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Abstract: This study introduces a specialized Automatic Speech Recognition (ASR) system, leveraging
the Whisper Large-v2 model, specifically adapted for radiological applications in the French language.
The methodology focused on adapting the model to accurately transcribe medical terminology and
diverse accents within the French language context, achieving a notable Word Error Rate (WER) of
17.121%. This research involved extensive data collection and preprocessing, utilizing a wide range
of French medical audio content. The results demonstrate the system’s effectiveness in transcribing
complex radiological data, underscoring its potential to enhance medical documentation efficiency
in French-speaking clinical settings. The discussion extends to the broader implications of this
technology in healthcare, including its potential integration with electronic health records (EHRs)
and its utility in medical education. This study also explores future research directions, such as
tailoring ASR systems to specific medical specialties and languages. Overall, this research contributes
significantly to the field of medical ASR systems, presenting a robust tool for radiological transcription
in the French language and paving the way for advanced technology-enhanced healthcare solutions.

Keywords: automatic speech recognition (ASR); medical transcription; radiology; whisper large-v2
model; language-specific ASR systems; French language processing; AI in healthcare

1. Introduction

The integration of Artificial Intelligence (AI) in healthcare, particularly through Au-
tomatic Speech Recognition (ASR) systems, has been a subject of increasing interest in
recent years. These systems, demonstrating significant potential in various medical appli-
cations, have revolutionized the way patient–physician interactions are transcribed and
clinical documentation is managed [1]. Recent explorations into online therapy platforms
underscore ASR’s expanding role in mental health, where nuanced language processing
enhances therapeutic outcomes [2]. In the field of radiology, where accuracy and efficiency
in reporting are paramount, the application of ASR technology can be particularly transfor-
mative, offering a new paradigm in the way radiologists work and interact with diagnostic
data [3]. Similarly, advancements in ASR for cochlear implants illustrate the technology’s
potential to improve communication for individuals with hearing impairments, showcasing
its adaptability to diverse healthcare needs [4].

Despite the global advancements in ASR technology, its application within the French
medical context has been limited. This gap is further addressed by recent studies leveraging
Large Language Models to refine the accuracy of ASR in medical transcription, promising
more reliable patient records [5]. This gap is primarily due to the linguistic and terminologi-
cal specificity required in medical ASR systems, which are often not met by general-purpose
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ASR tools [6]. The development of a French-language medical ASR system is thus a techno-
logical and linguistic challenge, requiring a deep understanding of medical terminologies
and the nuances of spoken French in a clinical setting [7]. The need for extensive and
specialized datasets, encompassing a wide range of medical terminologies, accents, and
speech patterns specific to the medical profession, poses a significant hurdle [7]. While the
broader application of ASR technology shows immense promise, the French radiological
sector presents unique challenges such as the need for highly specialized terminologies and
the accommodation of diverse French dialects and accents, which our research specifically
aims to address. However, this also presents an opportunity to develop tailored solutions
that can significantly benefit the medical community, particularly in non-English-speaking
regions. Recent studies have shown promising results in cross-lingual applications of ASR,
adapting systems to work with low-resource languages [8]. Moreover, the development of
specialized ASR systems for healthcare chatbots in schools demonstrates this technology’s
potential in pediatric care, contributing to early health assessments [9].

While ASR’s impact spans across multiple medical disciplines, the field of radiology
in French healthcare settings remains largely untapped, marked by a critical need for
customized ASR solutions. Our research directly responds to this gap by offering an ASR
system that is not only linguistically and terminologically precise but also attuned to the
operational workflows of French radiologists, thereby promising a significant leap towards
streamlined radiological reporting and enhanced diagnostic efficiencies.

The use of advanced neural network models and language processing techniques
has been explored to enhance the accuracy and reliability of medical ASR systems [10,11].
These advancements are not only technical but also encompass a broader understanding of
the medical field, ensuring that the developed systems are finely tuned to the specific needs
of healthcare professionals. Amidst these advancements, our study carves out a distinct
niche by developing an ASR system that not only caters to the French-speaking medical
community but is also intricately tailored to the nuanced demands of radiological termi-
nology and practices in Francophone countries. Such nuanced applications of ASR, from
enhancing mental health support to improving medical equipment interaction, underscore
the technology’s evolving role in facilitating comprehensive and personalized care [12].

The primary objective of this research was to develop a specialized French-language
ASR system, tailored for radiological applications. This system aims to facilitate radiologists
in efficiently generating medical image reports, thereby enhancing the overall workflow
in diagnostic procedures [13]. The novelty of this project lies in its focus on creating
a dedicated ASR tool for radiology, addressing the scarcity of French-language audio
datasets in the medical domain. By leveraging machine learning techniques, specifically
tailored for medical jargon and radiological terms, this tool aims to provide accurate and
efficient transcription services [14]. The potential of ASR in medicine is vast, ranging from
automated transcriptions of medical reports to assisting in the drafting process, indexing
medical data, and enabling voice-based queries in medical databases [15].

The implications of ASR technology extend beyond radiology to other medical fields.
For instance, in emergency medical services, ASR has been assessed for its impact on stroke
detection, showing potential for improving response times and diagnostic accuracy [16]. In
long-term care for older adults, ASR models have been used to facilitate interview data
transcription, saving time and resources [17]. Even in operating rooms, ASR techniques
can be used to improve the dialogue between the surgeon and their human (e.g., surgical
nurses) or digital (e.g., robotic arms) assistants [18,19]. Additionally, in pediatric care,
ASR and voice interaction technologies have been explored for remote care management,
demonstrating feasibility and effectiveness in tracking symptoms and health events [20].

Recent reviews in the field of healthcare have highlighted significant advancements
in Automatic Speech Recognition (ASR) technology and its diverse applications. These
advancements underscore the transformative potential of ASR in healthcare, paving the
way for more efficient, accurate, and patient-centered medical practices.
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A comprehensive review of state-of-the-art approaches in ASR, speech synthesis, and
health detection using speech signals has shed light on the current capabilities and future
directions of speech technology in healthcare [21]. This review emphasizes the growing
importance of ASR in various healthcare settings, from clinical documentation to patient
monitoring.

Another study explored the potential of real-time speech-to-text and text-to-speech
converters, using Natural Language Grammar (NLG) and Abstract Meaning Representa-
tion (AMR) graphs, to enhance healthcare communication and documentation [22]. This
technology could revolutionize how medical professionals interact with electronic health
records, making the process more intuitive and efficient.

The robustness of ASR systems in noisy environments, a common challenge in medical
settings, has also been a focus of recent research [23]. Enhancing the noise robustness of
ASR systems is crucial for their effective deployment in diverse healthcare environments,
from busy emergency rooms to outpatient clinics.

Furthermore, a systematic literature review on various techniques within the domain
of speech recognition provides a comprehensive understanding of the advancements and
challenges in this field [24]. This review highlights the rapid evolution of ASR technology
and its increasing relevance in healthcare.

In addition to these technical advancements, the integration of ASR with patient-
reported outcomes and value-based healthcare has been explored [25]. This integration
signifies a shift towards more personalized and patient-centered healthcare models, where
patient voices and experiences are directly captured and analyzed through advanced speech
recognition technologies.

These reviews and studies collectively illustrate the significant strides made in ASR
technology and its increasing applicability in healthcare. From enhancing clinical work-
flows to improving patient engagement, ASR technology is set to play a pivotal role in the
future of healthcare delivery.

2. Methods

This study on developing an Automatic Speech Recognition (ASR) system tailored for
radiological applications meticulously documents the methods and processes integral to
this research. This section begins with a detailed description of the data preprocessing tech-
niques and datasets foundational to the ASR system. It then describes the model selection
criteria, training processes, and the deployment of the speech recognition application. The
subsequent sections delve into the tasks and design of the system, followed by an outline
of the evaluation metrics that quantify the performance of the system.

2.1. Data Preprocessing
2.1.1. Data Source Selection and Collection Methodology

This research utilized a diverse array of audio content, with a primary focus on
YouTube, which constituted approximately 90% of the sourced data. This was supple-
mented by audiobooks and podcasts. The selection strategy was driven by the need to
cover a broad spectrum of radiological topics. YouTube, as a rich repository, provided
access to a wealth of relevant material including radiology conferences, online courses, and
medical descriptions. The integration of audiobooks and podcasts, forming about 10% of
the dataset, enriched it with detailed presentations on radiological themes, ensuring a rich
variety of accents and tonalities crucial for the development of a robust ASR system.

In this comprehensive approach to data collection, a multi-tiered methodology was
employed. This involved systematic categorization based on human body systems, a
targeted keyword analysis for each organ and imaging type, and the inclusion of diverse
pedagogical voices. A critical component of the methodology was the technical extraction
of audio from YouTube videos and podcasts, using sophisticated software tools to isolate
the audio track from visual elements and to extract high-quality audio. This process created
an audio-centric dataset, focusing on the auditory dimensions of medical instruction.
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The compiled dataset boasts over 240 h of audio content, representing a vast educa-
tional repository.

2.1.2. Data Collection Methodology

The methodology adopted for our exhaustive research and diverse data collection
covering the entire human body was based on a methodical approach. This process
revolved around a detailed exploration of various body systems, including the nervous
system, circulatory system, digestive system, respiratory system, and skeletal system,
among others. Each of these systems was meticulously investigated to identify the organs
they comprise. This targeted and comprehensive approach facilitated the gathering of data
specifically suited for radiology.

Simultaneously, each organ underwent an in-depth exploration aimed at classifying
various pathologies and abnormalities diagnosable through radiographic images. This step
was crucial to ensure precise and complete data collection.

To enrich the database, each consulted video was supplemented with relevant meta-
data. This includes vital information such as the type of imaging described in the video,
whether MRI, X-ray, or another type. This step aimed to ensure sufficient diversity in
imaging, considering that each imaging type is associated with specific terms. Furthermore,
the metadata includes details such as the speaker’s accent and gender, the total video
duration, the organ described in the video, and the body system to which the presented
organs belong. This information was methodically organized and stored in a .csv file for
efficient management and future reference. Table 1 details the distribution of this material
among the various body systems, highlighting the dataset’s depth and scope:

Table 1. Distribution of audio content duration by body system.

Body System Duration (Hours)

Nervous System 53 h 32 min
Musculoskeletal System 61 h 27 min
Endocrine System 23 h 42 min
Respiratory System 22 h 54 min
Cardiovascular System 26 h 11 min
Digestive System 19 h 43 min
Reproductive System 17 h
Urinary System 6 h 17 min
Auditory System 5 h 10 min
Lymphatic and Blood System 4 h 21 min

Additionally, the number of hours of data collected for each speaker accent was
calculated, as demonstrated in Table 2, to ensure a diverse representation of accents in the
dataset.

Table 2. Distribution of audio content duration by accent.

Accent Duration (Hours)

African 16 h 33 min
Algerian 25 h 19 min
Canadian 2 h 38 min
Native French 155 h 22 min
Moroccan 29 h 17 min
Tunisian 11 h 13 min

2.1.3. Transcription Generation

The transcription generation phase was a pivotal component of this study, entailing
a rigorous evaluation of various transcription tools and models. This evaluation was
meticulously orchestrated to not only gauge the performance of these tools but also to
ascertain their alignment with the intricate requirements characteristic of radiological audio
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content. An extensive exploration of transcription tools was undertaken, encompassing
leading-edge models such as Whisper, Conformer-CTC Large, and Wav2Vec 2.0. These
models were deliberately selected for their avant-garde capabilities in speech recognition,
alongside their potential applicability in the domain of medical imaging. This exploration
was further augmented through the integration of Python’s SpeechRecognition library
and specialized online transcription services like oTranscribe, thereby facilitating a holistic
comparison between traditional transcription methodologies and contemporary machine
learning-driven approaches.

To objectively evaluate the efficacy of each transcription tool, the Word Error Rate
(WER) metric was employed as the principal evaluative criterion. A reference transcription
was meticulously constructed for a specific 12 s audio sequence, serving as a benchmark for
this assessment. The WER, recognized as a gold standard in speech recognition research,
was computed utilizing Python’s Jiwer library, thus providing a quantitative foundation
for the comparative analysis of transcription accuracy across various tools. This evalua-
tive process was intricately designed to surmount the challenges inherent in transcribing
medical imaging content, which is frequently imbued with specialized terminology and
encompasses a spectrum of accents. As a result, the efficacy of each tool was appraised not
solely on the grounds of its overall accuracy but also in terms of its adeptness in navigating
the linguistic and acoustic idiosyncrasies intrinsic to the dataset.

The culmination of this exhaustive evaluation is encapsulated in Table 3, presenting
a nuanced comparison of the WER scores attributed to each transcription tool. This
table furnishes invaluable insights into the comparative strengths and limitations of each
tool within the context of this research. The insights derived from this analysis were
instrumental in guiding our selection of the most apt transcription tool for the dataset.

Table 3. Comparative analysis of transcription tool performance based on word error rate.

Transcription Tools WER

SpeechRecognition (Python library supporting various engines including Google
Web Speech API, Sphinx, etc.) 0.228

oTranscribe (free online tool designed for audio transcription with features like
playback speed control, bookmarking, etc.) 0.628

Conformer-CTC Large (voice recognition model based on the Conformer-CTC
architecture, optimized for automatic speech transcription) 0.2

AssemblyAI (automatic speech transcription service using machine learning models) 0.100
Whisper Large-v2 (voice recognition model developed by OpenAI, designed for
automatic speech transcription) 0.142

Wav2Vec 2.0 (model developed by Facebook AI that excels in Automatic Speech
Recognition using a self-supervised learning approach) 0.257

In the pursuit of selecting an apt transcription tool for the ASR system, a comparative
analysis was conducted, centering on both the accuracy and practical applicability relative
to the extensive dataset at hand. The Whisper Large-v2 model, developed by OpenAI, was
identified as the optimal tool for this research endeavor. Despite the Assembly AI tool
manifesting the lowest WER, its utility was constrained by a usage limitation of three hours
per month, rendering it incompatible with the expansive scale of the dataset. In contrast,
Whisper Large-v2 showcased a competitive WER of 0.142 and afforded the requisite flexi-
bility for processing extensive audio inputs, accommodating sessions extending up to two
hours.

The selection of the Whisper model was underpinned by its proven adeptness in
navigating diverse and challenging audio environments, a capability of paramount impor-
tance given that the dataset comprised YouTube videos and podcasts often interlaced with
background noise and music. The efficacy of Whisper in such scenarios has been substanti-
ated through rigorous comparative evaluations with leading commercial and open-source
ASR systems [26]. These evaluations underscored Whisper’s superiority over the premier
open-source model, NVIDIA STT, across a multitude of datasets, and its competitive stance
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against commercial ASR systems, thereby underscoring its adaptability and reliability
across varied transcription contexts. This comprehensive performance assessment, as
evidenced in Figure 1, affirmed our decision to utilize Whisper Large-v2 for the dataset’s
transcription needs.
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Figure 1 offers a visual summary of the Whisper Large-v2 model’s Word Error Rates
(WERs) juxtaposed with those of other prominent ASR systems. It depicts a boxplot
distribution for each system, which includes the median WER and the interquartile ranges,
thereby furnishing a statistical comparison of the performance metrics. The selection of
the Whisper model was substantiated by this extensive assessment, affirming its capacity
to outperform the well-established NVIDIA STT model across diverse datasets and to
maintain competitive accuracy alongside proprietary ASR systems. The entire dataset was
transcribed using the Whisper Large-v2 model, developed by OpenAI, due to its proficiency
in handling diverse audio environments and its flexibility in processing extensive inputs.
This model processes audio in segments of 2 to 30 s, generating detailed transcriptions for
each, which are then combined to form the transcription for the entire audio file. Upon
transcription, the Whisper model generates a TSV file for each audio recording. This file
details the start and end times of each sound segment and its corresponding transcription,
ensuring a precise match between audio and text. The “start” and “end” columns within the
TSV file demarcate the commencement and conclusion of each sequence, offering a precise
temporal framework for the segmentation of both audio files and their transcriptions, as
illustrated in Figure 2.

This segmentation was essential for achieving an exact match between the audio
content and its textual representation. It ensured the generation of detailed and precise
transcriptions for each segment, which were subsequently amalgamated to formulate a
comprehensive transcription for each audio file. This methodological choice was predicated
on its efficacy in managing the voluminous audio dataset and its proficiency in capturing
the nuanced variations prevalent in medical dialogue.

To ensure transcription accuracy, an automated correction process was employed
using the Checkspeller library, supplemented by a custom script for specialized medical
terminologies. This dual approach effectively addressed both common grammatical errors
and the unique challenges posed by complex medical terms. To mitigate this limitation,
an integration of a specialized lexicon encompassing technical terms was undertaken,
significantly enhancing the transcription accuracy, as depicted in Figure 3.
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The aforementioned enhancements and rigorous verification processes underscore
the meticulous approach adopted in this study to ensure the generation of high-quality
accurate transcriptions. This commitment to precision laid a robust foundation for the
subsequent phases of the research, particularly in the development and fine-tuning of the
Automatic Speech Recognition (ASR) system tailored for radiological applications.

To demystify the transcription process and the concomitant verification mechanism
with greater granularity, the subsequent Table 4 delineates the overarching methodology
employed for the dataset’s transcription. This table includes a comprehensive account
of the number of audio files processed, the aggregate duration of audio content, and the
salient features of the transcription verification approach, thereby providing a succinct
overview of the transcription methodology.
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Table 4. Dataset transcription and verification overview.

Attribute Detail

Total Audio Duration 240 h and 21 min
Number of Audio Files 69,643

Transcription Verification Automated correction with Checkspeller
library and custom script for medical terms

It is essential to clarify that the entire dataset underwent transcription through the se-
lected Whisper model, which processes audio in segments from 2 to 30 s. This segmentation
ensured detailed and accurate transcription for each segment, which were then cohesively
assembled to form the complete transcription for each audio file. This methodology was
chosen for its effectiveness in managing the extensive audio dataset and for its ability to
capture the nuanced variations in medical dialogue.

Table 4 provides an overview of the transcription and verification process, detailing the
total audio duration transcribed, the number of audio files processed, and the transcription
verification methods employed.

2.1.4. Feature Extraction

The preparation of audio data for the ASR system involved comprehensive prepro-
cessing and feature extraction. Using the librosa library, steps such as noise reduction,
silence trimming, resampling, and compression were implemented to ensure the audio
quality met the transcription requirements. The process also incorporated the Whisper
Feature Extractor class from the Hugging Face’s Transformers module. This stage focused
on adjusting parameters like chunk length, feature size, hop length, and sampling rate,
aligning them with the specific demands of the research. These modifications were essential
for transforming the raw audio into a format suitable for machine learning models, laying
the groundwork for model training and evaluation in this study.

2.2. Model Selection and Benchmarking

In developing an Automatic Speech Recognition (ASR) system tailored for radiological
applications, a pivotal step involved selecting the most suitable model to ensure high
transcription accuracy. Given the critical nature of radiological reports, where precision
in medical terminology is paramount, the choice of the ASR model was approached with
rigorous benchmarking criteria.

2.2.1. Benchmarking Strategy and Datasets

The benchmarking strategy was meticulously designed to evaluate various ASR
models across multiple dimensions, including the Word Error Rate (WER), computational
efficiency, and adaptability to diverse speech contexts. This comprehensive approach
was essential to ascertain the models’ performance in accurately transcribing radiological
speech content, which is often laden with specialized terminology and presented in varied
accents and background noises.

To facilitate a thorough comparison, a selection of datasets known for their relevance
and complexity in speech recognition tasks was used. These included Common Voice,
Multilingual LibriSpeech, VoxPopuli, African Accented French, and Fleur. Each dataset
offered a unique set of challenges and speech characteristics, thereby providing a robust
framework for evaluating the models’ effectiveness across a wide spectrum of real-world
applications.

2.2.2. Comparative Analysis and Model Selection

Our comparative analysis of ASR models, particularly focusing on the variants of
the Whisper model, was grounded on a comprehensive benchmarking study utilizing
datasets extracted from the Hugging Face Model Hub [27]. This approach, leveraging the
platform’s extensive repository of machine learning models, provided significant insights
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into each model’s capabilities across a variety of speech recognition contexts. The Whisper
Large-v2 model consistently outperformed its counterparts in terms of the WER across all
datasets, underscoring its superior transcription accuracy. This was particularly evident in
the handling of medical terminologies and in environments with diverse acoustic profiles,
making it highly suitable for the project’s requirements.

For instance, in the Common Voice dataset, Whisper Large-v2 achieved a remarkable
WER of 7.67%, significantly lower than the other models evaluated. Similar trends were
observed across other datasets, with Whisper Large-v2 maintaining the lowest WER,
affirming its exceptional performance in diverse speech recognition contexts.

These findings are encapsulated in the comprehensive benchmarking shown in Table 5,
which presents a side-by-side comparison of the Whisper Large-v2 model against other
leading ASR models across various datasets used in our analysis. This consolidated table
underscores the consistent superiority of the Whisper Large-v2 model in terms of the
Word Error Rate (WER) across all datasets, affirming its exceptional capability to meet the
intricate requirements of radiological speech transcription.

Table 5. Benchmarking using various datasets.

Fine-Tuned Model Common Voice
WER (%)

LibriSpeech
WER (%)

VoxPopuli
WER (%)

African Accented
French WER (%)

Fleur
WER(%)

bofenghuang/asr-wav2vec2-ctc-french 11.440 5.130 9.330 16.220 10.100
bofenghuang/whisper-large-v2-french 7.670 4.030 8.660 4.310 4.980
jonatasgrosman/whisper-large-fr-cv11 9.087 _ _ _ 8.686
bofenghuang/asr-wav2vec2-xls-r-1b-ctc-
french 14.800 9.390 11.800 22.980 _

bofenghuang/whisper-medium-cv11-french 8.540 5.860 11.350 7.020 6.850
bofenghuang/deprecated-whisper-large-v2-
cv11- french-punct-plus 8.030 _ _ _ 5.260

bofenghuang/whisper-medium-french 8.730 4.440 9.460 4.560 5.940
bofenghuang/whisper-small-cv11-french 10.990 8.910 _ 9.260 9.830
pierreguillou/whisper-medium-french 11.141 _ _ _ _
sanchit-gandhi/whisper-small-fr-1k-steps 16.998 _ _ _ _

This rigorous selection and benchmarking process guaranteed that the foundation of
the ASR system proposed in this study rests on a model surpassing the stringent require-
ments of medical speech transcription, setting the stage for notable progress in radiological
diagnostics.

2.3. Implementation
2.3.1. Hardware Assessment and Initial Setup

Before embarking on the fine-tuning process, a thorough assessment of the computa-
tional resources was essential. This step is critical when dealing with advanced machine
learning models like the Whisper Large-V2, which boasts 1.55 billion parameters, a testa-
ment to its complexity and capability. The hardware assessment centered on the GPU’s
specifications, which play a pivotal role in a model’s training efficiency and speed.

The GPU, or Graphics Processing Unit, is a specialized electronic circuit designed to
accelerate the creation and rendering of images, videos, and animations. It is also highly
effective for the complex mathematical calculations often found in machine learning tasks,
making it an indispensable resource in the setup.

For this study, a Tesla T4 GPU was used, known for its high performance in deep
learning and AI applications. Below, Table 6 outlines the key specifications of the hardware
setup.
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Table 6. Hardware specifications.

Attribute Detail

GPU Tesla T4
GPU Memory 14.61 GB
GPU Computing Power 7.5 TFLOPs

• Tesla T4: This GPU is part of NVIDIA’s Turing family, optimized for deep learning
inference. The T4 is specifically designed to accelerate diverse cloud workloads,
including high-performance computing, deep learning training and inference, machine
learning, data analytics, and graphics.

• GPU Memory: The 14.61 GB of memory available on the Tesla T4 GPU is crucial for
handling large datasets and complex neural networks. In deep learning tasks, the GPU
memory needs to accommodate the model’s parameters, gradients, and intermediate
data generated during training. The Whisper model’s vast number of parameters
necessitates a GPU with substantial memory to ensure smooth and efficient training.

• GPU Computing Power: Measured in TFLOPs (Tera Floating-Point Operations per
Second), its computing power of 7.5 TFLOPs indicates this GPU’s capability to perform
7.5 trillion floating-point calculations per second. This high level of computational
power is necessary to process the numerous operations involved in training the
Whisper Large-V2 model, including matrix multiplications and other tensor operations
fundamental to deep learning.

These specifications underpin the model’s training process, providing the necessary
computational resources to handle the intricate tasks associated with fine-tuning a state-of-
the-art ASR system like Whisper Large-V2. The robustness of the Tesla T4, combined with
its ample memory and computing power, ensures that the model can be trained efficiently,
paving the way for the successful implementation of the speech recognition application.

2.3.2. Model Loading and Memory Optimization

To mitigate potential memory constraints, the Whisper Large-V2 model was loaded
using an 8-bit precision for weights through quantization instead of 32-bit, a strategy that
significantly reduced the memory footprint while preserving the accuracy of computations.
This approach allowed for efficient use of the GPU memory, facilitating smoother model
training sessions.

2.3.3. Optimization and Fine-Tuning Strategy

In optimizing the model architecture for computational constraints, the technique
of Low-Rank Adaptation (LORA) was employed. Initially, the Whisper Large-V2 model,
with its 1.55 billion parameters, posed a substantial demand on computational resources.
To reconcile the model’s complexity with the available hardware capabilities, a strategic
reduction in trainable parameters was imperative.

Through the application of LORA, the parameter count was efficiently reduced from
approximately 74.5 million to 15.7 million. This adjustment not only rendered the model
more compatible with the hardware limitations but also streamlined the fine-tuning process
by ensuring resource efficiency.

Text normalization was applied using the BasicTextNormalizer module, standardizing
the inputs to improve the Word Error Rate (WER) evaluation consistency. This process
included lowercasing, removing punctuation, and normalizing spaces.

The fine-tuning process was characterized by the strategic adjustment of training
parameters, such as the batch size, learning rate, and warmup steps, optimizing the model’s
performance. Table 7 presents the fine-tuning parameters and LORA configuration, for
which each parameter was meticulously chosen to guide the fine-tuning process towards
achieving the best possible performance from the model under the constraints of the
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computational resources. This careful configuration ensured that the model’s training was
both effective and efficient, paving the way for its application in speech recognition tasks.

Table 7. Fine-tuning parameters and LORA configuration for model optimization.

Parameter Description

Num_train_epochs = 3 The total number of times the training dataset is passed through the model. Three epochs mean the
entire dataset is used thrice for training the model, enhancing its learning.

train_batch_size = 8 The number of training examples processed together in one iteration. A batch size of 8 allows for a
balanced trade-off between learning efficiency and memory usage.

eval_batch_size = 8 Similar to train_batch_size, but used during the model evaluation phase. It determines the data
chunk size for each evaluation step.

Warmup_steps = 500 The initial steps where the learning rate gradually increases to its peak, reducing the risk of training
instability in the early phases.

lora_model configuration Adjustments specific to the LORA approach:

R = 32 The rank parameter for LORA, impacting the model’s approximation accuracy and the complexity of
the adaptation.

Alpha = 64 Controls the scale of the Low-Rank Adaptation, influencing the balance between the original and
adapted model components.

Lora_dropout = 0.05 The dropout rate used within the LORA adaptation to prevent overfitting by randomly omitting a
fraction of the adaptation units during training.

Optimizer AdamW Specifies the optimizer settings:
Adam-epsilon = 10−8 A small constant for numerical stability in the AdamW optimization algorithm.

Beta-1 = 0.9 The exponential decay rate for the first-moment estimates in AdamW, balancing the influence of
past gradients.

Beta-2 = 0.98 The exponential decay rate for the second-moment estimates in AdamW, controlling the moving
average of the squared gradients.

2.3.4. System Pipeline and Deployment

The deployment of the “WhisperMed Radiology Transcriber”, a specialized speech
recognition application tailored for radiologists, involved configuring a server environment
on Amazon Web Services (AWS). Flask was utilized for back-end management, while Nginx
facilitated front-end integration, as depicted in Figure 4. The architecture of this application
supports audio recording through a web interface, processes the recordings on a remote
server, and displays transcriptions in real-time. Designed with an emphasis on real-time
transcription and an intuitive user interface, the “WhisperMed Radiology Transcriber”
aims to meet the precise needs of medical professionals within French-speaking clinical
settings.
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3. Results

The comprehensive fine-tuning process of the Whisper Large-v2 model revealed signif-
icant insights into the model’s performance under various training configurations. Initially,
the training parameters were meticulously configured using the Seq2SeqTrainingArguments
object from the Transformers library. Key parameters such as the batch size, learning rate,
and warmup steps were strategically selected to optimize the model’s performance. No-
tably, a learning rate of 10−3 was employed, which emerged as the most effective in
enhancing the model’s accuracy, as evidenced by a notable decrease in both the Word Error
Rate (WER) and Normalized Word Error Rate (Normalized WER).

In the evaluation metrics, both the Word Error Rate (WER) and Normalized Word Error
Rate (Normalized WER) are reported. The inclusion of the Normalized WER offers insights
into the transcription accuracy post the application of text normalization techniques. Such
a metric serves as an adjusted measure, more reflective of the model’s ability to accurately
decipher and transcribe medical radiology speech content. The Normalized WER evaluates
the transcription’s core content fidelity, discounting variations due to punctuation, capital-
ization, and whitespace. This adjusted metric is crucial in a medical context where precise
terminology is paramount. The observed consistent improvement in the Normalized WER
over the standard WER underscores the model’s enhanced performance in transcribing
detailed medical terminologies accurately.

The impact of different learning rates on the model’s performance was systematically
evaluated (Table 8). Our findings indicated that a learning rate of 10−3 led to promising
results, particularly with a Normalized WER of 18.774% and a Normalized Character Error
Rate (CER) of 12.103%. Additionally, the application of text normalization techniques
significantly reduced the WER, underscoring the importance of this preprocessing step.

Table 8. Learning rate performance results.

Learning
Rate WER (%) Normalized

WER (%) CER (%) Normalized
CER (%)

Training
Loss

Validation
Loss

10−2 50.634 45.321 26.198 22.566 5.824 5.533
10−3 25.781 18.774 15.337 12.103 0.378 0.510
10−4 43.634 35.321 26.198 22.566 2.824 2.533

Further experiments were conducted to assess the influence of warmup steps on the
model’s performance. The results showed that a warmup step of 1000 yielded the best
performance, achieving a Normalized WER of 18.504% (Table 9). This optimal configuration
was thus subsequently adopted for further experimentation.

Table 9. Warmup steps performance results.

Warmup Steps Normalized
WER (%)

Normalized
CER (%) Training Loss Validation Loss

250 21.563 18.235 0.499 0.667
500 18.774 15.337 0.288 0.510
750 18.720 15.349 0.270 0.499

1000 18.504 15.320 0.235 0.487
1250 23.757 19.813 0.507 0.689

In addition to these parameters, this study delved into the optimization settings,
particularly focusing on the Adam epsilon parameter. The optimizer’s configuration plays
a crucial role in a model’s ability to converge to an optimal solution. Our experiments
with different Adam epsilon values revealed significant variations in performance, as
summarized in Table 10. This table illustrates how subtle changes in the optimizer settings
markedly influenced the model’s effectiveness, guiding us to select the most suitable
configuration for our specific needs.



Diagnostics 2024, 14, 895 13 of 18

Table 10. Model performance with different optimizer parameters.

Adam Epsilon Normalized WER (%) Training Loss Validation Loss

10−7 18.273 0.229 0.477
10−9 17.640 0.219 0.457

The exploration of the LORA model’s “R” parameter further demonstrated the impact
of model configuration on performance. The configuration with R = 42 improved the
model’s performance, indicating its effectiveness in enhancing the model’s transcription
accuracy (Table 11).

Table 11. Model performance with different LORA configurations.

LORA Configuration (R) Normalized WER (%) Training Loss Validation Loss

R = 42 17.660 0.223 0.467
R = 52 20.298 0.491 0.649

An additional layer of optimization focused on the Low-Rank Adaptation (LORA)
technique’s dropout parameter, Lora_dropout. A systematic comparison was undertaken
to determine the most effective Lora_dropout value for the model, with the objective being
to optimize the balance between reducing overfitting and preserving model performance.
The comprehensive results of this comparison are presented in Table 12, illustrating that
a Lora_dropout value of 0.04 resulted in the most favorable performance, evidenced by
a Normalized Word Error Rate (WER) of 17.121%. This optimal Lora_dropout setting
contributed significantly to the model’s enhanced transcription accuracy.

Table 12. Performance comparison across different Lora_dropout configurations.

Lora_Dropout Normalized WER (%) Training Loss Validation Loss

0.05 17.866 0.263 0.491
0.06 19.176 0.413 0.556
0.04 17.121 0.210 0.448
0.03 19.968 0.472 0.589

The final chosen configuration, achieving a Normalized WER of 17.121%, represents
the culmination of the fine-tuning efforts, incorporating the ideal Lora_dropout value. This
refined configuration underscores the effectiveness of the fine-tuning strategy in enhancing
the transcription accuracy for medical radiology terms.

The fine-tuning of the Whisper Large-v2 model yielded significant improvements in
the transcription accuracy. This process culminated in a final Word Error Rate (WER) of
17.121%, accompanied by a training loss of 0.210 and a validation loss of 0.448.

These metrics demonstrate the effectiveness of the fine-tuning strategy in enhancing
the model’s performance for medical radiology term transcription. The progression of the
training and validation loss over the fine-tuning period is illustrated in the loss curves
shown in Figure 5, providing a visual representation of the model’s learning trajectory.

Concurrently, we deployed the “WhisperMed Radiology Transcriber”, a speech recog-
nition application, on an Amazon Web Services (AWS) server. This application utilizes the
fine-tuned Whisper Large-v2 model to provide high-accuracy transcriptions of medical
radiology terms. Key features of this application include real-time transcription capabilities
and an intuitive user interface, designed to meet the specific needs of medical professionals.



Diagnostics 2024, 14, 895 14 of 18

Diagnostics 2024, 14, x FOR PEER REVIEW 14 of 19 
 

 

An additional layer of optimization focused on the Low-Rank Adaptation (LORA) 
technique’s dropout parameter, Lora_dropout. A systematic comparison was undertaken 
to determine the most effective Lora_dropout value for the model, with the objective being 
to optimize the balance between reducing overfi ing and preserving model performance. 
The comprehensive results of this comparison are presented in Table 12, illustrating that 
a Lora_dropout value of 0.04 resulted in the most favorable performance, evidenced by a 
Normalized Word Error Rate (WER) of 17.121%. This optimal Lora_dropout se ing con-
tributed significantly to the model’s enhanced transcription accuracy. 

Table 12. Performance comparison across different Lora_dropout configurations. 

Lora_Dropout Normalized WER (%) Training Loss Validation Loss 
0.05 17.866 0.263 0.491 
0.06 19.176 0.413 0.556 
0.04 17.121 0.210 0.448 
0.03 19.968 0.472 0.589 

The final chosen configuration, achieving a Normalized WER of 17.121%, represents 
the culmination of the fine-tuning efforts, incorporating the ideal Lora_dropout value. 
This refined configuration underscores the effectiveness of the fine-tuning strategy in en-
hancing the transcription accuracy for medical radiology terms. 

The fine-tuning of the Whisper Large-v2 model yielded significant improvements in 
the transcription accuracy. This process culminated in a final Word Error Rate (WER) of 
17.121%, accompanied by a training loss of 0.210 and a validation loss of 0.448. 

These metrics demonstrate the effectiveness of the fine-tuning strategy in enhancing 
the model’s performance for medical radiology term transcription. The progression of the 
training and validation loss over the fine-tuning period is illustrated in the loss curves 
shown in Figure 5, providing a visual representation of the model’s learning trajectory. 

 
Figure 5. Loss curves. 

Concurrently, we deployed the “WhisperMed Radiology Transcriber”, a speech 
recognition application, on an Amazon Web Services (AWS) server. This application uti-
lizes the fine-tuned Whisper Large-v2 model to provide high-accuracy transcriptions of 
medical radiology terms. Key features of this application include real-time transcription 
capabilities and an intuitive user interface, designed to meet the specific needs of medical 
professionals. 

4. Discussion 
This study’s integration of the Whisper Large-v2 model into radiological applications 

marks a significant advancement in medical Automatic Speech Recognition (ASR) sys-
tems. Demonstrating high accuracy in transcribing complex medical terminology, the 
model’s effectiveness across diverse audio environments is a testament to its adaptability 

Figure 5. Loss curves.

4. Discussion

This study’s integration of the Whisper Large-v2 model into radiological applications
marks a significant advancement in medical Automatic Speech Recognition (ASR) systems.
Demonstrating high accuracy in transcribing complex medical terminology, the model’s
effectiveness across diverse audio environments is a testament to its adaptability in various
medical settings. This adaptability is crucial considering the acoustic complexities inherent
in different medical fields. The success of AI-driven speech recognition systems in both
general healthcare communication and specialized areas like radiation oncology ([28,29])
underscores their potential to revolutionize medical data processing across a spectrum of
clinical contexts [30].

In clinical practices, the application of the proposed ASR system holds immense
promise. The traditional process of transcribing diagnostic reports is often fraught with
human error and inefficiency. By enhancing the accuracy and efficiency of medical doc-
umentation, this system stands to significantly improve the quality of patient care, as
accurate records are vital for effective treatment planning [31]. Within the context of real-
world application, the “WhisperMed Radiology Transcriber” stands as a Minimum Viable
Product (MVP) designed specifically for radiologists. The development of this application
is a direct response to the need for efficient, accurate medical transcription in radiology,
aiming to minimize the time spent on generating reports while maximizing the accuracy of
reports. Although the application is in its early stages, preliminary feedback from a selected
group of radiologists has been promising, indicating a strong potential for integration into
daily clinical practices. Future iterations of this application will focus on extensive testing
with a larger cohort of medical professionals to fine-tune its functionalities and ensure
seamless integration with existing hospital information systems.

Recognizing the need for a deeper analysis of our model’s performance, we acknowl-
edge that a comprehensive error analysis, particularly focusing on different types of data
within the radiological domain, would provide valuable insights into the model’s specific
strengths and areas in need of improvement. Additionally, while our study highlights
the model’s effectiveness in transcribing complex medical terminology, a direct compar-
ison with established French ASR baseline models, especially those previously applied
in medical contexts, remains an area for future exploration. These comparisons would
not only benchmark the Whisper Large-v2 model’s performance but also pave the way
for more targeted improvements, especially in handling the unique challenges presented
by French medical terminology and diverse accents. Future research will aim to fill these
gaps, offering a more detailed understanding of the model’s performance nuances and its
standing relative to existing French ASR solutions in healthcare. Additionally, integrating
ASR systems with electronic health records (EHRs) could transform healthcare data man-
agement, reducing the administrative load on medical professionals and enabling a greater
focus on patient care [32].

However, the implementation of ASR in healthcare is challenging. The system must
navigate a vast array of medical terminologies, accents, and speech nuances. This research
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represents progress in this area, but ongoing refinement is essential to meet the stringent
accuracy requirements of medical data transcription [33]. Addressing these challenges,
particularly in non-English languages, remains a key area for future development. Studies
on language-specific medical ASR solutions, such as those in Korean and French, highlight
both the challenges and opportunities in creating effective multilingual medical ASR
system [28–30].

The “WhisperMed Radiology Transcriber” serves as the tangible outcome of this
research, specifically addressing the requirements of the radiological sector. As a Min-
imum Viable Product (MVP), this tool seeks to enhance report generation efficiency by
providing accurate medical transcriptions tailored for radiology. Initial evaluations by a
select cohort of radiologists have indicated positive reception, suggesting its potential for
broader applications in clinical routines. Future developments will concentrate on compre-
hensive real-world evaluations to refine the application, ensuring its seamless integration
with existing hospital information infrastructures and compliance with stringent medical
documentation standards.

Beyond its clinical applications, this ASR system offers significant benefits in medical
education. By facilitating the transcription of educational materials, it enhances accessibility
and inclusivity, particularly for non-native speakers. This aligns with the digitalization
trend in medical education, where technology is becoming increasingly pivotal in enriching
learning experiences [33].

Future research avenues are abundant. Tailoring ASR systems to specific medical
specialties or languages could greatly expand their utility. Exploring their integration
with voice-activated medical devices and telemedicine platforms presents opportunities to
further leverage ASR technology in healthcare [34].

The current study, despite its successes, encountered limitations due to resource
constraints, which restricted the dataset size and prolonged the training period. Future
studies should aim to utilize larger datasets and more robust computational resources to
improve accuracy and efficiency. Real-world testing in clinical settings is also crucial to
assess the system’s practicality and identify areas for improvement.

The findings of this research contribute significantly to the medical ASR field, partic-
ularly in radiology transcription. The potential impact of this work on clinical practices,
healthcare efficiency, and medical education underscores the vital role of technology in
advancing healthcare solutions. Addressing the identified limitations, such as dataset
diversity and practical application, will be essential in future research to fully realize the
potential of ASR systems in healthcare.

5. Conclusions

This study’s development of an Automatic Speech Recognition (ASR) system specif-
ically designed for radiological applications represents a significant advancement in the
application of technology within the healthcare sector. Our successful integration of the
Whisper Large-v2 model into the ASR system has led to a notable achievement: a Word
Error Rate (WER) of 17.121%. This achievement underscores the system’s proficiency in
accurately transcribing complex medical terminology and adapting to diverse accents,
which are critical in radiological contexts.

The practical implications of this research are particularly significant in clinical set-
tings. By automating the transcription of diagnostic reports, this ASR system addresses a
key challenge in radiology—the need for accurate and efficient documentation. In light
of our findings and the development of the “WhisperMed Radiology Transcriber”, this
research contributes significantly to the field of medical Automatic Speech Recognition
(ASR) systems. The proposed application, although currently a prototype, embodies the
practical application of our research findings. It is designed to be a foundational step
towards creating a more robust and comprehensive tool that can be integrated into ra-
diology departments worldwide. Moving forward, the focus will be on expanding the
application’s testing in real-world clinical environments. This will involve a series of pilot
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studies aimed at evaluating the application’s effectiveness in live radiological settings,
thereby ensuring that the final product is both user-friendly and highly accurate, meeting
the exacting standards of medical documentation.

This improvement is not just a matter of convenience; it plays a vital role in enhancing
patient care by supporting informed decision making based on precise and reliable medical
records.

Moreover, the potential integration of the ASR system with electronic health records
(EHRs) could be a game changer in healthcare administration. Such integration promises
to streamline data entry processes, reduce the administrative burden on healthcare profes-
sionals, and improve the accuracy of patient records. This aligns with the broader goal of
effective healthcare delivery, where accuracy and efficiency are paramount.

While this study has achieved its primary objectives, it also highlights areas for future
exploration. The potential of tailoring ASR systems to specific medical specialties or
languages, and integrating them with voice-activated medical devices and telemedicine
platforms [35], presents exciting avenues for expanding the utility and impact of ASR in
healthcare.

Despite its successes, this study faced limitations, primarily due to resource constraints.
These limitations necessitated a training dataset of 20,000 examples and extended the
training period to 14 days. Future research could benefit from larger datasets and more
advanced computational resources to further enhance the accuracy and efficiency of ASR
systems. Real-world testing in clinical environments is also crucial to validate the practical
applicability of the system and to identify areas for improvement.

In summary, this research makes a significant contribution to the field of medical
ASR systems, particularly in radiology. It offers a robust and efficient tool for medical
transcription, with the potential to significantly impact clinical practices and the efficiency
of healthcare services. Our findings pave the way for future innovations in technology-
enhanced healthcare solutions.
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