validated experimentally.

A method relying on adaptive Radical Basis Function (RBF) neural network and
sliding mode control for designing an actuator fault tolerant controller was presented
in [116]. The simulation findings on a quadrotor showed that the proposed approach was
efficient and robust.

The authors of [117] designed an FTC scheme able to reconfigure the thrust system
based on optimal control in case failures occur to the motors of a quadrotor. To demonstrate
the FTC’s efficacy, both simulations and experiments were conducted.

An active FTC algorithm that uses an adaptive fault estimation observer for actuator
faults and integral sliding mode (ISM) was proposed in [118]. The usefulness of the active
FTC approach was demonstrated via simulations.

In [119], an active fault-tolerant flight control (FTFC) based on state-dependent Ric-
cati equation (SDRE) algorithm was proposed in order to accommodate abrupt compo-
nent/control surface faults. The effectiveness of the proposed technique was verified
through simulations.

The work in [120] uses a model predictive control technique for the development of
an FTC algorithm on a quadrotor vehicle, in order to accommodate actuator malfunctions
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regarding the partial loss of its effectiveness. The simulation findings showed that the
suggested fault-tolerant method performs well in handling actuator faults.

The work in [121] introduces an FTC approach, utilizing an offline control mixing for
actuator failures of an octarotor UAV. Within this method the FDI unit is built around a
sliding mode observer and furthermore successive failures can be accommodated. The
feasibility of this technique was showed via real experiments on a coaxial octarotor.

An FTC system that uses state feedback controllers was proposed in [122], in order
to compensate failures on control surfaces of a fixed-wing, aerosonde UAV. The fault
diagnosis was achieved using a set of unknown input decoupled functional observers
(UIDFO). Simulation of a nonlinear aircraft model demonstrated the performance of the
proposed scheme.

The work in [123] proposed an FTC methodology that was elicited from sliding mode
control, for a quadrotor aerial vehicle exposed to actuator failures and outside disruptions.
The accuracy and efficiency of the proposed system was evaluated with simulations
executed on MATLAB.

The work in [124] presents an active FTC scheme that utilizes an adaptive control
methodology to a multicopter that was submitted to actuator faults and system uncer-
tainties. This approach uses one inner and one outer loop while the FTC method was
formulated on gain-scheduling control within the context of structured H∞ synthesis. The
findings of both simulation and flight experiments were used to validate the feasibility of
the designed technique.

Making use of radial basis function neural network (RBFNN) for actuator fault evalua-
tion and in combination with non-singular fast terminal sliding mode (NFTSM) technique,
researchers in [125], proposed a new FTC scheme for a UAV that is vulnerable to different
restrictions, such as actuator malfunction, actuator saturation and external perturbations.
The designed architecture was validated through simulations.

The work in [126] presents an FTC design to deal with actuators faults on a fixed-wing
vehicle. The suggested approach incorporates a discrete structure for the reconfiguration
and a continuous one during control and estimation levels. The effectiveness of the adopted
method was proven via simulations.

In [127], using adaptive sliding mode control and a recurrent neural network, an
active FTC algorithm was presented to handle actuator faults and model uncertainties of a
quadrotor. The feasibility of the proposed methodology was proven by real tests.

In [128], an active fault diagnosis scheme that was combined with control reconfigu-
ration was discussed as a solution to actuators faults on a variable pitch quadrotor. The
performance of the proposed solution was studied through simulations.

The authors of [129] presented an approach that incorporates PID controllers and
a sequential least squares control allocation strategy as an effective FTC method for a
fixed-wing UAV subjected to actuator failures. The efficiency of the suggested framework
was verified by simulations.

6. Anomaly Detection in UAVs

Modern unmanned aerial vehicles contain various subsystems such as sensors, actu-
ators, components, structures, communication and data transmission systems, etc. The
proper operation of all the above is considered extremely important. In addition to the
classic methodologies for fault diagnosis in vehicle sensors and actuators mentioned in
the previous sections, it is crucial for the system to be able to detect any malfunctions, in a
timely manner, that could cause deviation from the vehicle’s acceptable and expected flight.
In this direction, and given the large volume of data and the tendency towards higher
levels of UAVs autonomy, intelligent methodologies and techniques are being developed
that aim to detect anomalies, i.e., to detect operations and events that are abnormal. In
the following, we will quote various research papers that deal with anomaly detection
in UAVs. These are also summarized in Table 7.
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Using a data-driven method, a scheme for fault diagnosis of Fixed-wing UAV was
proposed in [130]. Two shared nearest neighbor-based algorithms—SNND-DBSCAN
and SNND-KNN—were proposed for condition classification and condition recognition,
respectively, while two modified DKPCA algorithms—M-DKPCA and WM-DKPCA—were
used for fault diagnosis considering the UAV as multiple operation condition processes.
The proposed approach was evaluated on real flight data sets.

In [131], a Beacon Exception Analysis Method (BEAM) was applied to conduct fault de-
tection on the data regarding UAV wing health and various damage states. The developed
approach was verified thought finite element simulation analysis.

The authors of [132] proposed a semi-supervised support vector machine (S3VM) clas-
sification method for anomaly detection of UAVs. The detection of anomalies is achieved
by comparing the predicted value with the classification uncertainty interval. For experi-
mental testing, three sets of UAV channel telemetry data were used. The efficiency of the
algorithm was checked through MS active learning and the ameliorated S3VM algorithm
in different UAV data sets.

An approach for real-time fault diagnosis and anomaly detection on fixed-wing UAVs
was investigated in [133]. In order to classify the vehicle behavior during nominal flight
and default phases, the method uses the Support Vector Machine (SVM) data-driven
algorithm. The capability of real-time defect prediction was demonstrated during real
flight experiments.

A fault identification and an alerting system was suggested in [134] in order to enhance
the reliability of UAVs. The system can be used to inform the pilot of any failure after
analyzing UAV flight parameters and this results to the reduction of UAV failures. The early
warning about mission failure can prevent potential damage. The method was evaluated
via real experiments.
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Table 7. Anomaly detection research works.

Reference Subsystem Type Anomaly Detection Technique/Method UAV Type

Liang et al. [130] Sensor Data Classification-based/Shared Nearest Neighbor-Based Algorithms Fix-Wing

Chen et al. [131] Wing Structure Classification-based/Beacon Exception Analysis Method (BEAM) Fix-Wing

Pan et al. [132] Sensor Data Classification-based/Active Learning & S3VM UAV

Bronz et al. [133] Actuator Failure Classification-based/Support Vector Machine (SVM) Fixed-Wing

Varigonda et al. [134] Flight parameters Model-based Quadrotor

Titouna et al. [135] Altitude System Statistics-based & Classification-based Fix-Wing

Keipour et al. [136] Actuator and Engine Faults Statistics-based/Recursive Least Squares Fix-Wing

Khan et al. [9] Sensors Clustering-based & Classification-based & Statistics-based Quadrotor

Wang et al. [137] Bias and Drift Anomaly on Flight Data Statistics-based UAV

Wang et al. [138] Sensor Data Classification-based UAV

Ahn et al. [139] Drone Failure of a Swarm Clustering-based & Classification-based & Spectral-based Quadrotor

Pourpanah et al. [140] Motors and Propellers Classification-based Quadrotor

Lu et al. [141] Motor Classification-based Quadrotor

Chen et al. [142] Vertical Speed Classification-based Fix-Wing

Pan et al. [143] Sensor Data Classification-based & Spectral-based UAV

Freeman et al. [144] Actuators Model-Based Fix-Wind

Afridi et al. [145] Altitude Control Unit Classification-based Fix-Wing

Lin et al. [146] Sensors Statistics-based UAV
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The main objective of the work in [135] was to detect anomalies in an unmanned
aircraft. For this purpose, the authors developed algorithms based on Kullback–Leiler
Divergence (KLD) and Artificial Neural Networks (ANN). The suggested methodology
was demonstrated via simulations on real datasets.

The work in [136] proposed a real-time solution to detect anomalies in the operation of
a fixed-wing UAV, utilizing the Recursive Least Squares technique. The discussed method
was verified through experiments.

In [9], the authors discuss various approaches and solutions through machine learning
regarding the detection of anomalies in unmanned aerial vehicles. They also performed real-
time experiments in order to examine the isolation forest approach as an effective solution.

A data-driven anomaly detection approach based on Multimodal Regression Model
for UAVs was developed in [137], in order to improve model adaptability when addressing
the issue of flight data multimodality. Real flight data were used for evaluation experiments,
while the results showed that the suggested approach is adaptable and performs well for
anomaly detection.

A Long Short-Term Memory (LSTM) Recurrent Neural Network approach for UAV
sensor data anomaly detection was designed in [138]. Using the LSTM technique, a
prediction model was formulated and the point anomaly detection was estimated for the
uncertainty interval. The effectiveness of the proposed method was verified by real UAV
sensor data containing anomalies.

The work in [139] discusses anomaly detection and monitoring on swarm drone
flights and provides a machine-based learning framework to detect abnormal conduct
of a wide range of flying drones. The approach operates in two stages and the anomaly
detection system was validated on actual flight test data, while its ability to run online has
been emphasized.

A method for fault detection and monitoring of UAV motors and propellers was
discussed in [140]. Motor current signature analysis (MCSA) and vibration signature
analysis (VSA) techniques were used to inspect stator current signals of UAV motors and
propellers vibration. Following this, statistical features of vibration and harmonics of
current signals were used to train unsupervised and supervised NN. The results from real
experiments showed the efficiency of the discussed approach.

Using a reinforcement learning technique, the authors of [141] developed a motor
temperature anomaly detection system for an aerial vehicle, given that motor failures is a
major reason for drone crashes. The proposed approach was tested by both experiments
and simulations.

In [142], an embedded anomaly detection system (EADS) was proposed for a UAV
that operates in a challenging environment. The designed scheme consists of a hardware
part and an on-line anomaly detection part that uses a least squares support vector machine
(LS-SVM). Results from the experiment showed the effectiveness of the presented approach.

The work in [143] suggests a data-driven hybrid approach for detecting anomalies
of a system or sensor for a UAV. The proposed framework employed on time series
segmentation, associated rules mining and associated anomaly detection. The method was
evaluated through simulations and real flight data.

In [144], two different and complementary methods for anomaly detection of small,
low-cost UAVs were presented. The first one was a model-based residual generation
method, while the second was a data-driven one which was designed to operate solely on
raw flight test data, with no detailed system knowledge. The performance of the proposed
scheme was validated with simulations and real flight data.

For anomalies detection on the adaptive altitude control module of an Aerosonde UAV,
as a result of wind gusts, the authors of [145] designed an autonomous tool detector using
a machine learning technique. The efficacy of the proposed methodology was showed via
experiments.
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The work in [146] presents a model-free method for anomaly detection of unmanned
autonomous vehicles using readings from their internal and external sensors. The effective-
ness of the developed method was proved by experiments.

7. Discussion and Conclusions

In this survey article, we provide a detailed overview of recent advances and studies
of fault diagnostic methodologies, fault-tolerant control techniques and anomaly detection
approaches for unmanned aerial vehicles over the past decade.

As concerning the diagnosis, the majority of the proposed methodologies belong to
one of the three following categories: model-based, signal processing and knowledge-based.
The review focused mainly on the research area of fault diagnosis in vehicles sensors and
actuators. For each paper, a brief report and description of the proposed technique, fault
type and UAV type was made, as shown in Tables 3 and 4.

Based on our study, we proceed to a comparative statistical presentation of the
examined works. Initially, for sensors faults diagnosis (Table 8), the following conclu-
sions emerge:

• in a percentage of 51% the research works concern Rotary Wing vehicles, while the
remaining 39% concern Fix-Wing and Misc. 10%;

• regarding the type of sensor, 39% concerns IMU; and, finally,
• the most commonly used methods are Model-Based with a percentage of 71%.

Table 8. Sensors fault diagnosis comparative results.

UAV Type Sensor Type Method Type

Rotary Wing: 51% IMU: 39% Model-Based: 71%

Fix-Wing: 39% Position: 16% Knowledge-Based: 23%

Misc: 10% Gyroscope: 13% Hardware Redundancy: 6%

Misc.: 32%

We made a similar comparison for studies on actuators faults diagnosis (Table 9),
where the following findings arise:

• in a percentage of 50% the research works concern Rotary Wing vehicles, while the
37% concern Fix-Wing, 7% VTOL and 7% Misc.;

• regarding the type of actuator, 67% concerns Rotor/Motor, 23% Elevator, Ailerons,
Rudder and a percentage of 10% Misc. and finally;

• the most commonly used methods are Model-Based with a percentage of 87%.

Table 9. Actuators fault diagnosis comparative results.

UAV Type Actuator Type Method Type

Rotary-Wing: 50% Rotor/Motor: 67% Model-Based: 87%

Fix-Wing: 37% Elevator, Ailerons, Rudder: 23% Knowledge-Based: 10%

VTOL: 7% Misc.: 10% Hardware-Based: 3%

Misc.: 7%

As far as fault tolerance (Table 10) is concerned, most research efforts are focused on
rotary-wing UAV type with percentage of 60%. Furthermore, the predominant method
appears to be the Sliding Mode with percentage of 29%, while the most common type of
fault-tolerant control system is the active one with 57%.
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Table 10. Fault tolerance comparative results.

UAV Type Method Type FTC Method

Rotary-Wing: 60% Active: 57% Sliding Mode: 29%

Fix-Wing: 34% Passive: 38% Adaptive Control: 16%

Misc.: 6% Hybrid-FTC: 5% Misc.: 55%

Last, in Section 6, the analysis of the research papers related to anomaly detection
(Table 11) showed that most of the approaches use classification-based methods with
percentage of 55% while regarding the type of vehicle, the most prevalent is that of the
fixed wing with a percentage of 44%. In addition, in terms of the type of subsystem the
sensors show the highest percentage of 44%.

Table 11. Anomaly detection comparative results.

UAV Type Subsystem Type Method Type

Fix-Wing: 44% Sensors: 44% Classification-based: 55%

Rotary-Wing: 28% Actuators: 33% Statistics-based: 22%

Undifined UAV: 28% Misc.: 22% Model-based: 11%

Spectral-based: 6%

Clustering-based: 6%

According to the statistical analysis provided in Tables 8 and 9, we observe that the
most commonly used methods are model-based, and a huge number of academics have
performed extensive studies on UAV control systems and developed excellent mathemat-
ical models that can be utilized for fault diagnosis. Furthermore, the knowledge-based
techniques appear quite promising; however, their performance is highly dependent on
the quality of the available data, thus their employment is still limited.

Furthermore, the growing demand for safe flights of unmanned aerial vehicles requires
sophisticated fault diagnosis methods not only for faults in sensors and actuators, but
also in other aircraft subsystems. In this regard, a promising approach that seems to
have attracted the attention of researchers in recent years is the anomaly detection that
holistically address the issue of abnormal behavior of an unmanned aerial vehicle.
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