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Abstract: This meta-analysis investigates the prognostic value of MRI-based radiomics in nasopha-
ryngeal carcinoma treatment outcomes, specifically focusing on overall survival (OS) variability.
The study protocol was registered with INPLASY (INPLASY202420101). Initially, a systematic re-
view identified 15 relevant studies involving 6243 patients through a comprehensive search across
PubMed, Embase, and Web of Science, adhering to PRISMA guidelines. The methodological quality
was assessed using the Quality in Prognosis Studies (QUIPS) tool and the Radiomics Quality Score
(RQS), highlighting a low risk of bias in most domains. Our analysis revealed a significant average
concordance index (c-index) of 72% across studies, indicating the potential of radiomics in clinical
prognostication. However, moderate heterogeneity was observed, particularly in OS predictions.
Subgroup analyses and meta-regression identified validation methods and radiomics software as
significant heterogeneity moderators. Notably, the number of features in the prognosis model corre-
lated positively with its performance. These findings suggest radiomics’ promising role in enhancing
cancer treatment strategies, though the observed heterogeneity and potential biases call for cautious
interpretation and standardization in future research.

Keywords: radiomics; prognostic models; meta-analysis; survival

1. Introduction

Nasopharyngeal carcinoma (NPC) exhibits notable epidemiological differences glob-
ally, with a significantly higher incidence in East and Southeast Asia compared to Western
countries. These disparities are attributed to genetic susceptibility, environmental factors,
and Epstein-Barr virus (EBV) infection prevalence. The distinct epidemiological patterns of
NPC necessitate tailored approaches in diagnosis, treatment, and prognosis across different
populations [1,2]. In pursuing personalized medicine, radiomics and machine learning
have emerged as transformative tools, offering new avenues for the prognostic assessment
of NPC [3,4].

Radiomics involves extracting high-dimensional data from medical images, which,
when analyzed through machine learning algorithms, can reveal patterns indicative of
tumor phenotype, aggressiveness, and likely response to treatment. This methodology
extends the value of conventional MRI scans beyond anatomical visualization, enabling
the quantification of tumor heterogeneity at a microscopic level that may not be visually
apparent [5,6]. Machine learning further enhances this process by identifying complex
relationships between radiomic features and clinical outcomes, facilitating the development
of predictive models for NPC prognosis [7,8].
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The integration of radiomics and machine learning in NPC research holds the potential
to revolutionize patient care. By accurately predicting treatment outcomes, these technolo-
gies can guide the selection of therapeutic strategies tailored to individual patient profiles,
thus improving survival rates and quality of life. Moreover, the ability to monitor tumor
response non-invasively through advanced imaging analytics could lead to more dynamic
and responsive treatment plans, adjusting to changes in tumor behavior over time [9–12].

Despite the promising prospects of radiomics and machine learning in enhancing the
prognosis of nasopharyngeal carcinoma (NPC), significant challenges in the standardiza-
tion of image acquisition, feature extraction, and model validation persist. These hurdles
must be overcome to fully leverage the clinical potential of these advanced technolo-
gies. A recent meta-analysis highlighted the efficacy of MRI radiomics in predicting the
progression-free survival in NPC, presenting a pooled concordance index (C-index) of 0.762
(95% CI, 0.687–0.837) [13]. However, this analysis also noted a high level of heterogeneity
(I2 = 89%) due to the amalgamation of various endpoints, such as Local Recurrence-Free
Survival, Distant Metastasis-Free Survival, and Progression-Free Survival. Our research
aims to provide an updated synthesis of the current evidence while offering separate
analyses for different endpoints. This approach intends to deliver a more nuanced and com-
prehensive analysis, potentially reducing heterogeneity and enhancing the interpretability
of radiomics in the prognosis of NPC.

2. Materials and Methods

This investigation was executed adhering to the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA) guidelines for meta-analysis [14]. The PRISMA
checklists can be found in Supplemental Table S1. Registration of the study was completed
in INPLASY with the registration number INPLASY202420101. It was determined that
approval from an ethical review board or obtaining participant informed consent was not
requisite for this study.

2.1. Database Searches and the Identification of Eligible Manuscripts

Two independent researchers (C-KW and T-WW) conducted an exhaustive literature
review, employing a detailed search strategy across PubMed, Embase, and Web of Sci-
ence, as outlined in Supplementary Table S2. This review spanned the inception of these
databases to 17 February 2024. Articles were systematically screened for relevance based
on titles and abstracts, with the inclusion and exclusion criteria established collaboratively.
Reference lists of key review articles, including [13], were examined to ensure completeness
and supplemented by manual searches to capture any overlooked studies. Discrepancies
regarding study inclusion were resolved through consultation with a third investigator.

2.2. Inclusion and Exclusion Criteria

The inclusion criteria were specified for participants definitively diagnosed with na-
sopharyngeal carcinoma (NPC), focusing exclusively on adult populations of both sexes.
The required imaging criteria stipulated that subjects must have undergone magnetic
resonance imaging (MRI) for initial radiomic assessment. This criterion applied to both
individuals receiving a new diagnosis and those previously subjected to medical inter-
ventions such as surgery, radiation, or chemotherapy. Only studies that included the
concordance index (c-index) were considered. The c-index, a measure of the prognostic
accuracy of models in time-to-event analysis where data may be censored, was selected
based on its utilization in prior research [15], owing to its advantage in providing consistent
results across studies with variable endpoints, in contrast to the time-independent area
under the curve (AUC) which may lead to heterogeneous outcomes. All observational
studies, including retrospective or prospective studies, were included.

The exclusion criteria were established: studies concerning cancers other than NPC;
research employing deep learning-based radiomics, attributed to its lower interpretability;
research incorporating multiple timepoint radiomics; individual radiomics feature predic-
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tion of prognosis without intergradation with a model; radiomics models incorporating
clinical features, not radiomics studies; overlapping datasets; and documents in letters,
conference proceedings, retracted papers, or those devoid of images. Further, studies using
imaging modalities other than MRI, covering topics or outcomes irrelevant to the study
aims, presenting data unsuitable for quantitative analysis, or not reporting the c-index
were excluded.

2.3. Methodological Quality Appraisal

The methodological integrity of each study incorporated in the analysis was meticu-
lously assessed via two established instruments: the Quality in Prognosis Studies (QUIPS)
tool and the Radiomics Quality Score (RQS) [16,17]. The Quality in Prognosis Studies
(QUIPS) tool is employed to rigorously assess the risk of bias across various domains in
prognostic studies, each evaluated with specific criteria to ascertain the risk level. Study
Participation examines how representative the sample is of the target population, focusing
on recruitment efficacy and the demographic and clinical similarity to the broader popula-
tion. Study Attrition assesses the completeness of the follow-up, scrutinizing follow-up
rates and the reasons for dropout to determine potential biases if outcomes for those lost
differ from those who completed the study. Prognostic Factor Measurement evaluates the
accuracy and consistency with which prognostic factors are measured across participants,
emphasizing the method’s reliability and uniform application. Outcome Measurement
investigates the reliability and validity of outcome assessments, ensuring clarity in defini-
tions and uniformity in measurement methods. Study Confounding involves identifying
and adjusting for potential confounders, assessing the adequacy of their measurement
and control. Statistical Analysis and Reporting reviews the appropriateness of statistical
methods and the integrity of result reporting. Each domain’s risk of bias is rated as low,
moderate, or high, guiding the overall evaluation of a study’s methodological soundness
and result reliability.

The RQS, tailored for scrutinizing radiomics research, comprises 16 elements to assess
the research’s reliability and susceptibility to bias. Each element within a study was
evaluated and scored, leading to an aggregate score representing the sum of scores across
all components, reflecting the overall methodological quality of the radiomics studies
under review.

2.4. Definitions of Prognostic Endpoints

Local Recurrence-Free Survival (LRFS): Constitutes a composite metric evaluating the
efficacy of therapeutic interventions in maintaining control at both the primary tumor site
and regional levels.

Distant Metastasis-Free Survival (DMFS): Denotes the interval from the commence-
ment of therapeutic measures to the first instance of distant metastasis or death, whichever
occurs first, indicating the treatment’s capacity to inhibit tumor dissemination to distal
anatomical sites.

Progression-Free Survival (PFS), Disease-Free Survival (DFS), and Failure-Free Sur-
vival (FFS): Although these terms are sometimes utilized interchangeably within the onco-
logical lexicon, they predominantly refer to the duration from treatment initiation to the
onset of tumor progression, recurrence, or mortality. These measures are critical for assess-
ing the period during which a patient remains unaffected by worsening or reemergence of
the disease. For the objectives of this research, these indicators are collectively considered
under the umbrella of PFS.

Overall Survival (OS): This parameter measures the time elapsed from the beginning
of treatment to death attributable to any cause, serving as a fundamental criterion for
evaluating the overall effectiveness of cancer treatment modalities.
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2.5. Data Extraction and Management

Data extraction was carried out independently by two authors (C-KW and T-WW),
encompassing demographic details, study methodology, and specifics of MRI imaging, as
well as radiomics and prognostic model characteristics. This process of data collection,
conversion, and amalgamation of the results was executed in alignment with the guidelines
stipulated in the Cochrane Handbook for Systematic Reviews of Prognosis Studies and
pertinent previous studies.

2.6. Statistical Analysis

To address the variability inherent in the studies selected, we employed a random-
effects meta-analytical model [18], with statistical significance predetermined at a p-value
of less than 0.05 (two-tailed). Our findings were visually synthesized in forest plots. During
the preliminary exploration phase, we incorporated all outcomes associated with radiomics
across various endpoints. The analysis was stratified according to specific endpoints
(LRFS, DMFS, PFS, and OS). Concordance indices derived from composite models (those
incorporating radiomic features in conjunction with clinical or other model variables) were
excluded from the analysis due to the inclusion of varying clinical features across studies,
which may introduce substantial heterogeneity [13]. Sensitivity analysis was carried out
with the leave-one-out method. In a more focused secondary analysis, attention was
narrowed to the Overall Survival endpoint, recognizing its heterogeneity across the studies.
Subgroup analyses were conducted based on geographical location (Asian versus Europe),
validation methodology (internal validation versus external validation), MRI sequence
(single versus multiple), and radiomics software (in-house versus Pyradiomics), alongside
meta-regressions on publication year, training sample size, and the number of features
used. The consistency of results across the studies was assessed using the Q-test, with a
p-value less than 0.05 indicating significant heterogeneity. The extent of this heterogeneity
was evaluated using I2 metrics, categorized as negligible (0–25%), low (26–50%), moderate
(51–75%), or high (76–100%) [19]. Vigilance for potential publication bias was maintained,
employing the Egger’s method as a diagnostic tool for identifying asymmetry in funnel
plots [20]. All statistical analyses were conducted utilizing STATA software (Stata/SE 18.0
for Mac).

3. Results
3.1. Study Identification and Selection

Figure 1 displays the PRISMA flow diagram, outlining our systematic review and
selection methodology. Initially, 495 studies were identified across multiple databases:
122 from PubMed, 237 from EMBASE, and 136 from Web of Science. The removal of
230 duplicates left 265 articles for initial review. Using Endnote, titles and abstracts were
assessed, excluding 151 articles. The remaining 114 articles underwent thorough full-text
evaluation. The allocation of articles from each database and the refinement process to
identify relevant studies are detailed in Table S2. After comprehensive analysis, 15 studies
were included in our meta-analysis [21–35], with the exclusion rationale documented in
Table S3 [8,10,34,36–130].

3.2. Basic Characteristics of Included Studies

A total of 15 studies involving 6243 patients were included. Among these, the ma-
jority were conducted in China, with one study from Thailand [21] and another from
Italy [32]. The endpoint measures included Local Recurrence-Free Survival (LRFS), Distant
Metastasis-Free Survival (DMFS), Progression-Free Survival (PFS), Disease-Free Survival
(DFS), Time to Treatment Failure (TTF), and Overall Survival (OS). For details on validation
methods, study design, duration, patient demographics, staging, and treatment, refer to
Table 1. Information on MRI protocols, such as slice thickness, magnetic field strength,
sequences, and scanner types, is available in Table 2. Details on tumor segmentation soft-
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ware, annotators, radiomics software, features, prognostic models, and performance are
provided in Table 3.
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Figure 1. PRISMA flowchart for the current meta-analysis.

3.3. Methodological Quality of the Included Studies

In assessing the methodological quality of the included studies, we found that the
majority exhibited a low risk of bias in the sample size domain as per the Quality in
Prognosis Studies (QUIPS) tool. However, approximately 13.3% (2 out of 15) demonstrated
some risk of bias in the study attrition domain, and nearly 46.7% (7 out of 15) showed some
risk in the confounding domain (see Figure 2). Studies identified as having some risk of
bias exhibited protocol variations, potentially influencing the adherence to and outcomes
of the prognostic models. Detailed assessments of bias risk using QUIPS and the Radiomics
Quality Score (RQS) are documented in Tables S4 and S5.
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3.4. Primary Outcome: Overall Radiomics Prognosis Model Performance

In our evaluation of 37 radiomics prognostic outcomes, we observed a concordance
index (c-index) ranging from 54% to 81%. The average c-index was a robust 72% (95%
Confidence Interval (CI): 70–74%), as depicted in Figure 3. The Q-test yielded a 129.43
(p < 0.01), indicating significant heterogeneity. The Higgins I2 statistic confirmed moderate
heterogeneity, accounting for 64.44% variance, further supported by our sensitivity analysis
(Figure S1). The Egger test showed no significant publication bias (p = 0.14), as illustrated
in the funnel plot (Figure S2). Subgroup analysis revealed significant differences (p = 0.03)
across endpoints.
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Table 1. Basic characteristics of studies.

Author Geographic Validation
Method

Study
Design

Study
Duration

Patients
(Train/Valid) Age Sex (Male) Stage Treatment Endpoint

Khongwirotphan
et al. (2024) [21] Thailand Internal

validation Retrospective 2010~2019 183 (146/37) 50 (42.5–57.5)—
median/IQR 143 (78.14%) I~IVA IMRT, IMRT +

AC
DMFS, PFS,

OS

Qihao Zhang
et al. (2023) [22] China Internal

validation Retrospective 2018~2020 151 (75/76)
Train: 52.0 ± 11.2;

Test: 49.1 ±
11.4—mean/std

Train: 56
(74.7%); Test: 58

(76.3%)
I~IV IMRT PFS

Jiang Zhang
et al. (2023) [23] China External

validation Retrospective 2013~2019 469 (286/183) Train: 53; Test:
55—median

Train: 216
(75.5%); Test:
143 (78.1%)

II~IV CCRT DFS

Li et al. (2023)
[24] China Internal

validation Retrospective 2018~2021 145 (102/43)
Train: 49 (42–57);

Test: 51
(40–57)—median

Train: 75
(73.5%); Test: 29

(67.4%)
I~IV IMRT PFS

Hu et al. (2023)
[25] China External

validation Retrospective 2008~2017 1072 (575/497)
Train: 44 (38–51);

Test: 48
(40–56)—median

Train: 395 (68.7);
Test: 326 (65.6) II IMRT DMFS

Shen et al. (2022)
[26] China External

validation Retrospective 2013~2016 893 (390/503)

Train: 48.0
(40.0–56.3); I: 48.0

(40.5–57.5); E1: 47.0
(42.0–53.0); E2: 49.0
(40.0–57.0); E3: 48.0

(42.0–54.0)—
median

Train: 276 (70.8);
I: 98 (76.0); E1:

76 (73.8); E2: 101
(71.6); E3: 94

(72.3)

III~IVA IC + CCRT or
CCRT + AC

PFS, LRFS,
DMFS, OS

Liu et al. (2022)
[27] China Internal

validation Retrospective 2013~2021 504 (353/151)
Train: 49.22(9–85);

Test: 47.59(10–80)—
mean/range

Train: 243 (68.8);
Test: 106 (70.2) I~IVA IC, CCRT OS

Li et al. (2022)
[28] China Internal

validation Retrospective 2010~2012 778 (518/260)
Train: 44 (38–53);
Test: 46 (38–52)—

median/IQR

Train: 371
(71.6%); Test:
194 (74.6%)

I~IVA
RT alone,

CCRT, IC +
CCRT

DMFS

Jiang et al.
(2022) [29] China Internal

validation Retrospective 2015~2017 218 (173/45) 46.1 ±
11.4—mean/std 164 (75.2%) I~IV IC, CCRT, AC OS
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Table 1. Cont.

Author Geographic Validation
Method

Study
Design

Study
Duration

Patients
(Train/Valid) Age Sex (Male) Stage Treatment Endpoint

Gao et al. (2021)
[30] China Internal

validation Retrospective 2012~2014 316 (237/79) NR
Train: 164

(69.2%); Test: 56
(70.9%)

III~IV

Concurrent
radical

chemoradio-
therapy

PFS

Zhang et al.
(2020) [31] China External

validation Retrospective 2014~2017 220 (132/88)

Train: 48 (19–83); I:
49 (27–78); E: 44

(24–70)—median
(range)

Train: 96
(72.73%); I: 33
(75.00%); E: 31

(70.45%)

I~IV
Definitive-

intent
radiotherapy

FFS

Bologna et al.
(2020) [32] Italy Internal

validation Retrospective 2004~2017 136 (122/14) 48 (39–57)—median
(IQR) 95 (70%) I~IV

RT alone,
Concomitant

CHT-RT,
Induction

CHT +
concomitant

CHT-RT

OS, PFS,
LRFS

Zhang et al.
(2019) [33] China External

validation Retrospective 2009~2015 737 (360/377) NR
Train: 270 (75.0);

I: 90 (75.0); E:
193 (75.1)

I~IV

IMRT, CCRT
with or
without
IC/AC

LRFS

Ming et al.
(2019) [34] China Internal

validation Retrospective 2010~2012 303 (200/103) 48.8 ± 12.7—mean
(std) 226 (75%) I~IV NR DFS, OS,

DMFS

Zhang et al.
(2017) [35] China Internal

validation Retrospective 2007~2013 118 (88/30) 43 ± 10.98—mean
(std) 92 (0.78) III~IV NR PFS

Abbreviation: NR: not recorded; IQR: inter quantile range; std: standard deviation; IMRT: intensity modulated radiation therapy; IC: induction chemotherapy; AC: adjuvant
chemotherapy; CCRT: concurrent chemoradiotherapy; RT: radiation therapy; CHT: chemotherapy; LRFS: Local Recurrence-Free Survival; DMFS: Distant Metastasis-Free Survival; PFS:
Progression-Free Survival; DFS: Disease-Free Survival; FFS: Failure-Free Survival; OS: Overall Survival.
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Table 2. MRI scanning details.

Author Slice Thickness Tesla Sequence Scanner

Khongwirotphan et al. (2024) [21] 4 mm 1.5 T T1w, T2w GE Signa HDxt

Qihao Zhang et al. (2023) [22] 4 mm 3 T T1w, dynamic contrast-enhanced,
Proton density Simens Skyra

Jiang Zhang et al. (2023) [23] 3~4 mm Train: 1.5 T/3 T; Test: 3 T T1c

Train: Siemens Avanto; Test: GE SIGNA
EXCITE, Siemens Avanto,

Siemens Skyra
Philips Achieva

Li et al. (2023) [24] 4 mm 3 T proton density-weighted, dynamic
contrast-enhanced, T1c Siemens Skyr

Hu et al. (2023) [25] 4~6 mm Train: 1.5 T/3 T; Test: 1.5 T/3 T T1w, T2w, T1c
Train: GE Signa CV/I, Siemens Magnetom Tim
Trio; Test: GE Signa Excite 1.5T HD Twin Speed,

Philips Achieva 3.0T, Philips Intera 3.0T

Shen et al. (2022) [26] NR NR T1w, T1c NR

Liu et al. (2022) [27] 4~5 mm 3 T T1w, T2w, T1c Simens MAGNETOM Verio

Li et al. (2022) [28] 5 mm 1.5 T/3 T T1w, T2w, T1c GE Signa CV/I; Siemens Magnetom Tim Trio

Jiang et al. (2022) [29] 6 mm 1.5 T T1w, T2w, T1c GE Signa EXCITE

Gao et al. (2021) [30] 3 mm 1.5 T T1c SIEMENS

Zhang et al. (2020) [31] 3~5 mm 1.5 T/3 T T1w, T2wFS, T1cFS Train: MAGNETOM Verio; Test: MAGNETOM
Verio, Simens Avanto

Bologna et al. (2020) [32] NR 1.5 T T1w, T2w

Zhang et al. (2019) [33] 5~6 mm 1.5 T T1w, T2w, T1c Train: GE Signa EXCITE, GE Signa HDx,
SIEMENS Espree; Test: SIEMENS Novus15

Ming et al. (2019) [34] 6 mm 1.5 T T1c GE Signa

Zhang et al. (2017) [35] 4 mm 1.5 T T2, T1c GE Signa EXCITE HD

Abbreviation: NR: Not recorded; FS: Fat suppression.
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Table 3. Summary of details of and prognosis model.

Author Segmentation
Software Annotator Radiomics

Software Feature Selection Feature Count Radiomics Feature Model Result

Khongwirotphan
et al. (2024) [21]

Eclipse software
https:

//journals.plos.
org/plosone/

article?id=10.137
1/journal.pone.

0298111 accessed
on 23 April 2024

Radiation
oncologists Pyradiomics v4.11

interobserver
variability test,

univariate analysis
with recursive

feature elimination

OS: 9; PFS: 1;
DMFS: 10

OS: T2_original_shape_MinorAxisLength;
T2_wavelet_HLH_glszm_LargeAreaEmphasis;

T1_wavelet_LHL_firstorder_Energy;
T1_original_shape_Sphericity;

T1_wavelet_LLH_glcm_MaxiumProbability;
T2_wavelt_LHL_ngtdm_Coarseness;
T2_wavelet_LHL_firstorder_Median;

T2_wavelet_LHL_gldtm_
DependenceNonUniformity;

T2_wavelet_HLL_gldm_
DependenceNonUniformity; PFS:

T2_wavelet_LHL_ngtdm_coarseness;
DMFS: T1_original_shape_sphericity;

T2_original_shape_Maxium3DDiameter;
T2_wavelet_LHH_LargeAreaEmpasis;

T2_wavelet_LHH_glszm_ZoneVariance;
T1_original_shape_Maxium3DDiameter;

T2_wavelet_LHL_ngtdm_Coarness;
T2_wavelet_HHL_ngtdm_Coarness;

T1_wavelet_LHL_gldm_
DependenceNonUniformity;

T1_original_glszm_ZoneEntropy;
T1_wavelet_HLH_glszm_

LargeAreaGrayLevelEmphasis

Cox proportional
hazard

OS: 0.796; PFS: 0.708;
DMFS: 0.766

Qihao Zhang et al.
(2023) [22] ITK-SNAP v3.4.0 Radiologist

Pyradiomics https:
//onlinelibrary.

wiley.com/doi/10
.1111/cas.15704
accessed on 23

April 2024

LASSO 19

NonUniformity_PrecontrastDCE;
SmallAreaEmphasis_PrecontrastDCE;
Correlation_PostcontrastDCE (10 s);
Minimum_PostcontrastDCE (15 s);

90Percentile_PostcontrastDCE (20 s);
DifferenceVariance_PostcontrastDCE

(20 s); LowGrayLevelZoneEmpha-
sis_PostcontrastDCE (20 s);

Autocorrelation_PostcontrastDCE (25 s);
InverseVariance_PostcontrastDCE (25 s);

HighGrayLevelEmpha-
sis_PostcontrastDCE (25 s);
SmallDependenceEmpha-

sis_PostcontrastDCE (25 s);

Cox proportional
hazard PFS: 0.66

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298111
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298111
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298111
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298111
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298111
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298111
https://onlinelibrary.wiley.com/doi/10.1111/cas.15704
https://onlinelibrary.wiley.com/doi/10.1111/cas.15704
https://onlinelibrary.wiley.com/doi/10.1111/cas.15704
https://onlinelibrary.wiley.com/doi/10.1111/cas.15704
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Table 3. Cont.

Author Segmentation
Software Annotator Radiomics

Software Feature Selection Feature Count Radiomics Feature Model Result

ShortRunHighGrayLevelEmphasis_
PostcontrastDCE (25 s); LowGrayLevel-
ZoneEmphasis_PostcontrastDCE (215 s);
ClusterShade_PostcontrastDCE (220 s);
ClusterShade_PostcontrastDCE (220 s);
90Percentile_T1Map; Median_T1Map;

90Percentile_ProtonDensityMap;
Uniformity_ProtonDensityMap

Jiang Zhang et al.
(2023) [23] Eclipse Aria v13

Treatment
planning
system

Pyradiomics v2.2.0

volume
dependency, ICC

values, feature
redundancy,

outcome relevancy
test

10

log.sigma.5.0.mm.3D_glszm_
GrayLevelNonUniformity;

wavelet.HLH_glszm_ZoneEntropy;
wavelet.HLL_glszm_ZoneEntropy;
wavelet.LLH_glszm_ZoneEntropy;

original_shape_Sphericity;
log.sigma.4.0.mm.3D_gldm_

DependenceEntropy;
wavelet.HHH_glrlm_

LowGrayLevelRunEmphasis;
log.sigma.5.0.mm.3D_gldm_

LowGrayLevelEmphasis;
original_firstorder_Kurtosis;

log.sigma.2.0.mm.3D_glrlm_RunEntropy

Cox proportional
hazard DFS: 0.63

Li et al. (2023) [24] ITK-SNAP v3.6.0 Radiologist Pyradiomics v3.0.1

Pearson
correlation

analysis, LASSO,
backward feature

elimination

8

PDw_wavelet-LHL_glszm_LAHGLE;
PDw_lbp_firstorder_Variance from;

T1c_wavelet-HHH_glszm_LAHGLE;
T1c_squareroot_firstorder_RMAD;

Ktrans_maximal correlation coefficient;
Ktrans_gray level non-uniformity

normalized; Kep_complexity; Kep_large
dependence high gray level emphasis

Cox proportional
hazard PFS: 0.808

Hu et al. (2023)
[25] 3D-Slicer v4.9.0 Oncologist,

Radiologist Pyradiomics v2.1.2 Pearson
correlation, LASSO 23 NR Cox proportional

hazard DMFS: 0.71

Shen et al. (2022)
[26]

in-house software
https://www.
sciencedirect.
com/science/

article/pii/S016
7814022002225
accessed on 23

April 2024

Radiologist

in-house software
https://www.

sciencedirect.com/
science/article/

pii/S01678140220
02225 accessed on

23 April 2024

intraclass
correlation
coefficients,

univariate analysis,
Pearson

correlation
coefficient, Boruta

4 NR Cox proportional
hazard

PFS:
0.726/0.691/0.723/0.704;

LRRFS:
0.691/0.698/0.678/0.684;

DMFS:
0.721/0.686/0.736/0.696;

OS:
0.723/0.708/0.685/0.735

https://www.sciencedirect.com/science/article/pii/S0167814022002225
https://www.sciencedirect.com/science/article/pii/S0167814022002225
https://www.sciencedirect.com/science/article/pii/S0167814022002225
https://www.sciencedirect.com/science/article/pii/S0167814022002225
https://www.sciencedirect.com/science/article/pii/S0167814022002225
https://www.sciencedirect.com/science/article/pii/S0167814022002225
https://www.sciencedirect.com/science/article/pii/S0167814022002225
https://www.sciencedirect.com/science/article/pii/S0167814022002225
https://www.sciencedirect.com/science/article/pii/S0167814022002225
https://www.sciencedirect.com/science/article/pii/S0167814022002225
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Table 3. Cont.

Author Segmentation
Software Annotator Radiomics

Software Feature Selection Feature Count Radiomics Feature Model Result

Liu et al. (2022)
[27]

AccuContour
software v3.0 Radiologist

Pyradiomics
https://www.ncbi.

nlm.nih.gov/
pmc/articles/
PMC9021720/
accessed on 23

April 2024

LASSO 12

T1.original.shape.Maximum2DDiameterRow;
T1.wavelet.LLH.glcm.SumAverage;
T1.wavelet.LHL.glcm.JointAverage;

T1C.original.shape.MeshVolume;
T1C.wavelet.LHL.firstorder.Median,

T1C.wavelet.HLL.glcm.InverseVariance;
T1C.wavelet.HLH.glszm.

LargeAreaLowGrayLevelEmphasis;
T2.wavelet.LLH.ngtdm.Coarseness;

T2.wavelet.LHL.glcm.InverseVariance;
T2.wavelet.LHL.glcm.MaximumProbability;

T2.wavelet.LHH.firstorder.Maximum,
T2.wavelet.HHL.glcm.MaximumProbability

Cox proportional
hazard OS: 0.807

Li et al. (2022) [28]

AnalyzePro https:
//www.ncbi.nlm.

nih.gov/pmc/
articles/PMC898
3880/ accessed on

23 April 2024

Radiologist

Pyradiomics
https://www.ncbi.

nlm.nih.gov/
pmc/articles/
PMC8983880/
accessed on 23

April 2024

interclass
correlation
coefficient,

Pearson
correlation

coefficient, LASSO

21

T1_shape_Sphericity;
T1_WLHH_GLSZM_LGLZE;

T1_WHHL_GLCM_IMC2;
T1_WHHH_GLCM_IMC2;
T1_WHLH_GLCM_IMC2;

T1_log.sigma.3.0.mm.3D_NGTDM_Strength;
T1_WHHH_NGTDM_Contrast;
T2_WHLL_GLDM_LDHGLE;

T2_log.sigma.5.0.mm.3D_FOS_Skewness;
T2_WHHL_GLSZM_SALGLE;

T2_logarithm_NGTDM_Coarseness;
T2_WLLH_GLCM_IDMN;

T1C_WHLL_GLCM_Correlation;
T1C_WLLH_GLSZM_SAHGLE,

T1C_Gradient_GLCM_IMC1,
T1C_Square_GLCM_Correlation;

T1C_Gradient_GLSZM_ZE;
T1C_square_GLRLM_RE;

T1C_log.sigma.3.0.mm.3D_GLSZM_ZE;
T1C_WLHL_GLSZM_ZE;

T1C_gradient_GLSZM_GLN

Cox proportional
hazard DMFS: 0.711

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9021720/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9021720/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9021720/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9021720/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983880/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983880/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983880/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983880/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983880/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983880/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983880/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983880/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983880/
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Table 3. Cont.

Author Segmentation
Software Annotator Radiomics

Software Feature Selection Feature Count Radiomics Feature Model Result

Jiang et al. (2022)
[29]

RadCloud
Radiomics Cloud
Platform https://
bmcmedimaging.

biomedcentral.
com/articles/10
.1186/s12880-022
-00902-6 accessed
on 23 April 2024

NR Pyradiomics v2.2.0
interclass

correlation
coefficient, LASSO

5

T2WI_wavelet.LLL_Glrlm_
ShortRunHighGrayLevelEmphasis;

T1WI_original_Gldm_DependenceVariance;
CE-T1WI_original_Ngtdm_Busyness; CE-

T1WI_squareroot_Firstorder_Variance;
CE-T1WI_wavelet.LLH_Gldm_

LargeDependenceLowGrayLevelEmphasis

Cox proportional
hazard OS: 0.788

Gao et al. (2021)
[30] Matlab v2018b Radiologist

Pyradiomics https:
//onlinelibrary.

wiley.com/doi/10
.1002/hed.26867
accessed on 23

April 2024

LASSO 24

Original-GLCM-Inverse Variance;
Original-GLRLM-LRLGLE;

Wavelet-HLL-Firstorder-Skewness;
Wavelet-HLL-GLCM-Idmn;
Wavelet-HLL-GLCM_Imc1;

Wavelet-LHL-GLRLM-LRLGLE;
Wavelet-LHH-Firstorder-Total Energy;

Wavelet-LHH-GLCM-Joint Energy;
Wavelet-LHH-GLCM-Idn;

Wavelet-LHH-GLCM-Imc1;
Wavelet-LLH-Firstorder-Skewness;

Wavelet-LLH-GLCM-Imc2;
Wavelet-HLH-Firstorder-Kurtosis;
Wavelet-HHH-Firstorder-Median;

Wavelet-HHH-Firstorder-Total Energy;
Wavelet-HHH-Firstorder-Kurtosis;
Wavelet-HHH-GLCM-Difference

Variance; Wavelet-HHH-GLCM-Idn;
Wavelet-HHH-GLCM-Cluster

Prominence;
Wavelet-HHH-GLCM-LRLGLE;

Wavelet-HHL-GLCM-Inverse Variance;
Wavelet-HHL-GLCM-Imc1;
Wavelet-LLL-GLCM-MCC;
Wavelet-LLL-GLCM-Imc2

Cox proportional
hazard PFS: 0.73

https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-022-00902-6
https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-022-00902-6
https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-022-00902-6
https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-022-00902-6
https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-022-00902-6
https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-022-00902-6
https://onlinelibrary.wiley.com/doi/10.1002/hed.26867
https://onlinelibrary.wiley.com/doi/10.1002/hed.26867
https://onlinelibrary.wiley.com/doi/10.1002/hed.26867
https://onlinelibrary.wiley.com/doi/10.1002/hed.26867


Diagnostics 2024, 14, 924 13 of 26

Table 3. Cont.

Author Segmentation
Software Annotator Radiomics

Software Feature Selection Feature Count Radiomics Feature Model Result

Zhang et al. (2020)
[31]

ITK-SNAP
software v2.2.0 Radiologist

Pyradiomics
https://www.ncbi.

nlm.nih.gov/
pmc/articles/
PMC7739087/
accessed on 23

April 2024

intra/inter-class
correlation
coefficient,

univariate analysis,
minimal

redundancy
maximum

relevance, and
random forest

12

T1w_original_shape_LeastAxisLength;
T1w_wavelet.HL_firstorder_Skewness;

T2w_log.sigma.2.0.mm.3D_glcm_ClusterShade;
T2w_wavelet.HL_glszm_

SizeZoneNonUniformityNormalized;
T2w_wavelet.HH_glcm_ClusterShade;

T2w_original_glszm_
SmallAreaLowGrayLevelEmphasis;
T2w_log.sigma.3.0.mm.3D_glrlm_

LowGrayLevelRunEmphasis;
T1c_wavelet.HH_glrlm_

LongRunLowGrayLevelEmphasis;
T1c_wavelet.HH_glrlm_

ShortRunLowGrayLevelEmphasis;
T1c_log.sigma.5.0.mm.3D_glcm_ClusterShade;

T1c_wavelet.LH_glcm_Autocorrelation;
T1c_wavelet.HH_firstorder_Skewness

Cox proportional
hazard FFS: 0.711

Bologna et al.
(2020) [32] NR Radiologist Pyradiomics v2.2.0

ICC, Spearman
correlation
coefficient,

univariate and
multivariate Cox

regression

2 T-T1w-WaveletLLH-Firstorder-Median;
T-T1w-WaveletLLL-Firstorder-Mean

Cox proportional
hazard

OS: 0.68; DFS: 0.54;
LRFS: 0.72

Zhang et al. (2019)
[33]

RadiAnt software
https:

//www.ncbi.nlm.
nih.gov/pmc/

articles/PMC649
1646/ accessed on

23 April 2024

Radiologist Matlab v2016a

recursive feature
elimination,

univariate and
multivariate

analysis

11

T2-
w_GLCM_Cluster_S_Offset_8_Direction_135;
T1-w_GLRLM_SRHGE_Direction_90; T1-
w_IntensityDirect_Local_Entropy_Mean;
T1-w_GLCM_Inverse_Variance_Offset_2_

Direction_45; T1-
w_GLCM_Contrast_Offset_4_Direction_90;

T1-w_GLCM_Dissimilarity_Offset_4_
Direction_90; subtrac-

tion_GLCM_Inverse_Variance_Offset_4_
Direction_135; subtrac-

tion_GLCM_IMC_Offset_2_Direction_90;
subtrac-

tion_IntensityHistogram_Quantile30;
subtrac-

tion_NeighborIntensityDifference_Busyness;
subtrac-

tion_GLCM_Cluster_P_Offset_8_Direction_90

Cox proportional
hazard LRFS: 0.753

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7739087/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7739087/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7739087/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7739087/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491646/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491646/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491646/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491646/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491646/
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Author Segmentation
Software Annotator Radiomics

Software Feature Selection Feature Count Radiomics Feature Model Result

Ming et al. (2019)
[34] MIM v6.6 Oncologist Matlab v2015a

Contour
reproducibility

and
nonredundancy,

LASSO

DFS: 5; OS: 3;
DMFS: 4

DFS:LL_GLCM.Information_Measures_II;
HL_GLCM.Information_Measures_II;

LL_HIST.mean; LL_HIST.kurtosis;
HH_HIST.median; OS:

HL_GLCM.Information_Measures_II;
LL_HIST.skewness; LL_HIST.kurtosis;

DMFS:
LL_GLCM.Information_Measures_II;
HL_GLCM.Information_Measures_II;
LL_HIST.skewness; LL_HIST.kurtosis

Cox proportional
hazard

DFS:0.674; OS: 0.694;
DMFS: 0.669

Zhang et al. (2017)
[35]

ITK-SNAP
https://

aacrjournals.org/
clincancerres/

article/23/15/42
59/257519/
Radiomics-
Features-of-

Multiparametric-
MRI-as-Novel
accessed on 23

April 2024

Radiologist Matlab v2014a LASSO 7

CET1-w_5_fos_mean;
CET1-w_5_GLCM_correlation;

CET1-w_5_GLRLM_RP; T2-w_Max3D;
T2-w_3_fos_mean; T2-w_6_GLCM_IMC1;

T2-w_1_GLRLM_SRLGLE

Cox proportional
hazard PFS: 0.758

https://aacrjournals.org/clincancerres/article/23/15/4259/257519/Radiomics-Features-of-Multiparametric-MRI-as-Novel
https://aacrjournals.org/clincancerres/article/23/15/4259/257519/Radiomics-Features-of-Multiparametric-MRI-as-Novel
https://aacrjournals.org/clincancerres/article/23/15/4259/257519/Radiomics-Features-of-Multiparametric-MRI-as-Novel
https://aacrjournals.org/clincancerres/article/23/15/4259/257519/Radiomics-Features-of-Multiparametric-MRI-as-Novel
https://aacrjournals.org/clincancerres/article/23/15/4259/257519/Radiomics-Features-of-Multiparametric-MRI-as-Novel
https://aacrjournals.org/clincancerres/article/23/15/4259/257519/Radiomics-Features-of-Multiparametric-MRI-as-Novel
https://aacrjournals.org/clincancerres/article/23/15/4259/257519/Radiomics-Features-of-Multiparametric-MRI-as-Novel
https://aacrjournals.org/clincancerres/article/23/15/4259/257519/Radiomics-Features-of-Multiparametric-MRI-as-Novel
https://aacrjournals.org/clincancerres/article/23/15/4259/257519/Radiomics-Features-of-Multiparametric-MRI-as-Novel
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For Distant Metastasis-Free Survival (DMFS), we noted a c-index of 0.72 (95% CI:
0.68–0.75), with low variability (I2 = 38.76%). Local Recurrence-Free Survival (LRFS)
demonstrated a c-index of 0.70 (95% CI: 0.66–0.74, p = 0.89) and showed no heterogene-
ity (I2 = 0%). Progression-Free Survival (PFS) had a c-index of 0.69 (95% CI: 0.66–0.72),
with low heterogeneity (I2 = 37.56%). Lastly, Overall Survival (OS) presented a c-index
of 0.76 (95% CI: 0.72–0.79), with moderate heterogeneity (I2 = 63.38%). These findings
highlight the variability in the consistency of radiomics prognostic models across different
oncological endpoints.

3.5. Secondary Outcome: Overall Survival Prediction of Radiomics Prognosis Model

Given that Overall Survival (OS) was the only endpoint associated with moderate
heterogeneity, we conducted further subgroup analyses and meta-regression to identify
potential moderators that could explain this heterogeneity. Significant differences were
observed when considering the validation method and radiomics software as moderators
(see Table 4). Specifically, subgroups based on radiomics software exhibited low hetero-
geneity, although caution is advised due to potential bias from the small number of studies
included [131]. This observation warrants confirmation with additional studies.

Table 4. Subgroup analysis of radiomics prognosis model with Overall Survival as endpoint.

Moderator N of Studies c-Index (95% CI) p-Values % I2

Region 0.33
Asian 8 0.76 (0.72~0.79) <0.01 70%

Europe 1 0.68 (0.53~0.83) <0.01 0%

Validation
method 0.03

External 3 0.71 (0.67~0.76) <0.01 0%
Internal 6 0.78 (0.74~0.81) <0.01 56%

MRI sequence 0.20
Multiple 8 0.76 (0.72~0.80) <0.01 67%

Single 1 0.69 (0.60~0.79) <0.01 0%

Radiomics
software <0.01

In-house 5 0.71 (0.67~0.75) <0.01 1%
Pyradiomics 4 0.80 (0.72~0.79) <0.01 3%

In our meta-regression analysis, a significant association (p < 0.01) was found between
the number of features in the prognosis model and its performance, with a coefficient
of 0.010622 (Figure 4). No significant association was found with the publication year
(coefficient = 0.0220509, p = 0.084). There was also no significant relationship between
training size (coefficient = 2.72 × 10−6, p = 0.985) and model performance.
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4. Discussion
4.1. Overview of Key Findings

Our meta-analysis systematically evaluated 37 radiomics prognostic outcomes, reveal-
ing a notable average concordance index (c-index) of 72% (95% Confidence Interval (CI):
70–74%) across studies, with the range stretching from 54% to 81%. This variation not only
underscores the potential utility of radiomics in clinical prognostication but also highlights
the substantial heterogeneity encountered, particularly in Overall Survival (OS) predic-
tions, where a moderate Higgins I2 statistic of 64.44% was observed. Notably, our findings
identified a significant positive correlation between the number of features in the prognosis
model and its performance, with a meta-regression coefficient of 0.010622 (p < 0.01), em-
phasizing the complexity and potential of detailed models. The analysis also demonstrated
that validation methods and radiomics software significantly influenced heterogeneity,
pinpointing crucial areas for standardization and improvement in future research.

4.2. Comparison with Existing Literature

When compared with the existing literature, our findings both validate the recognized
potential of radiomics and highlight the challenges of achieving consistent performance
across studies. Notably, the c-index range we report aligns with those found in similar
meta-analyses, such as a c-index of 0.762 (95% CI, 0.687–0.837) for Progression-Free Survival
(PFS) prediction [13]. Similarly, we limited our analysis to prognosis models incorporating
radiomics features. However, we further refined our approach by categorizing endpoints
into more sophisticated subgroups, leading to observed reductions in heterogeneity for
Local Recurrence-Free Survival (LRFS), Distant Metastasis-Free Survival (DMFS), and
PFS. Additionally, our study aggregated results for Overall Survival (OS), an analysis not
conducted in the prior study. The moderate heterogeneity observed in OS predictions
(I2 = 64.44%) suggests that OS may be influenced by a broader range of clinical condi-
tions, potentially necessitating the inclusion of additional clinical features for more robust
prediction models.

Our analysis also advances the discussion on methodological variables—specifically,
the number of features in a model and the selection of radiomics software. These factors
have been less frequently quantified in prior reviews. By highlighting these aspects,
our study underscores the need for a more standardized approach to radiomics model
development, potentially leading to more consistent and reliable prognostic tools.

4.3. Implications for Clinical Practice and Research

The significance of our findings is emphasized through the substantial average concor-
dance index, indicating that radiomic models harbor the potential to considerably refine
patient stratification and the planning of treatments. Nonetheless, the observed diversity
and fluctuations in performance, especially concerning Overall Survival (OS) predictions,
mandate a prudent integration into clinical guidelines.

The observed variability in the consistency of radiomics prognostic models across
different oncological endpoints has important implications for clinical practice. The finding
that models performed more consistently for Local Recurrence-Free Survival (LRFS), Dis-
tant Metastasis-Free Survival (DMFS), and Progression-Free Survival (PFS) compared to OS
suggests that radiomics may be particularly useful for predicting locoregional control and
disease progression. This could help clinicians identify high-risk patients who may need
more aggressive local therapies or closer surveillance. However, the greater variability in
performance for OS indicates that radiomics alone may not be as reliable for predicting
long-term survival, which is impacted by many factors beyond the primary tumor.

These results underscore the need to carefully consider the specific clinical endpoint of
interest when developing and applying radiomics prognostic models. Models that perform
well for one endpoint may not necessarily generalize to other endpoints. Clinicians should
look for models that have been validated for the specific outcomes most relevant to their
patients and practice. The variability across endpoints also highlights the importance of
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incorporating other clinical, pathologic, and genomic factors alongside radiomics to develop
more holistic prognostic models, particularly for OS. Radiomics can provide valuable
information about the primary tumor, but integrating it with other key determinants of
survival may be necessary to maximize prognostic value.

Crucially, our detailed subgroup analysis and meta-regression reveals distinct mod-
erators (for instance, validation methodologies profoundly affecting heterogeneity and
radiomic software that reduces subgroup heterogeneity) that, upon standardization, could
streamline the enhancement and validation of radiomic models. This standardization is
pivotal for augmenting their reliability and applicability within clinical frameworks, thus
facilitating improved patient care and treatment outcomes.

Despite these promising avenues, moderate heterogeneity in OS predictions persists,
highlighting the complex interplay between radiomic data and patient-specific clinical
factors such as health status, comorbidities, and response to treatment. The multifactorial
nature of OS suggests that while radiomics can provide valuable insights into tumor charac-
teristics, a comprehensive approach that integrates radiomic data with clinical parameters
is essential for making more accurate prognostic assessments. Moreover, variations in
treatment protocols and intrinsic tumor heterogeneity contribute further to the observed
disparities in survival predictions.

Finally, the results suggest that further research is needed to understand the biological
underpinnings of the radiomics features that drive prognostic performance for different
endpoints. Better mechanistic insight could help refine models and identify radiomics
signatures that are more specifically linked to the most clinically meaningful outcomes.
Ongoing research to refine and integrate radiomics into multifaceted prognostic models
will be key to realizing its potential to guide precision oncology care.

4.4. Technical Considerations of Radiomics Features and Imaging Protocols

Standardized approaches have been implemented to address the potential risk of bias
due to protocol variations in radiomics studies to ensure consistency and comparability
across different cancer pathologies. Khanfari et al. [132] employed a standardized dataset
alongside consistent preprocessing techniques, including normalization and enhancement
across various mpMRI images. This method was vital for minimizing data handling
variability and included the use of uniform fusion techniques and robust preprocessing
methods, which are essential in prostate cancer grading and reducing bias from data
processing variations. Similarly, Reginelli et al. [133] standardized the radiomics pipeline
by using consistent image acquisition protocols and radiomics software, thus enhancing
the reliability of their findings and mitigating the risk of bias across studies.

To further ensure the relevance and accuracy of prognosis models, statistical tech-
niques and machine learning were used for selecting radiomics features. Methods like
the Least Absolute Shrinkage and Selection Operator (LASSO), recursive feature elimina-
tion, and correlation analyses (Pearson and Spearman) identified features with minimal
redundancy. The reproducibility and consistency of these features were evaluated using
intraclass and interclass correlation coefficients. Univariate and multivariate analyses,
including Cox regression, further refined the selection based on statistical significance and
clinical relevance.

Additionally, robust radiomics software was utilized to normalize data across different
MRI scanner settings, mitigating the impact of scanning variability on feature extraction and
model performance. MRI sequences were categorized into single and multiple sequences
to examine how sequence variations affect the predictive power of radiomics features.
This structured approach clarified the influence of technical variations in MRI on radiomic
analysis and enhanced the results’ reliability and applicability. These comprehensive
measures effectively addressed potential biases due to protocol variations, leading to more
reliable and applicable outcomes in radiomics studies.



Diagnostics 2024, 14, 924 19 of 26

4.5. Methodological Considerations and Strengths

The foundational strength of our study lies in its methodological precision, highlighted
by a meticulous systematic review and exhaustive analyses, including the use of meta-
regression to identify sources of heterogeneity. The employment of established evaluation
tools such as the Quality in Prognosis Studies (QUIPS) and the Radiomics Quality Score
(RQS) enhances the reliability of our findings. QUIPS provides a qualitative assessment
of bias across various domains of prognostic studies, adding depth to our analysis, while
the RQS offers a quantitative measure of methodological quality. Higher RQS scores
denote studies with lower risks of bias and greater methodological reliability, essential for
ensuring the validity and reproducibility of results. This scoring system not only aids in
distinguishing high-quality studies but also pinpoints areas needing improvement in study
design and execution.

Moreover, the integration of RQS in a meta-regression against study results allows
for a nuanced exploration of how methodological quality impacts reported outcomes
in radiomics research. Our findings from the meta-regression, showing a coefficient of
−0.0083655 with a p-value of 0.294, indicate no significant association between RQS scores
and study outcomes at conventional levels of statistical significance. This analysis un-
derscores the importance of robust methodological design in influencing the findings
of radiomics studies and provides a reproducible framework for future research in this
evolving field.

4.6. Limitations and Future Research Directions

Notwithstanding the compelling nature of our results, they are accompanied by lim-
itations. The marked heterogeneity (I2 = 64.44% for OS), potential biases, and paucity
of studies within certain subgroups reflect the intricate nature of radiomics research and
might temper the strength of our deductions. The inability to include unpublished stud-
ies raises the possibility of publication bias, while heterogeneity in patient populations,
treatments, endpoints, and radiomics methods may limit the reliability and generalizability
of pooled estimates. The retrospective nature of the included studies, lack of prospective
validation, and absence of a direct assessment of the clinical utility of radiomics compared
to standard prognostic tools are also important limitations that underscore the need for
ongoing research.

Future inquiries should focus on conducting multi-institutional prospective studies to
validate radiomics models in diverse patient cohorts and real-world settings. Methodologi-
cal standardization, integration of radiomics with other prognostic factors, and mechanistic
investigations are key priorities. Rigorous assessments of the clinical utility and impact
of integrating radiomics into prognostic models and treatment strategies are essential.
Expanding radiomics research to other cancer types and imaging modalities, as well as
fostering multidisciplinary collaboration and data sharing, will be crucial for advancing
the field. Such endeavors are pivotal for bridging the gap between radiomics research and
its clinical application, ultimately leading to more effective and personalized treatment
approaches. By addressing these challenges and opportunities, future research can help
transform radiomics from a promising research tool into a validated and impactful asset
for advancing precision oncology.

5. Conclusions

In summary, our meta-analysis highlighted the significance and variability of ra-
diomics in predicting cancer treatment outcomes, particularly focusing on overall survival
due to its heterogeneity.
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