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Abstract: The role of artificial intelligence (AI) in healthcare is evolving, offering promising avenues
for enhancing clinical decision making and patient management. Limited knowledge about lipedema
often leads to patients being frequently misdiagnosed with conditions like lymphedema or obesity
rather than correctly identifying lipedema. Furthermore, patients with lipedema often present with
intricate and extensive medical histories, resulting in significant time consumption during consul-
tations. AI could, therefore, improve the management of these patients. This research investigates
the utilization of OpenAI’s Generative Pre-Trained Transformer 4 (GPT-4), a sophisticated large
language model (LLM), as an assistant in consultations for lipedema patients. Six simulated scenarios
were designed to mirror typical patient consultations commonly encountered in a lipedema clinic.
GPT-4 was tasked with conducting patient interviews to gather medical histories, presenting its
findings, making preliminary diagnoses, and recommending further diagnostic and therapeutic
actions. Advanced prompt engineering techniques were employed to refine the efficacy, relevance,
and accuracy of GPT-4’s responses. A panel of experts in lipedema treatment, using a Likert Scale,
evaluated GPT-4’s responses across six key criteria. Scoring ranged from 1 (lowest) to 5 (highest),
with GPT-4 achieving an average score of 4.24, indicating good reliability and applicability in a
clinical setting. This study is one of the initial forays into applying large language models like GPT-4
in specific clinical scenarios, such as lipedema consultations. It demonstrates the potential of AI in
supporting clinical practices and emphasizes the continuing importance of human expertise in the
medical field, despite ongoing technological advancements.

Keywords: lipedema; large language models; artificial intelligence; LLM; AI; ChatGPT; GPT-4; plastic
surgery; recommendation; medical history

1. Introduction

In today’s healthcare landscape, the evolving role of artificial intelligence (AI) stands
out as a significant development poised to reshape clinical decision making and patient
care [1,2]. Among the array of AI models, OpenAI’s Generative Pre-trained Transformer 4
(GPT-4), released on 14 March 2023, has emerged as a notably advanced large language
model (LLM). Its training on Microsoft Azure AI supercomputers endows it with capabili-
ties to generate, edit, and collaborate on diverse writing and creative projects, including
composing music and drafting screenplays [3]. Despite the swift advancements in LLMs,
their practical application in routine clinical practice remains limited.

The body of research on GPT-4 is expanding, with studies increasingly addressing the
ethical considerations, opportunities, and challenges presented by this technology [2,4–6].
However, these investigations are often preliminary, exploring the surface of its potential
clinical applications. For instance, Wilhelm et al. have examined simple treatment recom-
mendations from large language models in various clinical fields [7]. In plastic surgery,
these models are being used to identify topics for systematic reviews and assess their
efficacy in research, such as in breast reconstruction studies [8–11]. Sun et al. have explored
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GPT-4’s role in cosmetic surgery consultations [12], and a study by Copeland-Halperin et al.
has involved Bing and ChatGPT in addressing queries related to breast implant health
issues and plastic surgery exams [13]. These studies showcase AI’s impressive performance,
yet they also reveal that full potential is not yet realized, partly due to the underutilization
of ‘prompt engineering’. This technique, involving specific phrasing and structuring of
prompts, is crucial for optimizing AI responses [14]. More and more studies are showing
an increase in performance through prompt engineering [15–17].

Our previous study demonstrated GPT-4’s proficiency in analyzing complex clinical
scenarios, offering treatment suggestions, and considering comorbidities using various
prompt engineering techniques [18]. Building on this foundation, we aim to further explore
GPT-4’s application in clinical settings. This paper presents a new use case: employing
GPT-4 as a digital assistant in managing lipedema consultations in an ambulatory setting.

Lipedema, predominantly affecting women, is a disorder involving the adipofas-
cial tissue. It results in chronic pain and swelling, among other discomforts, due to the
bilateral and symmetrical enlargement of subcutaneous fat tissue [19]. Despite its consid-
erable prevalence and significant restraint on quality of life, knowledge about lipedema
remains limited. Frequently, patients are incorrectly diagnosed with conditions such as
lymphedema or obesity rather than lipedema [20]. Furthermore, patients with lipedema
often present with intricate and extensive medical histories, resulting in significant time
consumption during consultations. Establishing realistic expectations is crucial for both
the patient and the healthcare provider. The primary goals of management encompass a
multimodal approach aimed at enhancing quality of life. This includes reducing discomfort
and heaviness, reshaping affected limbs, managing weight, and improving mobility. Es-
sential components of treatment involve compression garments, physical therapy, exercise
programs, dietary guidance, and psychological support. Additionally, surgical intervention
may be considered for certain patients [20].

We view AI as a significant opportunity to aid physicians in managing lipedema,
thereby enhancing both the diagnosis and treatment of this condition.

2. Materials and Methods
2.1. Study Design

Using OpenAI’s Generative Pre-Trained Transformer 4 (GPT-4), this study created
six distinct simulations depicting typical scenarios encountered in lipedema-focused outpa-
tient clinics, all run on the most recent GPT-4 version as of January 2024. The corresponding
author covered the monthly usage fee of EUR 22.99. In these simulations, virtual patients
initially interacted with the AI, which we specifically prompted and named Lipo-GPT for
this use case, prior to consulting with a doctor.

Lipo-GPT, tailored to assist in lipedema management, undertook the task of conduct-
ing initial medical history interviews. Post-interview, the virtual patients were directed to
the waiting area, anticipating their session with the healthcare professional. Subsequently,
a concise case summary by Lipo-GPT was presented to the medical expert, aiding in acquir-
ing a comprehensive understanding of each case. Lipo-GPT was programmed not only to
hypothesize the most likely diagnosis but also to determine the stage and type of lipedema
while suggesting relevant diagnostic steps and appropriate therapy options.

2.2. Prompting

In November 2023, OpenAI introduced customizable versions of ChatGPT, known as
GPTs, designed to be tailored for specific purposes [21]. To ensure Lipo-GPT’s effectiveness
in the specialized setting of lipedema consultations, specific prompt engineering methods
were strategically employed integrated into a GPT (Figure 1).
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Figure 1. Prompting.

The first sentence employs the technique of “role prompting” [22], assigning the
AI the specific role of “Lipo-GPT”—a dedicated assistant for plastic surgeons for li-
pedema care. It also clearly defines the context for the LLM, “. . .within a lipedema out-
patient clinic”, thereby focusing the AI’s functionality and guiding its interactions in this
specialized setting.

Specific guidance, known as directive instructions, steered the actions and responses
of Lipo-GPT in precise ways. These directives outlined the initiation, progression, and
conclusion of patient interactions. The AI was programmed to systematically inquire
about key aspects such as medical history, symptoms, and lifestyle factors to ensure
comprehensive case handling. The inclusion of the prompts “Ask your questions one at a
time” and “Remember to ask your questions one at a time” were critical; without them,
Lipo-GPT often posed multiple questions simultaneously, compromising the interaction
quality. However, despite being prompted twice to adhere to this sequential questioning
approach, Lipo-GPT occasionally deviated from this pattern, as seen in certain cases, like
Case 2. For Lipo-GPT to query the stage and type of lipedema, it was given the typical
characteristics. Based on observations that patients with lipedema frequently misinterpret
their condition, the following prompt was employed to prevent influencing the patients
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prior to their consultation with the doctor: “However, do not tell the patient the result yet,
so that they are not prejudiced. Only tell the doctor at the end.”

The prompt “Please also give an assessment of whether the patient has correctly
estimated that they have lipedema so that the doctor can prepare specifically for the
patient’s expectations in their consultation” was used to instruct Lipo-GPT to evaluate the
patient’s self-assessment of their condition. This was intended to help the doctor prepare
for addressing the patient’s expectations during the consultation.

In framing the model as a “professional high end tool” designed to assist and report
findings to “the professional plastic surgeons”, the prompt technique of “expertise emu-
lation” was utilized. This approach was intended to elicit responses that mirror expert
knowledge, thereby ensuring a high level of professional discourse.

The “temperature” setting in AI language models like GPT-3 or GPT-4 controls the
randomness or creativity in the model’s responses. Higher temperature settings (close to
1) increase randomness, leading to more varied and creative outputs. The model is more
likely to take risks in its word choices, which can be useful for creative tasks but may also
result in less accurate or relevant responses for factual queries. For the interaction with
the patients, the temperature is prompted to “Temperature = 0.7” to achieve a balance,
providing responses that are coherent and relevant while still allowing for a degree of
creativity and variation.

A lower temperature results in more predictable, conservative responses. With a
temperature setting close to 0, the responses tend to be safer and more repetitive. To favor
predictability over creativity in the AI and surgeon interaction, the temperature setting was
adjusted to “Temperature = 0.4”.

The “Chain of Thought (CoT) prompting” in Large Language Models (LLMs) marks a
significant innovation in AI [23]. CoT prompting is a newer technique for eliciting com-
plex multi-step thinking through step-by-step response examples. It has been effective in
improving the precision of LLMs across various logical reasoning tasks [24,25]. Zhou and
colleagues noted that the introduction of the phrase “Let us work this out step by step to en-
sure we have the correct answer” initiates a chain-of-thought sequence, thereby enhancing
performance [26]. This method, known as “zero-shot chain-of-thought prompting”, oper-
ates without the need for a model to reference a correct answer example (=zero shot) [27,28].
Consequently, this approach was also adopted to refine the accuracy of Lipo-GPT.

No additional parameters beyond the described prompting were set.
The GPT was aptly named Lipo-GPT and developed its unique avatar (Figure 2). If

one clicks “Hello, I am here because of my lipedema”, the chat begins.
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Once Lipo-GPT confirmed its readiness following the established prompts, six sim-
ulated cases were submitted to GPT-4. In each case, the AI posed a series of questions,
which were then answered by the user, leading up to the final presentation of the case to
the plastic surgeon.

Every response produced by GPT-4 underwent a rigorous assessment utilizing a Likert
Scale, focusing on six specific criteria (Table 1):

1. The large language model (LLM) correctly understood and captured the issue.
2. The LLM correctly stated the most likely diagnosis.
3. The LLM mentioned the correct recommendations for further diagnostic steps.
4. The LLM correctly assessed whether surgery is indicated.
5. The LLM summarized the case well and presented it satisfactorily and clearly to

the doctor.
6. The LLM did the patient history just as well as I would have done it.

Table 1. Likert scale.

Grading Scale

Criteria 1 Strongly
Disagree 2 Disagree

3 Neither
Agree or
Disagree

4 Agree 5 Strongly
Agree

Criterion 1

The large language model
(LLM) correctly
understood and captured
the issue.

Criterion 2 The LLM correctly stated
the most likely diagnosis.

Criterion 3

The LLM mentioned the
correct recommendations
for further diagnostic
steps.

Criterion 4
The LLM correctly
assessed whether surgery
is indicated.

Criterion 5

The LLM summarized the
case well and presented it
satisfactorily and clearly to
the doctor.

Criterion 6
The LLM did the patient
history just as well as I
would have done it.

Three seasoned plastic surgeons, each holding board certifications, independently
carried out the evaluation process. For each case, a final score was determined by calculating
the average across six criteria. Subsequently, an overall score for each question was
computed, with the maximum possible score being 30 and the minimum score being 6.

To improve the performance of GPT-4, this text, which includes the techniques, role
prompting, directive instructions, expertise emulation, and zero-shot chain-of-thought
prompting, was used.

The AI developed its unique avatar.
Three experienced board-certified plastic surgeons evaluated the responses using this

Likert scale to assess the model’s performance, based on six distinct criteria. Each criterion
was scored on a scale of 1 to 5, with 5 representing the highest possible score.

3. Results

The full compilation of cases, responses, and scores is available in the Supplementary
Materials for reference.
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In the assessment of Criterion 1, “The large language model (LLM) correctly un-
derstood and captured the issue”, GPT-4 performed outstandingly, attaining an average
rating of 4.78. This score led the evaluators to concur that the AI effectively and correctly
understood the presented cases.

For Criterion 2, “The LLM correctly stated the most likely diagnosis”, the score was
moderately lower, at 4.0 out of 5, showing a statistically significant difference from Criterion
1’s score (ANOVA and Tukey post hoc test, p = 0.0071). Lipo-GPT performed particularly
poorly in Case 4, where it received a score of 2.33, due to its failure to distinguish a clear
case of obesity, mistakenly categorizing it as lipedema. However, it has correctly recognized
the clear cases of lipedema.

In Criterion 3, “The LLM mentioned the correct recommendations for further diagnos-
tic steps”, the score was the lowest among all criteria, averaging at 3.83. Particularly in Case
4, Lipo-GPT earned a mere 2 points, failing to suggest the correct diagnostic measures for
identifying adiposity and excluding lipedema. However, Lipo-GTP’s performance again
was notably better in cases that actually involved lipedema.

Similar to Criterion 2, Criterion 4, “The LLM correctly assessed whether surgery
is indicated”, also received a rating of 4.0. This, being the second-lowest score, along
with that of criterion 2, indicates a clear area for potential improvement in the model’s
assessment capabilities.

Criterion 5, evaluating “The LLM’s effective case summarization and clear presentation
to the doctor”, achieved the second-highest score at 4.44. This score did not significantly
differ from that of Criterion 1 (ANOVA and Tukey post hoc test, p = 0.634), suggesting that
the surgeons highly regarded the AI’s case presentations.

Criterion 6, “The LLM did the patient history just as well as I would have done it”,
achieved a score of 4.39, statistically comparable to Criterion 1 (ANOVA and Tukey post
hoc test, p = 0.4676). This suggests that the AI’s skills in taking patient history are on par
with those of human practitioners.

The language model achieved an overall average score of 4.24 across all scenarios,
corresponding to a cumulative average score of 25.44 (Figure 3). Case 4 received the lowest
evaluation, with an average rating of 3.22 and a total score of 19.33. While Case 4’s scores
were statistically lower than those of all other cases (p < 0.0001), there were no significant
statistical differences in the scores among the remaining cases.
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GPT-4’s responses were evaluated using a Likert scale based on the six criteria seen in
Table 1. This graph shows the average score for each case, where 30 is the highest possible
score and 6 is the lowest. Case 4 was rated statistically significantly worse (p < 0.0001).

4. Discussion

ChatGPT, since its introduction, has seen an unprecedented rate of adoption, achieving
a milestone of one million users within just five days post-launch. Currently, its user
base exceeds 180 million, with openai.com garnering around 1.5 billion monthly visits,
establishing it as the most rapidly expanding application to date [29]. The evolution of
OpenAI’s technologies has been swift, with the GPT-4 model not only processing text
but also possessing capabilities for image analysis, user interaction through speech, and
image generation [30,31].

The remarkable functionalities of LLMs have spurred an increase in research within
the medical sector, exploring their potential applications. Despite the impressive perfor-
mances showcased in these studies, there is a consensus among many researchers that
AI is not yet fully equipped for clinical deployment [32–34]. A significant aspect, often
underutilized or minimally employed in these studies, is prompt engineering—an element
crucial for enhancing LLM performance. Addressing this underutilization, Meskó recently
published a prompt engineering tutorial tailored for medical professionals, highlighting
its importance [14].

Also, the effective interaction with Lipo-GPT was contingent on the application of
prompt engineering. This study highlights how the true capabilities of LLMs can be swiftly
underestimated without such crucial techniques.

Examining the ratings reveals that Case 4 is notably poorly evaluated (Figure 3). In
this instance, Lipo-GPT incorrectly identified a clear case of obesity as lipedema, as per
the human evaluators’ assessment. This outcome is intriguing, especially considering
that physicians without experience in treating lipedema often fail to recognize it, typically
mistaking it for obesity—a direct contrast to the AI’s error in this case [20]. Interestingly,
Lipo-GPT demonstrated markedly fewer difficulties in identifying lymphedema and vascu-
lar insufficiencies, as evidenced in Cases 5 and 6. The reasons behind this observation are
speculative, as the specific sources of information utilized by the AI in processing these
cases are unknown. It is conceivable that the AI’s training data might contain limited
texts delineating the distinctions between lipedema and obesity. Given that obesity is
a crucial differential diagnosis for lipedema and even seasoned doctors can struggle to
distinguish between the two, this could be a contributing factor. Additionally, it is possible
that the prompt engineering may have overly biased Lipo-GPT towards diagnosing “li-
pedema”, suggesting that a variation in prompting could potentially enhance its differential
diagnostic capabilities [35].

Upon examining the evaluated criteria, it becomes apparent that traditional medical
skills, such as diagnosing, planning further diagnostic procedures, and determining surgical
indications, received lower ratings. This outcome aligns with expectations, considering that
such skills in humans are honed through years of intensive study and clinical experience.
Exploring the potential of AI’s image recognition function to enhance diagnostic accuracy
presents an intriguing prospect.

Conversely, the AI demonstrated reliable proficiency in obtaining patient medical
histories and presenting cases to medical staff in a clear, concise format. This efficiency
was so notable that the evaluating doctors concurred that the AI’s medical history taking
was on par with their own. Given the critical importance of time management in today’s
high-pressure clinical environment, where increasing time is devoted to documentation and
both doctors and patients often feel the constraint of limited interaction time, the assistance
of an AI tool in medical history gathering and documentation could be a significant
cost-efficient asset.

It is important to note that the development of GPT-4 was geared towards general
cognitive abilities rather than being tailored specifically for healthcare applications. The
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training of this model relied exclusively on data accessible from public internet sources [3].
Given that GPT-4 was not explicitly trained for plastic surgery or the treatment of lipedema,
it is reasonable to predict that similar levels of success could be attained in other medical
specialties through the application of prompt engineering. A notable limitation of GPT-4 is
that its database does not update in real time and, at the moment, only contains information
up to September 2021, indicating room for improvement in its performance with more
recent and higher-quality data.

A limitation of this study is its reliance on only six simulated scenarios. This limited
scope may not adequately represent the full spectrum of lipedema cases, potentially af-
fecting the generalizability of our findings to all clinical conditions. This study compared
GPT-4’s performance against the evaluating doctors’ expectations, but it did not involve
a direct comparison between the AI’s performance and that of human physicians under
similar scenarios. Future studies could enhance the reliability of findings by including
such comparative analyses, thereby providing a clearer perspective on the AI’s practical
efficacy relative to human clinicians in clinical settings. Additionally, this study was lim-
ited to using six criteria for evaluating GPT-4’s performance. Expanding these criteria to
encompass more specific aspects of lipedema diagnosis and treatment could yield a more
comprehensive and detailed assessment of the model’s capabilities. Another limitation is
that this study was conducted using simulated scenarios, albeit based on realistic examples,
rather than real patient interactions, which may affect the applicability of the findings to
actual clinical practice.

While this study effectively demonstrated the potential advantages of employing AI in
the management of lipedema, it is important to recognize the potential risks and limitations
associated with AI reliance in clinical decision making. Careful consideration must be
given to the fact that AI systems, such as GPT-4, may not fully replicate the complex clinical
judgment exercised by human physicians. Additionally, AI’s decisions, influenced by
training data, may carry inherent biases if the data are unrepresentative or outdated.

Given that this study utilized simulated scenarios, it did not explore the ethical
considerations, such as privacy, informed consent, and potential biases inherent in AI
algorithms. Future research should rigorously address these ethical aspects to ensure the
responsible deployment of AI technologies in actual healthcare settings [36].

Further research is necessary to assess the sustainability and economic viability of
integrating AI technologies like GPT-4 in routine clinical practice. Such studies would
provide valuable insights into how AI can enhance or alter long-term treatment efficacy
and cost-effectiveness in managing complex conditions like lipedema.

In summary, our assessment of the current technological capabilities suggests that
GPT-4 can already reliably handle routine tasks if it is guided by prompting. It remains to
be seen whether future enhancements will enable the support of more complex medical
activities. Given the rapid advancement of AI systems, such progression appears to be
a matter of when, not if. It has become a crucial task for physicians to understand the
functioning of AI systems, along with their potential opportunities and risks. The objective
should be to utilize AI for efficiently managing routine tasks, thereby freeing up more time
for physicians to focus on direct patient care. While AI will probably never supplant a
trained doctor, this study illustrates a practical application of how AI could enhance the
overall treatment process.
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