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Abstract: Deep learning models have shown great promise in diagnosing skeletal fractures from
X-ray images. However, challenges remain that hinder progress in this field. Firstly, a lack of clear
definitions for recognition, classification, detection, and localization tasks hampers the consistent
development and comparison of methodologies. The existing reviews often lack technical depth
or have limited scope. Additionally, the absence of explainable facilities undermines the clinical
application and expert confidence in results. To address these issues, this comprehensive review
analyzes and evaluates 40 out of 337 recent papers identified in prestigious databases, including
WOS, Scopus, and EI. The objectives of this review are threefold. Firstly, precise definitions are
established for the bone fracture recognition, classification, detection, and localization tasks within
deep learning. Secondly, each study is summarized based on key aspects such as the bones involved,
research objectives, dataset sizes, methods employed, results obtained, and concluding remarks.
This process distills the diverse approaches into a generalized processing framework or workflow.
Moreover, this review identifies the crucial areas for future research in deep learning models for bone
fracture diagnosis. These include enhancing the network interpretability, integrating multimodal
clinical information, providing therapeutic schedule recommendations, and developing advanced
visualization methods for clinical application. By addressing these challenges, deep learning models
can be made more intelligent and specialized in this domain. In conclusion, this review fills the gap
in precise task definitions within deep learning for bone fracture diagnosis and provides a compre-
hensive analysis of the recent research. The findings serve as a foundation for future advancements,
enabling improved interpretability, multimodal integration, clinical decision support, and advanced
visualization techniques.

Keywords: deep learning algorithms; bone fracture detection; X-ray images; SDG4

1. Introduction

In recent years, medical image processing based on machine learning algorithms has
gained more attention, especially deep learning algorithms [1,2]. Compared with traditional
methods, deep learning algorithms have the strength to extract features automatically [3,4].
Deep learning algorithms are always applied in X-rays and CT image processing [5,6], such
as assessing the mineral bone density (BMD), detecting bone fractures [7], and recommend-
ing treatment [8]. In clinical practice, it is a tiring and time-consuming job for doctors to
mark fracture parts manually, so deep learning applied in the computer vision field has
inspired many scholars to solve issues in the medical image field.

In the past, many bone fracture detection studies [9–12] utilized manual feature
extractors to generate feature vectors, including color features, texture features, and shape
features. Afterward, more and more related research [13–17] was inclined to cooperate
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with machine learning classifiers to recognize fractures, which improved bone fracture
image processing technologies. However, traditional manual feature extraction algorithms
and machine learning classifiers use complex mathematical operations but have limited
performance [18–20]. So, deep learning algorithms have become increasingly popular in
recent years making traditional methods obsolescent gradually.

Selecting the appropriate references is important. They should be closely related to
the main topic and written by known experts. In fast-changing areas like tech or medicine,
it is good to choose newer materials. Also, opt for sources that many people have reviewed
and approved. It is a plus if a lot of researchers have cited them in their work. Make
sure the references are of good quality and that the ways in which they obtained their
information are solid. We identified 337 records from database searches and other sources.
After screening 267 of these records, 198 were excluded, leaving 57 full-text articles for
assessment. Ultimately, 40 articles were chosen for analysis. This selection process is
illustrated in Figure 1, using a PRISMA flow diagram to show the review process and
exclusion of papers.
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The hot directions in bone fracture diagnosis not only include the application of deep
learning algorithms for different specific tasks but also include the evolvement of deep
learning algorithms, from traditional bounding boxes to semantically rich representations,
emphasizing attention mechanisms and heat maps for comprehensive fracture visualiza-
tion [19–23]. Although there are existing reviews on the topic, the precious understanding
of the various domains of this rapidly evolving domain is missing. The review in [19] does
not analyze the architecture and process of these AI models, while another review [21]
only selected eleven studies, which cannot cover the entire research field. Additionally, the
review in [22] is too wide to provide precise guidance. Furthermore, while foundational
knowledge is vital, its presentation without the correlation to performance metrics, as seen
in the review in [23], explains much basic knowledge but is lacking in showing the key
indicators of each AI model.

Addressing these problems, our motivation for this comprehensive review is due to
a dire need to bridge the knowledge gaps, provide a comprehensive understanding of
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the current methodologies, and find a path for future advancements. By analyzing the
accomplishments and problems of the existing approaches, we aim to provide researchers,
developers, and clinicians with a clear roadmap.

2. Background
2.1. Task Definition

Publications related to computer vision generally use recognition tasks to decide
whether the object is the target or not, while the classification task is to classify the object
into a specific category. The detection task is to find the target with the bounding box, while
the localization task is to specify the location information of the target [24]. At present,
most papers do not define the concept of bone fracture recognition, classification, detection,
and localization clearly, so the search results for specific tasks were mixed. Additionally,
deep learning algorithms for computer vision have systemic models to address different
tasks. However, the definition of the four tasks in many papers is inconsistent with the
mainstream terminology rule.

Publications related to computer vision generally use recognition tasks to decide
whether the object is the target or not, while the classification task is to classify the object
into a specific category. The detection task aims to find the target with a bounding box,
whereas the localization task specifies the location information of the target [24].

However, the current landscape faces several pain points. Most notably, there’s sig-
nificant ambiguity in many research papers regarding the definitions of bone fracture
recognition, classification, detection, and localization. This lack of standardized terminolo-
gies and concepts has led to confusion in research methodologies and outcomes, resulting
in mixed search results for specific tasks. For instance, the paper by Yang T H et al. in
2017 was filled with images of fractures or non-fractures, but instead detected through
classifying [25].

Also, while deep learning algorithms for computer vision have set definitions for
different tasks, many articles do not follow this clear path. A big problem is that different
studies use different terminologies for the same tasks, making them different from what
most people use. This difference makes it hard to combine knowledge from different places
and slows down the development of common approaches and answers in this area.

The dominant challenge, therefore, is developing a universally accepted definitional
formula for these tasks, ensuring that research outputs are both consistent and compa-
rable, quickening the progress in the field. If we define the formula of bone diagno-
sis task as Y = f(x), and here, x is the input image, and Y is the output diagnosis re-
sult. For the four different tasks, Y has different meanings. For the recognition task,
Y ∈ {fracture or non− fracture}. For the classification task, Y ∈ {type A fracture, type B
fracture, ..., or non− fracture}. For the detection task, Y =

{
y1, y2, y3, ..., yn

∣∣yi = (x, y, w, h)
}

,
which is a collection of fracture bounding boxes. For the localization task, Y =

{
ai,j

}
m×n,

which is the matrix of the probability of fracture at each location.

2.2. Basic Knowledge

Image processing algorithms usually have two main steps as illustrated in Figure 2.
The first step is feature extraction and the second step is the specific modeling task, such
as recognition, classification, detection, and localization. Feature extraction usually has
two methods, i.e., manual feature extraction and deep learning algorithms. Bone fracture
diagnosis research needs to draw lessons from the state-of-the-art in deep learning [22]
because the application of deep learning algorithms always lags behind theory research.
In deep learning algorithms, feature extraction is carried out on backbone architecture,
which is the most basic part of deep learning algorithms [26]. Once the features have
been extracted, only the specific modeling tasks will be performed, such as classification,
detection, etc. Both machine learning classifiers and deep learning models play a key role
in solving the specific problem after extracting features. The process of these four tasks will
be reviewed in detail in this paper.
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The recognition task is a binary classification task that identifies whether the X-ray
bone images are fractured or not, based on feature extraction. The classification task in this
review induces only multi-classification, such as transverse fractures, oblique fractures,
spiral fractures, etc. [27]. On the other hand, the purposes of detection and localization are
to find the fracture position, and they exploit different tools. The detection task makes use
of bounding boxes and recognizes fractures within the bounding boxes, while localization
marks the fracture position with the help of heat maps, key points, or key lines.

3. Methods

Among a large number of papers, this review selected 40 papers for analysis based on
these criteria. All these papers focus on deep learning algorithms applied to X-ray bone
images. Furthermore, they had to meet the requirements of being published within the
past five years, showcasing state-of-the-art approaches, proving their effectiveness, and
representing the field well. To summarize various research studies, this review separated
these papers into four modeling tasks, which are recognition, classification, detection,
and localization.

Some classical deep learning models applied to the four tasks were introduced. The
bone part, aim, dataset size, methods, results, and conclusion are from each of the selected
papers. The bone part means the part of the human bone these papers are working on,
while the aim shows what the objectives are of these studies. The dataset size shows how
many pictures are in the dataset and the proportion of the training set and test set. The
method shows detailed deep learning models and processes of experiments. The results
show the experimental results of the models while the conclusion shows the final influence
of the models. The core information of the 40 papers including the published year, paper
index, task, method, dataset size, and bone part are summarized in Table 1 for easier
referencing, and the generic processing of the bone X-ray images is shown in Figure 2.
Finally, some solutions addressing three issues and a discussion of the future research
direction will be proposed.
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Table 1. Summary of the five features of the 40 approaches.

No Year Paper Task Method Dataset Size Part of Bone

(1) 2017 [25] Recognition

Original images→ Haar wavelet applied and
reduced size image→ BPNN (A three-layer
neural network with 1024 input neurons,
Sigmoid)

Training set:
30 images;
testing set:
70 images

Null

(2) 2018 [28] Recognition
Random forest regression voting constrained
local model (RF-CLM)→ registered patches→
CNN (Sigmoid)

1010 pairs of wrist
radiographs (PA,
and LAT)

Wrist

(3) 2018 [29] Recognition

View(s)→ 169-layer convolutional neural
network→ arithmetic mean of output
probabilities→ probability of abnormality
(Sigmoid)

MURA dataset

Shoulder,
humerus,
elbow, forearm,
wrist, hand,
and finger

(4) 2019 [30] Recognition

Three steps: Haar wavelet transform and
scale-invariant feature transform (SIFT)→
k-means clustering based ‘bag of words’ methods
→ a classical back propagation neural network
that contains 1024 neurons in 3 layers

Training set:
70 images;
test set: 230 images

Null

(5) 2019 [31] Recognition
A voting ensemble method (Inception V3, Resnet,
and Xception convolutional neural networks→
Softmax, two classes, normal, abnormal cases)

Validation and test
sets: 240 views;
training set:
1441 views

Ankle

(6) 2019 [32] Recognition Inception-v3 CNN architecture47 23,602 hip
radiographs Hip

(7) 2019 [33] Recognition Ensemble algorithm (InceptionResNetV2 CNN
and a DenseNet CNN)

12,742 routine
clinical VFA images Vertebral

(8) 2019 [34] Recognition

Input→ (1) Standard line-based fracture
detection; (2) adaptive differential parameter
optimized (ADPO) line-based fracture detection
→ PCA→ 13 line features→ ANN (FCNN,
BPNN)→ fractures and non-fractures

Training set:
20 X-ray images;
test set: 23 X-ray
images

Leg

(9) 2020 [35] Recognition Deep CNN→ Softmax (healthy, fracture) 4000 images Null

(10) 2020 [36] Recognition
AlexNet (extract features)→ PCA→ support
vector machine (SVM), extreme learning machine
(ELM) and random forest (RF)

MURA dataset

Shoulder,
forearm, finger,
humerus,
elbow, hand
and wrist

(11) 2020 [37] Recognition

Convolutional neural network (CNN)
architecture (five blocks, each containing a
convolutional layer, batch normalization layer,
rectified linear unit, and maximum pooling layer,
Softmax, 2 classes, fractures, non-fractures)

234 frontal pelvic
X-ray images Femoral neck

(12) 2021 [38] Recognition ResNet18 DCNN 15,775 frontal and
lateral radiographs Distal radius

(13) 2021 [39] Recognition

a new ensemble learning model (input→
ResNet, ResNeXt, DenseNet, VGG, InceptionV3,
and MobileNetV2 + Spinal FC layer→ EL1, EL2,
EL1, EL2 (spinal fully connected versions)
models (Sigmoid)

The MURA dataset Shoulder
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Table 1. Cont.

No Year Paper Task Method Dataset Size Part of Bone

(14) 2022 [40] Recognition A convolutional neural network (CNN)-based
prediction algorithm called DeepSurv

Images and
medical records
from 7301 patients

Spine

(15) 2018 [41] Classification ResNet-152 1891 plain shoulder
AP radiographs

Proximal
humerus

(16) 2019 [42] Classification Convolutional neural network with two
diagnostic pipelines

796 images: 97 AFF
images and
399 NFF images

Femur

(17) 2019 [43] Classification DenseNet 750 images Femur

(18) 2020 [44] Classification A customized residual network with Softmax
classifier

1444 hip
radiographs from
1195 patients

Femoral neck

(19) 2020 [45] Classification An encoder-decoder structured neural network

786 anterior–
posterior pelvic
X-ray images and
459 radiology
reports acquired
from 400 patients

Pelvic

(20) 2021 [46] Classification A novel dense dilated attentive (DDA) network 390 X-ray images Femur
trochanteric

(21) 2022 [47] Classification
A scale-variant network (ResNet + a scaled
variant (SV) layer + a hybrid and progressive
(HP) loss function)

31/A1: 117 images;
31/A2: 125 images;
31/A3: 128 images

Femur
trochanteric

(22) 2022 [48]
Classification +
Detection +
Localization

Vancouver Classification System (type A, B, C)
(Densenet161, Resnet50, Inception, VGG and
Faster R-CNN, RetinaNet)

1272 X-ray images Periprosthetic
femur

(23) 2019 [49] Detection Faster-R-CNN→ Inception-v4
2340 AP wrist
radiographs from
2340 patients

Distal radius

(24) 2019 [50] Detection Faster R-CNN (Inception-ResNet)
7356 wrist
radiographic
images

Wrist

(25) 2019 [51] Detection Faster R-CNN

4476 images with
labels and
bounding boxes for
each augmented
image

Distal radius

(26) 2020 [52] Detection Dilated Residual Network 16,019 unique
radiographs All

(27) 2020 [53] Detection
RetinaNet object detection algorithm→ ROIs
(bounding boxes)→ A densely connected
convolutional neural network (DenseNet)

3034 hip images Hip

(28) 2020 [54] Detection An anchor-based Faster R-CNN (ResNet-50 +
pyramid networks (FPN)) 2333 X-ray images Femoral

(29) 2021 [55] Detection Faster region with convolutional neural network
(Faster R-CNN)→ CrackNet 3053 X-ray images Null

(30) 2021 [56] Detection Faster R-CNN (GA module) 3067 X-ray
radiographs Hand
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Table 1. Cont.

No Year Paper Task Method Dataset Size Part of Bone

(31) 2021 [57] Detection FAMO model (ResNext- 101 + FPN)

1651 hand,
1302 wrist,
406 elbow,
696 shoulder,
1580 pelvic,
948 knee,
1180 ankle, and
1277 foot images

Hand, wrist,
elbow, shoulder,
pelvic, knee,
ankle, and foot

(32) 2022 [58] Detection
A deep convolutional neural network (cascade
R-CNN + attention mechanism + atrous
convolution)

1227 labeled X-ray
images Sternum

(33) 2022 [59] Detection
Generative adversative network (GAN)→
WrisNet is composed of two components (a
feature extraction module + a detection module)

4346 X-rays Hand

(34) 2022 [60] Detection Faster R-CNN network→ ResNet

167 fractured
samples and
194 normal samples
for detection task,
and 166 fractured
samples and
194 normal samples
for classification
task

Scaphoid

(35) 2018 [61] Localization
An extension of the U-Net architecture (two
outputs: (1) fracture probability; (2) conditional
heat map)

135,845 radio-
graphs

Foot, elbow,
shoulder, knee,
spine, femur,
ankle, humerus,
pelvis, hip, and
tibia

(36) 2018 [62] Localization
Weakly supervised deep learning approach
(spatial transformers (ST) + self-transfer
learning (STL))

750 images from
672 patients taken

Proximal femur
fractures

(37) 2019 [63] Localization DenseNet-121→ Grad-CAM
25,505 limb
radiographs +
3605 PXRs

Hip

(38) 2019 [64] Localization MIL-FCN (DenseNet-121)→mined
localized ROIs 4410 PXRs Hip and pelvic

(39) 2020 [65] Localization A Siamese network (a spatial transformer layer) 2359 PXRs Pelvic

(40) 2021 [66] Localization DCNN (EfficientNetB3)→ Grad-CAM 8329 images Scaphoid

The evaluation metrics used by these papers are mostly accuracy, precision, sensi-
tivity (or recall), and AUC as below to measure the experimental results of the different
models [15,16]:

1. Accuracy: The accuracy represents the proportion of true predictions from all the
recognition/localization/classification/detection tasks. The accuracy values range from 0
to 1 to correctly predict the presence of fractures and non-fractures.

Accuracy = (TP + TN)/(TP + TN + FP + FN)

In predictive modeling, there are four key metrics to evaluate the performance of a
classifier. True positives (TP) are the number of instances that are correctly predicted as
positive. True negatives (TN) represent the instances that are correctly identified as negative.
On the other hand, false positives (FP) denote the instances that are incorrectly predicted
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as positive. Lastly, false negatives (FN) are those instances that are incorrectly predicted as
negative. These metrics are crucial in understanding the accuracy and precision of a model,
especially in contexts where the cost of misclassification is high.

2. Precision: The precision represents the proportion of the true positives divided by
all the correct recognition/localization/classification/detection tasks. The precision values
range from 0 to 1 to report the ability of the model to identify fractures as a proportion of
all positives.

Precision = TP/(TP + FP)

3. Sensitivity (or recall): The sensitivity represents the value of correct recogni-
tion/localization/classification/detection divided by all the positive samples. The sensi-
tivity values range from 0 to 1 to report the ability of the model to correctly predict the
presence of fractures.

Sensitivity = TP/(TP + FN)

4. Specificity: The specificity demonstrates the proportion of unbroken bones correctly
recognized as non-fractured. The specificity values range from 0 to 1 to show the probability
of having no fractures, conditioned on truly being non-fractures.

Specificity = TN/(TN + FP)

5. Area under the curve (AUC): The AUC is the area under the ROC curve. The AUC
value can analyze full prediction scores without setting a threshold. The AUC value equals
the area under the ROC curve to the x-axis, which exploits sensitivity as the ordinate and
(1-specificity) as the abscissa.

6. Average precision (AP): The AP calculates the precision of the object detection
model at different recall values. Given an object class, firstly, rank the detection results
in descending order of confidence; secondly, calculate the precision and recall for each
detection. Finally, compute the area under the precision–recall curve.

7. Mean average precision (mAP): The mAP provides a single score for the model’s
performance across all classes. C is the number of object classes. APi is the average precision
for the ith object class.

mAP =
1
C∑ C

i=1APi

8. Pixel accuracy: The pixel accuracy is the percentage of pixels that are correctly
classified. This metric is useful for assessing the overall localization capability for models.

4. Modeling Tasks

A clearer definition of the modeling tasks has been refined based on the content of the
bone fracture diagnosis and mainstream terminology rule of the computer vision domain
from the papers [24,25,28–66]. The modeling task includes recognition, classification,
detection, and localization.

• Recognition: the recognition task is to identify whether the X-ray image is fractured or
non-fractured.

• Classification: the classification task is to not only recognize fractures and non-fractures
but also classify the fracture types.

• Detection: the detection task is to find the fracture position and engage the suitable
bounding boxes to surround bone fracture parts completely and identify them with
the help of bounding boxes.

• Localization: the localization task is to localize the fracture position directly with key
points, key lines, or heat maps instead of bounding boxes, according to the entire
semantic information of the X-ray images.

Object detection algorithms usually have two parts; one is to find the region of interest,
and the other is to classify regions of interest as true or false. The deep learning algorithms
for object detection have two categories, i.e., two-stage detectors and one-stage detectors.
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Two-stage detectors produce candidate regions first and then determine if they are true
or false, while one-stage detectors perform classification and localization directly without
region proposals. These detectors must be based on the backbone to perform feature extrac-
tion, such as AlexNet, VGG-16, GoogleNet, etc. [67]. In the past, because the computer did
not have enough storage and computing capability, researchers usually utilized manual
feature extraction methods to extract the feature from images, and similarity metrics to
classify the fractures directly [21]. With the progress in hardware technologies, machine
learning classifiers were applied more in bone recognition and classification tasks [68,69].
Deep learning detectors are widely applied in bone fracture detection tasks with bounding
boxes [22]. However, the bounding boxes ignore the semantic information about the bone
fractures, such as in [49,52,57]. Therefore, some researchers tried to highlight the fracture
position with a heat map based on the attention mechanism and Grad CAM [70,71]. In
summary, the evolution of the computational techniques in bone fracture diagnosis has
progressed from manual feature extraction to advanced deep learning detectors, with a
current trend towards utilizing attention mechanisms and heat maps to offer a more se-
mantically rich representation of fractures, thereby addressing the limitations of traditional
bounding boxes.

4.1. Recognition
4.1.1. Full-Connected Neural Network (FCNN)

FCNN is a basic deep learning model, which contains an input layer, hidden layers,
and an output layer. Each layer has one or more neurons, and its number depends on the
dataset and the complexity of the tasks, such as a three-layer neural network with 1024 input
neurons [25,30], and a four-layer neural network with 16 input neurons [34]. Full-connected
neural networks can be exploited for classification and regression. The output value of the
regression can be any number, while that of the classification must range from 0 to 1. So,
we must determine the activation function, such as Sigmoid and Softmax. Bone fracture
recognition is a binary classification; most studies prefer the Sigmoid activation function. If
some studies try to engage the Softmax activation function, they must take the probability
of fractures and non-fractures as two independent output values. After designing the full-
connected neural networks, the model needs to be trained. Generally, full-connected neural
networks are trained as back propagation neural networks. The original row images have
too much redundant information, so researchers usually engage manual feature extraction
methods to generate feature vectors, such as Haar wavelet transfer [25], SIFT [25,30], and
ADPO [34]. In essence, full-connected neural networks serve as foundational deep learning
models with varying layers and neurons, commonly used for bone fracture recognition via
binary classification. The choice of activation functions and feature extraction techniques
play pivotal roles in enhancing their performance and accuracy.

4.1.2. Convolutional Neural Network (CNN)

CNN is a classical feedforward neural network, the most important component of
which is the convolutional filter. Additionally, the CNN can also have full-connected layers
and pooling layers. In the same way, convolutional neural networks are also trained as
back propagation neural networks and work as fully connected neural networks. The
convolutional layers of the CNN can extract features from raw input images, so they
usually do not cooperate with manual feature extraction methods [28,29,31,33,35–37,39].
The CNN is diverse, so researchers designed various different backbone models, such
as Inception V3 [31], Resnet [31], Xception [31], InceptionResNet v2 [33], DenseNet [33],
and AlexNet [36]. Because each model has its own advantages, Refs. [31,33] even engage
ensemble algorithms to combine multiple convolutional neural networks, which obtains
excellent results. In addition, Ref. [36] exploits machine learning classifiers for fracture
recognition based on the feature vectors from AlexNet, but it will not make the model an
end-to-end network. Additionally, originally developed for natural language processing,
the Transformer architecture has been repurposed for medical image analysis, especially
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in fracture recognition, by segmenting the images into patch sequences [72]. Based on
its distinctive self-attention mechanism, the model emphasizes potential fracture regions,
ensuring precise and efficient analysis while preserving the essential spatial relationships
crucial for medical diagnosis [73–76]. In other fields of medical image processing, many
excellent models have also been innovated which can also be applied to fracture recognition,
including FABNet [77], DDANet [78], LPCANet [79], and some AF-SENet [80]. In summary,
convolutional neural networks (CNNs) stand out for their innate ability to directly extract
features from raw images, eliminating the need for manual feature extraction, and have
given rise to a variety of innovative backbone models, some of which are even amalgamated
to harness the strengths of multiple networks, leading to superior outcomes in tasks like
fracture recognition.

4.2. Classification
4.2.1. Convolutional Neural Network (CNN)

The CNN also works on the classification task, with a bit of tuning. The variations
in CNNs applied for classification include DenseNet [43], Dense Dilated attentive net-
work [46], and ResNet [41,47]. Their secret key technology is utilizing the convolutional
filter. Therefore, the classification task has multiple output values and the Softmax activa-
tion function can normalize these output values; these models always select the Softmax
activation function rather than Sigmoid [41–43,46,47]. Compared with the recognition task,
bone fractures in the classification task have more categories. So, the classification task
needs more high-quality features for classification. For example, Ref. [42] exploits another
interactive pipeline to ask the user to re-orient the femur bones to obtain better features.
Additionally, Kang added a scaled variant layer and a hybrid and progressive loss function
to ResNet to better classify fractures in 2020 [47]. In conclusion, CNNs for classification
often utilize the Softmax function due to varied outputs, and as bone fracture classification
demands richer features, innovations like interactive pipelines and enhanced layers have
been introduced for superior results.

4.2.2. Generative Adversarial Network (GAN)

The GAN is an unsupervised learning method, which has a generative model and a
discriminative model. The generative model can generate samples, and the discriminative
model can select samples. Thus, the GAN can produce a large number of samples like the
original data. So, the GAN can be used to perform data augmentation, which will then be
used with the original data as inputs to a customized residual network [44]. In essence, the
generative adversarial network (GAN) employs both generative and discriminative models
to produce data samples akin to original data, enabling its application in data augmentation
to complement and enhance datasets for further network training.

4.3. Detection
4.3.1. Region Convolutional Neural Network (R-CNN)

The R-CNN is a classical deep learning detector, also based on the CNN proposed
in 2014 by R. Girshick et al. [81]. The R-CNN produces region proposals first, and region
proposals include 2000 object candidates. Almost all these object candidates are warped
RoIs (region of interest). Then, the warped RoIs are resized to a fixed size to feed into
the CNN. Next, the CNN network extracts a 4096-dimension feature vector for each
proposal from the feature maps of these warped RoIs. Finally, the authors exploit the
SVM classifier to obtain confidence scores and the bounding box regressor to predict
four parameters, i.e., the center coordinates of the box along with its width and height.
In the post-processing, non-maximum suppression (NMS) must be used to reduce the
redundant bounding boxes. If the intersection over union (IoU) of two boxes is more than
the threshold, that means the boxes are overlapped. Then, the box with a higher confidence
score will be chosen. Although the R-CNN is a basic detector, researchers can improve the
R-CNN detector by introducing or combining it with different techniques, like the cascade
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R-CNN with attention mechanisms and atrous convolution [58]. The is because atrous
convolution can help extract a rich feature map and attention mechanisms can help focus
on important features [70]. In summary, the R-CNN, a foundational deep learning detector,
employs a series of processing steps from region proposal to non-maximum suppression
for object detection, and its versatility allows for enhancements, such as integration with
attention mechanisms and atrous convolution, optimizing feature extraction and refining
detection outcomes.

4.3.2. Faster-Region Convolutional Neural Network (Faster R-CNN)

The Faster R-CNN is an improved method based on the R-CNN, which also engages a
region proposal network (RPN). The region proposal network (RPN) was introduced in
2015 [82]. The RPN has a classifier that classifies whether the detected region is an object
or not, and the bounding box regressor can adjust the length and width of the bounding
boxes. This makes the RPN faster than selective search algorithms. In the post-processing,
non-maximum suppression (NMS) also must be used to reduce redundant bounding boxes.
For the feature extractor, many classical convolutional neural network models can be the
backbone of the Faster R-CNN, such as Inception-v4 [49] and Inception-ResNet [50]. In
conclusion, the Faster R-CNN enhances the R-CNN by introducing the region proposal
network (RPN) for quicker region proposals and maintains optimal bounding box selec-
tion through NMS, all while supporting various classical CNN backbones for superior
feature extraction.

4.3.3. Feature Pyramid Network (FPN)

The FPN is an upgraded method based on the Faster R-CNN. In 2017, T.-Y. Lin et al.
combined the Faster R-CNN and FPN (feature pyramid network) [83]. The use of image
pyramids to obtain feature pyramids (or featurized image pyramids) at multiple levels
is a common method to improve the detection of small objects. In the post-processing,
non-maximum suppression (NMS) also must be used to reduce redundant bounding boxes.
The application of the FPN also needs to select a suitable backbone, such as ResNet-50 [54]
and Res-Next-101 [57]. In essence, the FPN, an evolution of the Faster R-CNN, leverages
feature pyramids to enhance small object detection, retains NMS for optimal bounding box
selection, and pairs effectively with various backbones like ResNet-50 and Res-Next-101
for advanced feature extraction.

4.3.4. You Only Look Once (YOLO)

YOLO is a series of one-stage detection algorithms, including YOLO v1 [84], YOLO
v2 [85], etc. Two-stage detectors solve object detection at the classification stage following
the proposal stage. However, in 2016, J. Redmon et al. proposed YOLO [84] (You Only
Look Once), which reframed the detection task as a regression problem, directly predicting
the image pixels as objects and their bounding box attributes. In the post-processing, non-
maximum suppression (NMS) also must be used to reduce redundant bounding boxes. For
example, Ref. [58] implements YOLO v5 applied in bone fracture detection to prove that
two-stage detectors are much better than one-stage detectors in bone fracture detection. In
summary, YOLO transforms object detection by viewing it as a regression problem, directly
predicting bounding boxes. Despite its innovation, comparisons, like in [58], indicate that
two-stage detectors might have an edge in bone fracture detection.

4.3.5. RetinaNet

RetinaNet is a one-stage detection algorithm. In 2020, T. Lin and others proposed
RetinaNet, which exploits the FPN to improve its performance [86]. Each layer from
the FPN is passed to the subnets, enabling it to detect objects at various scales. The
classification subnet predicts the object score for each location while the box regression
subnet regresses the offset for each anchor to the ground truth. For example, Ref. [53]
exploits RetinaNet to obtain a good performance in bone fracture detection, which is
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close to the two-stage detector’s performance. In conclusion, RetinaNet leverages the
FPN and subnets to detect objects across scales, with distinct roles for classification and
box regression, the performance of which in bone fracture detection approaches that of
two-stage detectors.

4.4. Localization
4.4.1. U-Net

The U-net model is a method for semantic segmentation. In 2015, RonNeberger O et al.
proposed U-net for biomedical image segmentation, which is a U-shaped architecture with
convolutional operation, up-sampling, and down-sampling process as well [87]. U-net
can classify each pixel of the original input images as an object or background. So, U-net
can localize the outline of bone fractures without bounding boxes. For example, Ref. [61]
developed the extension of U-net, which can show the fracture probability and heat map. In
conclusion, U-net, designed for biomedical segmentation, localizes bone fracture outlines
without bounding boxes, with extensions visualizing fracture probabilities and heat maps.

4.4.2. Fully Convolutional Network (FCN)

The FCN is used for semantic segmentation. In 2015, Long J et al. proposed the fully
convolutional network, which uses transposed convolution layers instead of full-connected
layers following common convolution layers [88]. The design can make the output image
keep the same size as the input image. The pixels of the output image show different
colors between objects and backgrounds. So, the FCN can localize the outline of the bone
fractures without bounding boxes like the U-net model. For example, an FCN variant
called MIL-FCN can obtain mined fractured localized regions of interest, whose backbone
is DenseNet-121 [64]. In essence, the FCN innovates in semantic segmentation, maintaining
consistent input-output image sizes for precise fracture localization without bounding
boxes, as demonstrated by variants like MIL-FCN with a DenseNet-121 backbone.

4.4.3. Spatial Transformer

The spatial transformer is a deep learning model that adopts self-attention mechanisms.
In 2015, Jaderberg M et al. proposed the spatial transformer, which can distribute different
weights to feature values according to their spatial importance [89]. For example, Ref. [62]
adopts the spatial transformer to localize bone fractures. The spatial transformer can
focus on the fracture features, so visualization of the spatial transformer can localize bone
fractures. In conclusion, the transformer utilizes self-attention to assign weights based on
spatial importance, allowing models to hone in on and visualize fracture features effectively.

4.4.4. Gradient-Weighted Class Activation Mapping (Grad-CAM)

Gradient-weighted class activation mapping is a visualization method that can obtain
a class activation map through the weighted sum of each feature map. In 2016, Selvaraju R R
proposed Grad-CAM for the visualization of deep learning algorithms [90]. The Grad-CAM
obtains each corresponding weight from the gradient of feature maps to visualize feature
maps. For example, both [63,66] exploit gradient-weighted class activation mapping to
localize bone fractures. However, they must recognize the bone fracture with CNN to
obtain feature maps of bone fractures on the images before visualization. In summary,
Grad-CAM visualizes deep learning features using weighted sums after initial detection
with CNNs.

5. Discussion

The summary of the reviewed papers is shown in Table 1 and the visualized mind map
according to its modeling tasks is in Figure 3. Deep learning techniques have revolutionized
the diagnosis of bone fractures, focusing on various parts like the femur, wrist, and shoulder.
Researchers employ these techniques across different diagnostic methods: recognition,
which is a binary determination of fracture presence; classification, which discerns the
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specific type of fracture; detection, with most studies favoring the accuracy of two-stage
detectors; and localization, which offers enhanced visualization through tools like heat
maps. Each method showcases the versatility and potential of deep learning in improving
the precision of bone fracture diagnosis.
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Almost all the studies have their own focus on a certain bone part, such as the femur,
wrist, shoulder, hip, hand, humerus, elbow, pelvis, ankle, etc. The pool of research on
the different types of bones in the human body can be seen in the word cloud diagram in
Figure 4. The most popular bone part included in this review paper is the femur, followed
by the wrist, and the rest, following the font size in a decreasing manner. As different
types of bone have different features, focusing on training and learning on one type of bone
has a better performance for algorithms. However, researchers nowadays are inclined to
work on finding a more generic model that can work on different parts simultaneously,
such as the femur, wrist, shoulder, etc., which detect fractures in the shoulder, wrist, and
ankle [29,36,57,61]. The most widely used public radiographic image dataset is MURA,
which has 9045 healthy and 5818 unhealthy musculoskeletal X-ray images [29]. These
images include the hand, humerus, finger, wrist, elbow, shoulder, and forearm. However,
most papers collected datasets from hospitals, such as Chang Gung Memorial Hospital [63],
Xi’an Honghui Hospital [58], Seoul National University Bundang Hospital [40], etc. The
quantitative range of these datasets is usually from 100 to 100,000.

The recognition task can be seen as a binary classification of fractures or not fractures.
At first, feature extraction methods with traditional methods or a CNN would be carried
out. Then, machine learning classifiers will use these features to classify the fractures.
Additionally, if the CNN or FCNN were used to perform binary classification, a suitable
activation function must be selected, such as Sigmoid and Softmax. Refs. [25,30,34] exploit
traditional feature extraction methods to attain feature maps first. Ref. [25] preprocess
images with Haar wavelet theorems. Ref. [30] exploits Haar wavelet transform and SIFT
operators to perform feature extraction. Ref. [34] extracts 13 line features with adaptive
differential parameter optimized (ADPO) methods and then feeds them into a convolutional
neural network. Refs. [28,29,31,33,35–37,39] engage convolutional neural networks to
extract features. And then [28,29,39], engage the Sigmoid activation function to perform
binary classification, i.e., fractures or not fractures. While [31,35,37] engage the Softmax
activation function, which has two outputs, i.e., probabilities of fracture and non-fracture.
Refs. [31,39] exploit the ensemble algorithm to combine different CNNs to obtain better
experimental results.
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The activation function makes the neural network an end-to-end trained method.
Ref. [36] engages SVM to perform bone fracture recognition, but features are extracted
with a pre-trained neural network. Ref. [36] has two independent steps, so they are trained
separately. This study compares the performance of SVM, ELM, and RF and finds that
SVM is the best classifier for the task. Therefore most of the studies use their own dataset,
and the direct comparison of the experimental results is meaningless. However, we can
still draw some conclusions from these results. In the public dataset MURA, the SVM
classifier [36], obtains an accuracy of 78.63% while deep learning algorithms [34,36] obtain
an AUC of 86.95%. In their self-collected datasets, most of these studies [25,30] have an
accuracy of more than 90%. The experimental model shows that the proposed method has
good feasibility and robustness, compared with the accuracy and standard deviation of
previous studies.

In this review, the classification task classifies fracture types. For example, there are
five different fracture types [41], based on the location of the bone, including normal, greater
tuberosity fractures, surgical neck fractures, three-part fractures, and four-part fractures. So,
the classification task is more complex than recognition. Most of the classification studies
use convolutional neural networks to extract features because the convolutional operation is
much better than the manual feature extraction method. In addition, the Softmax activation
function outperforms the Sigmoid activation function in multi-classification tasks. In
order to perform better, Ref. [42] re-orients the femur bones and moves the fracture line
to the image center. Ref. [44] expands the training set with the generative adversarial
network (GAN). Ref. [46] designed the DDA layer (dense dilated attention module) to
give scope to the advantages of attention mechanisms. In classification tasks, most of the
studies [41,44,46,47] utilized state-of-the-art deep learning algorithms, which have a high
accuracy, sensitivity, and specificity of near or more than 90% and have a high AUC of
more than 0.9. These experimental results show that deep learning algorithms can improve
performance and accelerate application in clinical practice.

Detection algorithms mainly have two-stage detectors and one-stage detectors. Most
papers choose two-stage detectors to be the baseline algorithm because they are more
accurate than one-stage detectors. Two-stage means the generation of regions of interest
and the identification of regions of interest are performed in two stages. One-stage means
the generation of regions of interest and the identification of regions of interest are carried
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out simultaneously in one stage. Only [58] implements YOLO to be a comparison to prove
their attention-based cascade R-CNN model is better than YOLO because the attention
module can help R-CNN focus on more important features. Except for [53], which exploits
RetinaNet to detect bone fractures and classify them into different types, nearly all papers
prefer the most popular two-stage algorithm Faster R-CNN to be the baseline algorithm,
and paired with different backbones, including Inception v4, Inception-ResNet v2, VGG16,
and ResNet-50. Additionally, some researchers have tried to improve the Faster R-CNN to
different degrees. Ref. [56] designed a guided anchoring method (GA), while [60] adds a
feature pyramid network to Faster R-CNN. Ref. [57] even designed the feature ambiguity
mitigate operator to combine with different models. Ref. [59] engages a triplet attention
mechanism to obtain richer hairline fracture features. In the detection task, setting the
threshold of IoU is necessary and researchers usually assign it to 0.5 or higher. Most of
these models [49–51,54] are based on Faster R-CNN have a high mAP of more than 70%,
better than YOLOv5 [58] with an mAP of about 60%. These studies show that the power of
deep learning techniques can provide fast and accurate solutions to medical image analysis.

Localization has better visual results than the detection of bone fractures. Some papers
use a heat map for the local fracture part, which is a visual way to mark fractures. A
heat map is a probability map, which means it displays the probability of fracture in the
corresponding point. Ref. [61] proposed an improved U-Net architecture to produce the
probability of each place in the image directly. Ref. [62] generates visual heat maps based on
the attention model (USTN) and self-transfer learning (STL). Ref. [64] produces a colorful
probability map to mark the fracture position. Refs. [63,66] perform classification first and
generate heat maps with the Grad-CAM method. In localization tasks, these studies [61,64]
still need to set a threshold of IoU, and then obtain good accuracy, sensitivity, specificity,
and an ROC of more than 90%. These studies prove that bone fracture marking has better
ways, such as heat maps, key points, and key lines, instead of bounding boxes.

This review points out the strengths and weaknesses of various deep learning models
applied in bone fracture diagnosis. A profound understanding of deep learning models can
help researchers make more improvements in the application of bone fracture diagnosis,
as theoretical research of algorithms is advancing faster than the application. In addition,
multimodal information to assist X-ray image diagnoses is starting to attract more attention.
For example, Refs. [32,40,45] use not only X-ray images but also patient demographic
information and clinical data in their research. Another example of multimodal diagnosis
was published by P. Tobler et al. in 2021, in which distal radius fractures were detected and
classified with the help of radiology reports [38].

6. Solutions following the Three Issues

This review makes corresponding solutions to our proposed three issues and suggests
future development.

First, with regard to the inconsistency between the definition of modeling tasks (i.e.,
recognition, classification, detection, and localization) in some papers with regard to
bone fracture diagnosis and mainstream computer vision domain, we have refined a
clearer definition [25,28–66]. This review formulates the standardized terminology for the
diagnosis of bone fractures using X-ray images to link up with the theoretical research
of deep learning algorithms. Because theoretical research of deep learning algorithms
for computer vision is always ahead of its application [22], research about bone fracture
diagnosis must absorb the latest research results from the corresponding state-of-the-art
deep learning algorithms. Keeping consistent with mainstream terminology is efficient in
drawing lessons from other advanced academic achievements.

Second, this review concludes a general processing workflow to fill the research gap
in which existing reviews do not analyze technical details [19]. Our proposed general
processing workflow can help researchers learn the structure and process of various deep
learning algorithms applied in bone fracture diagnosis. Additionally, other scholars can
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also find some research gaps in the framework to perform some novel studies, which is
shown in Figure 3.

Third, addressing the deficiencies in the field of clinical application for deep learning
algorithms, this review proposes three suggestions. Foremost, we should try to add the
interpretability of deep learning algorithms to provide doctors with sound and logical
principles or the mathematics behind the algorithm’s judgment [4,91]. Additionally, we
should try to process multi-modal clinical information including X-ray images, CT images,
patient process data in hospitals, and some baseline clinical information (age, sex, body
mass index, glucocorticoid use, and secondary osteoporosis) for personalized treatment
and therapeutic schedule recommendation [92–97].

In the domain of future research directions, several important areas emerge. One signif-
icant area is algorithmic interpretability. With the rise of emerging techniques in explainable
AI, there’s potential to make decision-making processes in deep learning algorithms for
skeletal diagnosis more transparent [90]. Another crucial direction is the development
of algorithms that can handle multimodal data combining image data and text data for
clinicians [97]. Given the vast and diverse range of clinical data available, it is urgent to
create algorithms that can efficiently integrate and process information, thereby offering
personalized diagnostic and treatment recommendations. Additionally, as the domain
of visualization techniques continues to advance, there’s a growing need to incorporate
methodologies that can aid clinicians in better understanding and interpreting results from
deep learning models [98]. A notable example includes the potential of achieving more
accurate and clinically relevant 3D modeling derived from 2D X-ray images [99].

7. Conclusions

As medical AI systems are applied in clinics gradually, deep learning algorithms have
greater research value. This review expounds on various related approaches in X-ray bone
images based on deep learning algorithms. These studies engage several kinds of machine
learning algorithms and obtain excellent results in different public datasets or self-collected
datasets. This review makes several valuable contributions, including summarizing the
latest research findings to help us know the newest research focus and cope with the too-fast
upgrading speed of AI models, defining the four bone diagnosis tasks clearly, summarizing
a general processing workflow to handle these tasks, and pointing out valuable research
directions for deep learning models applied in bone fracture diagnosis for other researchers.
Despite deep learning algorithms demonstrating comparable performance to clinicians,
their clinical application still faces the challenge of proving their trustworthiness. In the
future, we will try to increase the interpretability of networks, process multimodal clini-
cal information, provide therapeutic schedule recommendations, and develop advanced
visualization methods to improve the clinical application of deep learning algorithms.
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