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Abstract: The purpose of this study was to assess the value of body composition measures obtained
from opportunistic abdominal computed tomography (CT) in order to predict hospital length of
stay (LOS), 30-day postoperative complications, and reoperations in patients undergoing surgery
for spinal metastases. 196 patients underwent CT of the abdomen within three months of surgery
for spinal metastases. Automated body composition segmentation and quantifications of the cross-
sectional areas (CSA) of abdominal visceral and subcutaneous adipose tissue and abdominal skeletal
muscle was performed. From this, 31% (61) of patients had postoperative complications within
30 days, and 16% (31) of patients underwent reoperation. Lower muscle CSA was associated with
increased postoperative complications within 30 days (OR [95% CI] = 0.99 [0.98–0.99], p = 0.03).
Through multivariate analysis, it was found that lower muscle CSA was also associated with an
increased postoperative complication rate after controlling for the albumin, ASIA score, previous
systemic therapy, and thoracic metastases (OR [95% CI] = 0.99 [0.98–0.99], p = 0.047). LOS and
reoperations were not associated with any body composition measures. Low muscle mass may serve
as a biomarker for the prediction of complications in patients with spinal metastases. The routine
assessment of muscle mass on opportunistic CTs may help to predict outcomes in these patients.

Keywords: computed tomography (CT); body composition; opportunistic imaging; adverse events;
outcome; spine; surgery; length of stay; complications; reoperation; metastases

1. Introduction

Medical treatment for patients with cancer has improved considerably over time. As
a result, the life expectancy is increasing, and this has the unintended effect of a rising
incidence of metastatic disease [1]. In patients with metastatic disease, the spine is a
common location, affected in nearly 30% of cases [2,3]. Spinal metastases can have devas-
tating symptoms, including severe pain, paralysis, incontinence, and sexual dysfunction.
Surgical intervention is often indicated for either spinal cord compression or spinal insta-
bility [1,4–6]. Considering the expanding treatment regimens for these complex patients,
multidisciplinary teams and patients must together weigh the likelihood of improved
outcomes, including preservation or an improved quality of life, against potential post-
operative morbidity and complications when contemplating surgical management [7,8].
Multiple tools exist to predict survival in spine metastases (e.g., SORG, NEMS, Bollen prog-
nosis) patients, but none for adverse events [9–15]. While predicting survival is imperative,
other postoperative outcomes, such as the length of stay, complications, and reoperations,
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are important to consider in order to best serve the patient and maintain their quality of
life [14,16,17]. Clinical variables have been explored for risk factors for adverse events, but
these lack strong predictive power, and thus no prediction tools have been developed for
adverse events [12,18–23].

Several studies have demonstrated the use of CTs for routine clinical purposes to assess
body composition (so called “opportunistic CT”) in patients with malignancies to predict
survival [10,19–21,24–26]. CT is routinely used in cancer staging and surveillance, and these
CTs can be used to assess body composition without additional costs or radiation exposure.
This puts body composition measures assessed using opportunistic CTs in a unique category
of both being readily available and potentially useful for the prediction of outcomes. Recent
studies have also shown body composition assessed using CT to be associated with an
increased hospital length of stay (LOS), postoperative complications, readmission, and other
adverse outcomes in patients with sarcomas [27–32]. However, the predictive value of body
composition measures for adverse events in patients with spinal metastases undergoing
surgery is unknown. Identifying new predictors for adverse events is needed as there is a
paucity of data about predicting adverse events in this patient population.

Machine learning, an application of artificial intelligence technology, is a subset of
statistics and computer science that allows for the processing of large amounts of data, and
can be used to quickly and accurately define and quantify data from CT scans [16,26,33].
Similar technology has been used to predict other conditions such as hypertension in vari-
ous populations [34]. This study expands on the growing body of literature investigating
the use of machine learning technologies and opportunistic CTs in conjunction with clinical
factors to predict outcomes in surgical, orthopedic, and oncologic populations.

The primary aim of this study was to evaluate the value of body composition mea-
surements using opportunistic CTs in patients with spinal metastases undergoing surgery.
The primary outcomes were LOS, postoperative complications within 30 days of surgery,
and reoperations.

2. Materials and Methods
2.1. Study Design and Data Sources

This work received approval from the institutional review board, and informed consent
was not required for this observational retrospective investigation. Between 1 January 2001
and 31 December 2016, data for this study were collected at a tertiary referral hospital in
the United States of America. We adhered to the Strengthening Reporting of Observational
Studies in Epidemiology (STROBE) guidelines [35]. This study was funded in part by
National Institutes of Health Grant K24DK109940, P30DK040561-25, and UL 1TR002541.
The authors declare no conflicts of interest.

2.2. Participants and Clinical Characteristics

All patients aged 18 years or older, who underwent surgery for cervical, thoracic, lumbar
metastases (including lymphoma and multiple myeloma), or spinal metastases, and had
an abdominal CT scan within 3 months prior to surgery were eligible for inclusion in the
study. Exclusion criteria comprised (1) revision procedures, (2) vertebroplasty or kyphoplasty,
(3) absence of L4 level coverage on the CT scan, and (4) metal artifacts on CT scans hindering
analysis. Two authors (NDK, PKT) individually assessed the 364 patients that initially matched
the inclusion criteria. Furthermore, 165 of these patients were excluded for not including
L4 on the CT scan or not having a CT scan within 3 months. Three more patients were
excluded due to artifacts on the scan. For patients with multiple abdominal CT scans, the scan
closest to the date of operation was considered. Likewise, only the initial surgery was taken
into account for patients with multiple spine surgeries, ensuring adherence to the statistical
principle of independence. The study encompassed 196 patients with suitable CT scans for
assessing abdominal fat and muscle cross sectional areas (CSA). The clinical characteristics
of the study cohort were previously documented [33]; however, data regarding adverse
postoperative events were not reported. Treatment decisions were made collaboratively
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between the patient and surgeon. The surgical approach was determined by the surgeon,
considering factors such as the patient’s estimated survival, neurological deficits, level of pain,
and spinal stability. Throughout the study period, postoperative care and rehabilitation were
customized according to the severity of the disease.

Clinical factors known to be associated with postoperative adverse events were in-
cluded as explanatory variables via a manual chart review [18,19,22,36–38]: age; sex; body
mass index (BMI; kg/m2); Modified Charlson Comorbidity Index [36]; primary tumor
type categorized by Katagiri et al. as slow, moderate, or rapid growth [37]; tumor location;
additional metastases; American Spinal Injury Association (ASIA) impairment scale at
the time of surgery [39]; previous systemic therapy; previous local radiotherapy; spinal
pain; region of spinal metastases (thoracic, lumbar, cervical, or combined); number of spine
levels undergoing surgery; type of surgical treatment; surgical approach (posterior, anterior,
or combined); the duration of primary tumor diagnosis until metastatic operation (days);
completed pathological fracture; and the preoperative albumin level (g/dL) closest to the
surgery, with a maximum range of being within two weeks of the operation. The patient’s
comorbidity status underwent evaluation utilizing the Modified Charlson Comorbidity
Index—an algorithm grounded in ICD-9 codes that classifies 12 preoperative comorbidities.
This index assigns scores ranging from 0 to 24, with higher scores being indicative of a
more severe comorbidity status. Preoperative neurological status was dichotomized using
the ASIA Impairment Scale, categorized as “neurological deficits” with grades A, B, C, D,
or “no neurological deficits” with grade E, encompassing individuals with prior, but not
current, deficits.

We defined previous systemic therapy as all forms of nonsurgical adjuvants or non-
radiotherapeutic adjuvants administered before the surgery, including cytotoxic, immuno-
logic, metabolic, or hormonal therapy. Surgical procedures were categorized into four
groups as follows: (1) vertebrectomy or corpectomy with stabilization, (2) decompression
and stabilization, (3) decompression alone, or (4) stabilization alone. The Katagiri grouping
was based on histology, with slow growth encompassing hormone-dependent breast can-
cer, hormone-dependent prostate cancer, malignant lymphoma, malignant myeloma, and
thyroid cancer. Moderate growth included non-small cell lung cancer with molecularly
targeted therapy, hormone-independent breast cancer, hormone-independent prostate can-
cer, renal cell carcinoma, sarcoma, other gynecological cancer, and others. Rapid growth
comprised other lung cancer, colon and rectal cancer, gastric cancer, hepatocellular carci-
noma, pancreatic cancer, head and neck cancer, other urological cancer, esophageal cancer,
malignant melanoma, gallbladder cancer, cervical cancer, and cases of unknown origin.

2.3. CT Body Composition Assessment

A CT scan of the abdominal region was performed, utilizing cutting-edge 16-slice or 64-
slice CT scanners manufactured by Siemens (Erlangen, Germany) or GE Healthcare (Chicago,
IL, USA). The imaging protocol incorporated precise parameters, including a 5 mm slice
thickness, 15 mm/s table feed, 1.5 pitch, 120 kVP tube voltage, variable tube current (with a
maximum of 450) mAs, and sagittal and coronal reconstructions at a 2 mm thickness with
2 mm intervals. These scanners underwent rigorous annual testing in accordance with the
stringent standards set forth by the American Association of Physicists in Medicine (AAPM)
and the American College of Radiology (ACR). Robust clinical quality assurance measures
were implemented to ensure the uniformity and reproducibility of the scans.

Measurements were performed at the mid-portion of the L4 vertebral body level
using an in-house automated machine learning algorithm designed for body composition
analysis. This artificial intelligence algorithm segmented and quantified the following
body composition parameters: the cross-sectional area (CSA) of subcutaneous adipose
tissue (SAT) (Figure 1), visceral adipose tissue (VAT) (Figure 2), and paraspinal/abdominal
muscle (Figure 3). Figure 4 shows the full segmentation of an axial image. Sarcopenia was
defined by the total muscle CSA (cm2) divided by height squared (m2) with cutoff values
of <52.4 cm2/m2 for men and <38.5 cm2/m2 for women [40]. The process and machine
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learning-produced data were overseen by a singular, highly trained imaging analyst (CGB),
maintaining strict blindness to clinical details and patient outcomes. Segmentation adjust-
ments were executed using the Horos DICOM viewer (version 6.5.2, www.horosproject.com,
1 June 2021), under the supervision of two senior fellowship-trained musculoskeletal radi-
ologists (MT, MAB).
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2.4. Outcomes

The outcome variables were (1) LOS (days), (2) postoperative complications within
30 days, and (3) reoperations until final follow-up or death. We considered the follow-
ing postoperative complications within 30 days: venous thromboembolism, pneumo-
nia, myocardial infarction, urinary tract infection, sepsis, wound infection and/or dehis-
cence [16,38,41,42]. Only symptomatic venous thromboembolisms were taken into account,
manifesting as swelling, redness, pain in the lower extremities, or respiratory issues. This
was defined as any symptomatic pulmonary embolism or symptomatic distal or proximal
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deep vein thrombosis diagnosed within 30 days of the surgery, using the following diag-
nostic procedures: venography, impedance plethysmography, pulmonary arteriography,
chest CT, ventilation-perfusion lung scan, and vascular ultrasound [38]. Reoperation was
defined as unplanned surgical reintervention to the initial surgical site. Death was outlined
as mortality resulting from any cause, as we expected that the majority of deaths were
related to metastatic disease in these terminal patients. The date of death was determined
using the Social Security Death Index and by reviewing medical records. There was no loss
to follow up within 30 days, and the median follow-up was 9 months (interquartile range
[IQR], 3–25 months). Follow-up was verified until 15 May 2020.

2.5. Statistical Analysis

Continuous variables are presented as medians with IQRs and categorical variables
as frequencies with percentages. Linear regression was used to test continuous outcomes
(LOS) and logistic regression for categorical outcomes (complications within 30 days and
reoperations). Each separate body composition measure with p < 0.10 was included in
multivariate analyses while controlling for all clinical variables that were p < 0.10 in
bivariate analysis. Collinearity was tested, and BMI was excluded from the multivariate
analyses because of high collinearity with the body composition measures. Multiple
imputation (n = 40) was applied for the following missing variables: BMI in 11 patients
(6%) and ASIA score in 2 patients (1%). No multiple imputation was applied for the body
composition measures as this was the variable of interest. A two-tailed p-value of <0.05
was considered significant. All statistical analyses were performed using R version 3.6.3
(The R Foundation, Vienna, Austria), R studio version 1.3.887 (RStudio, Boston, MA, USA),
and Stata 15.0 (StataCorp LP, College Station, TX, USA). Mendeley Desktop Version 1.19.4
(Mendeley Ltd., London, UK) was used as a reference management software.

3. Results
3.1. Patients and Characteristics

Of the included 196 patients, 123 (63%) were males and 73 (37%) were females with a
median age of 62 years (IQR, 53–70) and a BMI of 26 kg/m2 (IQR, 23–30). Forty-two percent
of the patients had sarcopenia. The median preoperative albumin value was 3.8 g/dL
(IQR, 3.4–4.2). The median duration of the primary diagnosis until metastatic operation
was 397 days (IQR, 26–1464). Additional comorbidities were present in 127 (65%) patients.
Additional metastases besides the treated spinal lesion were found in 138 (70%) of patients.
The most common primary tumors included renal cell (14%), lung (13%), breast (7.7%),
and multiple myeloma (7.1%). When categorized according to the primary tumor growth,
rapid tumors were most frequent (41%; 81/196), followed by moderate tumor growth (34%;
67/196) and slow moderate growth (25%; 48/196). Most patients had spinal pain (88%;
172/196). The preoperative ASIA impairment scale was almost equal between patients
presenting neurological deficits (45%; 88/196) and patients without neurological deficits
(55%; 108/196). The most frequent metastases region was thoracic spine (54%; 105/196),
followed by the lumbar region (28%; 54/196), cervical region (14%; 28/196), and combined
(4.6%; 9/196). Over half of the patients received previous systemic therapy (55%; 107/196)
and had a completed pathological fracture (54%; 106/196). Most patients underwent one
spinal level undergoing surgery (47%; 93/196), followed by three or more levels (36%;
71/196) and two levels (16%; 32/196). The most common surgical approach was posterior
(86%; 169/196) and anterior (11%; 22/196), while a combined approach was only performed
in five patients (2.6%). Both complete vertebrectomy or corpectomy with stabilization (40%;
78/196) and partial vertebrectomy or corpectomy with stabilization were performed (39%;
76/196) and were the most often performed surgeries, followed by decompression (14%;
28/196) and stabilization (7.1%; 14/196) (Table 1).
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Table 1. Baseline characteristics of patients surgically treated for spinal metastases (n = 196).

Variables Spine (n = 196)

Median (IQR)

Age (years) 62 (53–70)

Body mass index (in kg/m2) a 26 (23–30)

Duration primary diagnosis untill metastatic operation (days) 397 (26–1464)

Albumin (g/dL) 3.8 (3.4–4.2)

% (n)

Male 63 (123)

Additional Modified Charlson comorbidity b 65 (127)

Primary tumor growth c

Slow 25 (48)
Moderate 34 (67)
Rapid 41 (81)

Additional metastases d 70 (138)

Spinal pain 88 (172)

ASIA impairment scale (preoperative) a

Neurological deficit (A, B, C, or D) 45 (88)
No neurological deficit (E) 55 (108)

Metastases region
Thoracic 54 (105)
Lumbar 28 (54)
Cervical 14 (28)
Combined 4.6 (9)

Previous local radiotherapy 33 (64)

Previous systemic therapy 55 (107)

Pathological fracture 54 (106)

Number of spine levels undergoing operation
1 47 (93)
2 16 (32)
3 or more 36 (71)

Type of surgery
Vertebrectomy or corpectomy with stabilization 40 (78)
Decompression and stabilization 39 (76)
Decompression 14 (28)
Stabilization 7.1 (14)

Surgical approach
Posterior 86 (169)
Anterior 11 (22)
Combined 2.6 (5)
Two-staged procedure 1.0 (2)

Body composition measures a Median (IQR) or % (n)

Subcutanous adipose tissue
Area (cm2) 249 (180–320)

Visceral adipose tissue
Area (cm2) 124 (75–211)

Muscle
Area (cm2) 140 (116–165)

Outcomes

Length of stay in days 9 (6–13)

Postoperative complications within 30 days 31% (61)

Reoperations 16% (31)

IQR = interquartile range; kg/m2 = kilogram per square meter; g/dL = gram per deciliter; ASIA = American
Spinal Injury Association; cm2 = square centimeters. a Body mass index was available in 94% patients (185),
ASIA impairment scale in 99% patients (194), SAT area in 80% patients (157), VAT area in 100% of the patients
(196), and muscle cross sectional area in 80% patients (157). b These values were based on any additional
comorbidity on top of the metastatic disease score according to the modified Charlson Comorbidity Index. c Based
on histology groupings; slow growth includes hormone-dependent breast cancer, hormone-dependent prostate
cancer malignant lymphoma malignant myeloma, and thyroid cancer; moderate growth includes non-small
cell lung cancer with molecularly targeted therapy, hormone-independent breast cancer, hormone-independent
prostate cancer, renal cell carcinoma, sarcoma, other gynecological cancer, and others; and rapid growth includes
other lung cancer, colon and rectal cancer, gastric cancer, hepatocellular carcinoma, pancreatic cancer, head and
neck cancer, other urological cancer, esophageal cancer, malignant melanoma, gallbladder cancer, cervical cancer,
and unknown origin. d Any metastasis outside of the lesion were treated.
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3.2. Length of Stay (LOS)

The median length of stay was 9 days (IQR, 6–13). During bivariate analysis, four
clinical variables were associated with increased LOS: lower albumin level, additional
comorbidity, three or more spine level undergoing operation, and a combined surgical
approach (Supplementary Table S1). No body composition measurements were associated
with the length of stay (all p > 0.10).

3.3. Postoperative Complications within 30 Days

Postoperative complications within 30 days occurred in 61 (31%) patients. During
bivariate analysis, lower muscle CSA (OR [95% CI] = 0.99 [0.98–0.99], p = 0.03) was asso-
ciated with increased postoperative complications within 30 days, and there was a trend
for lower SAT CSA (OR [95% CI] = 0.99 [0.99–1.01], p = 0.06). The following four clinical
variables were associated with increased postoperative complications: lower BMI, lower
albumin, ASIA score, and thoracic metastases. BMI was not included in multivariate analy-
sis due to high collinearity with the body composition measurements. With multivariate
analysis, lower muscle CSA (OR [95% CI] = 0.99 [0.98–0.99], p = 0.047) was associated
with increased postoperative complication rate after controlling for albumin, ASIA score,
previous systemic therapy, and thoracic metastases (Table 2). SAT CSA lost significance
when analyzing 30-day postoperative complications after controlling for the four clinical
variables (p = 0.06).

Table 2. Multivariable logistic regression analysis of the muscle area for 30-day postoperative
complications after surgery for spinal metastases using pooled imputed data.

Variables Odds Ratio (95% CI) Standard-Error p-Value

Albumin 0.42 (0.21; 0.82) 0.143 0.01

ASIA impairment scale (preoperative)
Neurological deficit (A, B, C, or D) Reference value
No neurological deficit (E) 0.65 (0.30; 1.41) 0.258 0.28

Metastases region
Thoracic Reference value
Lumbar 0.88 (0.39; 1.98) 0.363 0.76
Cervical 0.12 (0.02; 0.55) 0.093 0.01
Combined 0.11 (0.01; 1.17) 0.133 0.07

Previous systemic therapy 1.27 (0.58; 2.78) 0.508 0.55

Muscle area (cm2) 0.99 (0.98; 0.99) 0.006 0.047
CI = confidence interval. Bold p-values are <0.05.

3.4. Reoperations

Reoperations occurred in 31 (16%) patients. No body composition measurements were
associated with reoperation (all p > 0.10).

4. Discussion

Our study showed that low muscle CSA obtained from opportunistic abdominal CTs
using automated machine learning algorithms can predict post-surgical complications in
patients undergoing spine surgery for metastatic disease, independent of other established
risk factors. The opportunistic assessment of body composition using artificial intelligence
could therefore become an imaging biomarker for risk assessment in cancer patients with
metastatic disease who routinely undergo abdominal CTs for staging and surveillance.

Body composition assessments using opportunistic CTs have been increasingly used
for prognostication in patients with malignancies who are undergoing surgery [24,28,31,32].
However, only few studies have assessed the impact of body composition measures on
postoperative adverse events, which are critical for the shared decision making between
surgeons and potential surgical candidates [24]. To our knowledge, this study is the first
to determine the predictive value of body composition assessed using machine learning
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technology on opportunistic CTs to determine LOS, postoperative complications within
30 days of surgery, and reoperations in patients with spinal metastases undergoing sur-
gical treatment. We demonstrated that lower muscle CSA was associated with increased
postoperative complications within 30 days, suggesting that body composition can be used
in conjunction with clinical factors to better predict adverse outcomes after surgery.

The association between lower muscle CSA and greater postoperative complications
within 30 days is consistent with other oncology studies [43]. In a review of five studies
that assessed complications in patients with abdominal and genitourinary malignancies,
low muscle CSA was an important prognostic factor for complications and survival [43].
Our study supports these findings by including the largest spinal cohort to date with
various primary malignancies, controlling for multiple clinical cofounders, and establishing
a convenient and reliable method of extracting body composition measures via the use of
an in-house automated algorithm.

Cachexia, a systemic tissue-wasting process that affects the quality and amount of
muscle tissue, may be the cause of body composition alterations found in individuals with
metastatic illness [44]. Cancer causes a hypermetabolic state caused by a mix of tumor
metabolism and systemic inflammation which alters the homeostasis of the body [45]. This
combined with cancer-related fatigue, anorexia, and limited functional status leads to a
depletion of skeletal muscle [43,46]. This may be mediated by the inflammatory cytokines
such as tumor necrosis factor-alpha or IL-6, which exert catabolic effects on muscle by
stimulating protein loss in muscle cells [47,48]. The catabolic effect can lead to greater
skeletal muscle loss than in other tissues. A better understanding of the role of these
inflammatory cytokines and the molecular mechanism behind disproportionate skeletal
muscle loss in elderly, surgical, and oncologic populations may help us to understand the
relation of this finding to the outcome. Additionally, this understanding may also point us
towards other body composition parameters that can further help us improve prognostic
tools, treatment modalities, and preventative measures.

4.1. Future Implications

The availability of preoperative CT scans in cancer patients and automated machine
learning algorithms that can quickly and reliably extract body composition measures make
opportunistic body composition analysis an attractive imaging biomarker for the prediction
of outcomes. However, future prospective studies should determine the value of these
CT data in the clinical setting with standardized CT protocols in large data sets from
multiple diverse centers. A prognostication tool that considers both survival and adverse
outcomes and is proven to be beneficial in the clinical setting could then be added to the
existing electronic healthcare software, automatically inputting the clinical and algorithm
obtained body composition data into the model. By assessing the likelihood of survival
and different postoperative complications, it will allow surgeons and patients to make
informed decisions regarding the best approach to the treatment of their metastatic disease.

4.2. Limitations

This study has several limitations. This was a retrospective study from one tertiary
medical center, causing the inevitable risk of selection and confounding bias; in addition,
surgery is typically not the initial treatment for spine metastases. Instead, it is utilized
when there are neurological complications. Spinal cord compression and impending or
unstable pathological fractures are often urgent indications for surgery, and spending time
to predict postoperative outcomes may not be useful or appropriate. However, creating the
best tools possible to aid physicians and patients in the shared decision-making process
will be useful to prevent the postoperative morbidity and mortality associated with surgery.
Additionally, improving or maintaining the quality of life is recognized as an important
outcome when evaluating a patient for the surgical management of spinal metastases [7].
Our hospital did not assess the quality of life during routine case visits, which could have
been a valuable inclusion in this study, especially given the frailty of the patient population.
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Furthermore, this study does not stratify the findings between male and female patients.
It has been shown that there are inherent intrinsic differences in the muscle and body
composition measures of males and females [49,50]. The cohort in this study was 63%
male, and is unlikely to affect the utility of this technology for outcome prediction. Future
prospective studies using opportunistic CTs for body composition measurements across
various populations with sex stratification would be required to assess the generalizability
of these findings. Strengths of our study include the large longitudinal cohort with detailed
clinical and outcome measures, and the detailed assessment of body composition.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/diagnostics14080844/s1, Supplementary Table S1. Bivariate
linear regression for hospitalization, and bivariate logistic regression for postoperative complications
within 30 days, and reoperations in spinal metastases undergoing surgery (n = 196).
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