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Abstract: Background: The current manuscript’s aim was to determine the human papillomavirus
(HPV) genotype-specific prevalence and distribution among individuals, males, and females, of
different ages in the region of Apulia, Italy, highlighting the possible variables involved in the
carcinogenicity mechanism. In addition, we proposed two hypothetical models of HPV’s molecular
dynamics, intending to clarify the impact of prevention and therapeutic strategies, explicitly modeled
by recent survey data. Methods: We presented clinical data from 9647 participants tested for either
high-risk (HR) or low-risk (LR) HPV at the affiliated Bari Policlinic University Hospital of Bari from
2011 to 2022. HPV DNA detection was performed using nested-polymerase chain reaction (PCR) and
multiplex real-time PCR assay. Statistical analysis showed significant associations for all genders
and ages and both HR- and LR-HPV types. A major number of significant pairwise associations
were detected for the higher-risk types and females and lower-risk types and males. Results: The
overall prevalence of HPV was 50.5% (n-4.869) vs. 49.5% (n-4.778) of the study population, of which
74.4% (n-3621) were found to be HPV high-risk (HR-HPV) genotypes and 57.7% (n-2.807) low-risk
HPV (LR-HPV) genotypes, of which males were 58% and females 49%; the three most prevalent
HR-HPV genotypes were HPV 53 (n707-15%), 16 (n704-14%), and 31 (n589-12%), and for LR-HPV,
they were 42 (19%), 6 (16%), and 54 (13%); 56% of patients screened for HPV were ≤ 30 years old, 53%
were between 31 and 40 years old, 46% were 41–50 and 51–60 years old, and finally, 44% of subjects
were >60 years old. Conclusions: Our study provided comprehensive epidemiological data on HPV
prevalence and genotype distribution among 9647 participants, which could serve as a significant
reference for clinical practice, and it implied the necessity for more effective screening methods for
HPV carcinogenesis covering the use of more specific molecular investigations. Although this is
a predominantly descriptive and epidemiological study, the data obtained offer not only a fairly
unique trend compared to other studies of different realities and latitudes but also lead us to focus
on the HPV infection within two groups of young people and adults and hypothesize the possible
involvement of dysbiosis, stem cells, and the retrotransposition mechanism.
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1. Introduction

Human papillomavirus (HPV) infection is considered one of the most common sexu-
ally transmitted diseases worldwide. HPV belongs to DNA viruses of the Papillomaviridae
family [1]. HPV’s size is ~8 kb double-stranded DNA, and they are equipped with eight
open reading frames (ORFs): E1, E2, E4, E5, E6, E7, L1, and L2, each one executing different
tasks; the E1, E2, E4, and E6 maintain viral vital function, whilst L1 and L2 encode structural
capsid proteins needed for the virus’s replication [1,2]. The virus is also equipped with
two major promoters in charge of regulating the transcription within the HPV genome: (1)
the early promoter located in the long control region, which regulates the expression of E6
and E7 and (2) the late promoter located within the E7 gene, in charge of regulating the
expression of E1, E2, E4, E5, L1, and L2 [3–6].

Currently, ~200 HPV types are known, categorized into five distinct genealogical
groups plus the α-papillomaviruses that include only the HR-HPV and LR-HPV subtypes;
this categorization poses significant issues and limitations regarding when we should
target global prevalence [7–9]. Different variants and subtypes are classified based on their
genetic distance from viral genomes, and many are capable of causing a range of mucosal
or cutaneous epithelial hyperplastic lesions, which are also considered important causative
factors of several types of cancers such as the squamous epithelia of the cervix, oropharynx,
and anogenital areas [6–9]. New HPV subtypes are observed when the L1 ORF shows
decidual differences from other known genotypes by ≥10%, while simple variants exhibit
between 0.5–1% genome differentiation [10–14].

More recent findings in papillomavirus research have highlighted three contribu-
tive independent patterns: (i) studies on a rare human genetic makeup highlighted the
hereditary predisposition toward some forms of epidermodysplasia and verruciformis,
characterized by extensive warts, with the development of warts followed by the devolu-
tion of skin cancer with the possible involvement of mature stem cells [15]; (ii) data from
the determination of different pathogen’s etiology of cancer suggested the possible role of
gut/vaginal dysbiosis [16]; (iii) immune compromission and, therefore, the importance of
uncontrolled autoimmune inflammatory responses have been highlighted [17].

The HPV Epidemiology and the Different Infectivity Pathways

Approximately 15–20% of cancers worldwide are associated with specific viruses
known to be implicated in the development of cancer, including HPV, Epstein–Barr virus
(EBV), Hepatitis B virus (HBV), and hepatitis C virus (HCV), which are known to be
the most popular. Demographically and epidemiologically, the outcomes have shown
that in sexually active men and women, the HPV infection rate could reach 80% [6–13].
Most of the time, the infections tend to resolve spontaneously, due to the healthy host’s
immune responses; only in a very few cases, the virus persists and eventually triggers
carcinogenesis [14–18]. Recent studies have shown the numerous and highly sophisticated
mechanisms adopted by these viruses to evade or suppress immune responses [18–22].

As obligate intracellular “parasites”, these viruses encode proteins that affect cell
development, the growth cycle, and the apoptosis mechanism. Within the host cells, each
virus regulates its development needs by reprogramming the host’s cell signaling mecha-
nism, disrupting major checkpoints in charge of regulating proliferation, differentiation,
and genomic integrity, especially through deactivation of the interferon mechanism (IFN)
through sequestering STAT-1 and -2 [18–22]. Several variables such as local and systemic
immunity deficiencies, immunosuppression, genetic predisposition, and environmental
factors (pro-carcinogenic exposure) may contribute to constant silent mutation as a result
of chronic viral infection [23–27].
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HPV E6 and E7 are crucial oncogenes that promote HPV carcinogenesis that easily
occurs in combination with HR-HPV types such as 16 and 18 [25–28]. Within the basal
epithelium, HPV begins the cellular sabotage phase by “reprogramming” the host cell
machinery to continue replication; the next step is characterized by the release of HPV from
terminally differentiated cells that detach from the epithelial surface [29–33]. Anti-HPV
antibodies are only detected 6–12 months after infection; during this period, HPV adopts a
number of evasion mechanisms that can be particularly dangerous for immunocompro-
mised hosts [25–28].

Healthy immunosurveillance plays a crucial role in initiating antigen-dependent re-
sponses against HPV infection and virally transformed cells. For example, numerous
studies have confirmed that 90% of anogenital HPV infections are substantially eliminated
in immunocompetent hosts [28–33]. It should be noted that intracellular HPV is paradoxi-
cally protected by the host’s immunity, which allows the virus to reach maturity in order
to exit, first infecting the keratinocytes and then exfoliating; throughout this process, the
immune response remains relatively low compared to immune responses to viruses that
are not confined to epithelial tissues [32–35].

Genetic predispositions linked to HPV-related disease may include errors or polymor-
phisms of CIB-1, CXCR-4, EVER-1, EVER-2, DOCK-8, and GATA-2 genes, since a small
number of critical mutations in these genes have been demonstrated to trigger deep skin
HPV infections, linked to being highly susceptible to CC [25,36–39]. People living with sec-
ondary immunodeficiency due to solid-organ transplants and acquired immunodeficiency
(human immunodeficiency virus (HIV) infection) are at significant risk of HPV-related
infection. They are exposed to cervical, anogenital, and oropharyngeal carcinomas [40–44].

Dendritic cells (DCs), natural killer (NK) cells, macrophages, and Langerhans cells
(LCs) are crucial during the infection’s initial phases, while HPV-specific CD8 + T cells start
targeting early viral proteins exposed by infected cells [44–47]. In HPV infection immune
responses are mainly linked to a class II MHC that enhances T cell activation toward
TH2-like regulatory T cell (Treg) function [44–46]. From this point, these regulatory cells
start producing several cytokines and chemokines that become the specific trait of patients
with severe recurrent respiratory papillomatosis (RRP) [44–46]. These patients with RRP
have shown impaired NKs and macrophages. While HPV inhibits the natural killer cell
immunoglobulin-like receptor (KIR) gene haplotypes [43–45], HPV also affects macrophage
translocation during acute infection by interfering with macrophage chemotaxis, reducing
the number of proinflammatory cytokines, such as TNF-α and IL-17A, both important in
the recruitment of immune cells at the site of infection [43–45]. In addition, HPV is able
to make macrophages a reliable partner for tumor progression using the E6 oncoproteins,
which are involved in the inhibition of monocyte chemotactic protein MCP-1 from infected
keratinocytes, once the malignant transformation is settled [42,44].

On the other hand, HR-HPV 16 oncoproteins E6 and E7 have been shown to down-
regulate the secretion of macrophage inflammatory protein 1α (MIP1α) from infected
keratinocytes, which in turn, impairs the immune response by promoting the production
of MIP1α, transforming growth β (TGFβ) by increasing the activity of the TGF-β1 pro-
moter [45–47]. Consequently, an increased level of TGF-β expression has been observed
in HPV-derived tumors, which tends to induce local immune suppression. This, in turn,
increases susceptibility to malignant transformation [47–49]. In an analysis of human tissue
specimens and cultured keratinocytes, scientists found that the HR-HPV E7 protein was
involved in the hypermethylation of the CXCL14 promoter. Of note, the CXCL14 is a
chemokine expressed only in normal cells, that cannot be found in mutating and cancerous
cells [45–49].

Interestingly, experiments conducted on animal models with head/neck and cervical
cancers revealed that restoring CXCL14 expression in HPV-positive cancer cells showed
an evident increase in NK and T cells in the tumor-draining lymph nodes, contributing to
strong anti-tumor responses in vivo [50–52]. Outcomes have demonstrated the presence of
CXCL14-producing fibroblasts with maturing macrophages, which also implicitly refers to
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a possible role for CXCL14 in macrophage development [53–58]. Thus, it is not surprising
that HPV has evolved a mechanism capable of affecting these chemokines that contribute
to its immune escape strategy [59].

Pathophysiologically, the HPV integration into the host genome indicates the precise
moment at which oncoproteins E6 and E7 start activating; both are, respectively, associated
with p53 and pRb degradation, which in turn induce the increase in the proliferation
rate, tumor growth-promoting transcription factors with a consequent increase in enzyme
gene expression important in replication and cell division [57–59]. Similarly to what
happens in other obligate intracellular pathogens, HPV, through E7, interferes during the
mitosis process causing mitotic anomalies, favoring the creation of misaligned or delayed
chromosomes and breaks in the chromosomal structure, leading to further destabilization
of the cellular genome [59–61]. In addition, HPV infection of one genotype may enhance
the risk of being infected by a new HPV genotype on follow-up [59–61].

This study covers eleven years of routine diagnostic data on HPV infection and aims
to retrospectively evaluate the impact of HPV prevalence and HPV genotype distribution
on samples collected from patients in the Apulia region. To address this issue, a quasi-
experimental and theoretical approach was conducted to evaluate the effect of real-time
PCR on HPV prevalence and the prevalence of individual viral genotypes and to discuss
those mechanisms that may facilitate HPV infection to lead to carcinogenesis in youth,
adults, and the elderly.

2. Material and Methods
2.1. Samples Collection

In the period between 2011 and 2022 in the Laboratory of Molecular Biology, UOC
Microbiology and Virology, Hospital University of Bari, (Apulia region, Southern Italy),
9647 biological samples were analyzed from patients admitted to the same hospital and
from outpatients or during follow-ups. Cervical, vaginal, urethral, and mouth swabs
were collected by a rigid cotton-tipped swab applicator (Nuova Aptaca, Cannelli, Italy),
which were treated with 2 mL of phosphate-buffered saline (pH 7.4) (Sigma-Aldrich,
Milano, Italy); other types of swabs (e.g., urethral) were treated with 1 mL of saline; then
they were vortexed for 30 s to favor the detachment of the cells and the genetic material
present. Bioptic samples were finely chopped and placed in Green Beads tubes with 1 mL
of DNA Lysis Tissue Buffer (Roche, Milano, Italy); the samples were then removed and
homogenized with three cycles with DNA Magna Lyser (Roche, Milano, Italy). The final
product was moved into a new tube with 20 ul of Proteinase K (Merck Group, Italy).

2.2. DNA Extraction and Multiplex Real-Time PCR

Extracted DNA samples were submitted to multiplex real-time PCR (mRT-PCR) by an
Anyplex™ II HPV 28 Detection System (Seegene, Seoul, Republic of Korea) performed on a
CFX96 Real-Time PCR (Bio-Rad, Hercules, CA, USA). We started with 200 µL of sample
DNA extraction, and the DNA was eluated in a final volume of 100 µL. The procedure
includes the first round of amplification of the L1 region viral genome, and the following
amplification includes biotinylated primers. PCR products are tested using 3% agarose gel
electrophoresis with ethidium bromide to display DNA under ultraviolet light. The PCR
products were typed by using a Reverse Line Blot Hybridization Ampliquality HPV-Type
Kit (AB Analitica, Padova, Italy). The Ampliquality HPV-Type Kit allows for the detection
of 14 HR-HPV types (types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, and 68), 5 IIB HPV
genotypes possibly oncogenic (26, 53, 69, 73, and 82), and 11 LR-HPV types (types 6, 11, 40,
42, 43, 44, 54, 61, 70, 72, and 81) [62].

The first amplification procedure was used to assess the suitability of the extracted
DNA, from the thiosulfate sulfurtransferase (TST) gene region (202 bp). The results were
assessed by following the manufacturer’s procedures; therefore, the negative TST amplifi-
cation result underlines the presence of PCR inhibitors or degraded DNA. Moreover, the
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Ampliquality HPV-HS Bio Kit provides either a negative control or one positive control
represented by plasmid DNA of HPV-54.

The current kit allowed the detection of one negative control and three positive
controls for each of the two PCR reactions (panels A and B). Panel A includes 14 HR/HPV
types, while panel B includes 5 HPV genotypes, IIB, and nine LR types. Data recording
and interpretation were automated using the Seegene viewer software, according to the
manufacturer’s instructions.

2.3. Statistical Analysis

Data and outcomes were performed using SPSS (version 19.0) and WPS (version
2022). We used a descriptive statistical analysis to highlight and confirm HPV prevalence
and genotype distribution. SPSS 19.0 for Windows (SPSS Inc., IL, USA) was used to
determine single, double, and multiple HPV infections correlated to infections with single
or multiple HPV genotypes. Results of the prevalence in the designated groups were
assigned corresponding 95% confidence intervals (95% CI). Data and results among gender,
age groups, and categorical variables were calculated by using the chi-square test, while a
linear-by-linear association test and gamma values were used to assess changes in HR-HPV
and LR-HPV prevalence across the different groups. Results were considered statistically
significant at p values less than 0.05.

3. Results

In the period between 2011 and 2022, 9647 biological samples were analyzed from
patients admitted to the same hospital and from outpatients or in follow-ups. Of these,
4869 (50.5%) tested positive, while 4778 (49.5%) were negative (p value > 0.05, 95% CI, 95%),
of which 74.4% (n-3621) were found to be HPV high-risk (HR-HPV) genotypes, and 57.7%
(n-2807) low-risk HPV (LR-HPV) genotypes; this was statistically significant (p value < 0.05,
95% CI, 95%) (Figures 1 and 2). In particular, 764/1318 (58%) male subjects tested positive,
while 4105/8329 (49%) tested positive for women (p value < 0.05, 95% CI). The difference in
prevalence between females and males was statistically significant (p value < 0.05, 95% CI).
There was a lower percentage of males versus females infected with high-risk genotypes
(HR-HPV females 45% vs. males 27%), with a greater percentage of males than females with
low-risk genotypes (LR-HPV males 42% vs. females 23%) (p value < 0.05, 95% CI). Equal
percentages of males and females were infected with both risk genotypes (32% vs. 32%)
(p value > 0.05, 95% CI, 95%). The age difference between female and male patients was
statistically significant (p value < 0.05, 95% CI) (Table 1). The three most prevalent HR-HPV
genotypes were HPV 53 (n707-15%, 95% CI), 16 (n704-14%, 95% CI), and 31 (n589-12%, 95%
CI), and for LR-HPV, they were 42 (19%, 95% CI), 6 (16%, 95% CI), and 54 (13%, 95% CI);
56% of patients screened for HPV were ≤30 years old (95% CI), 53% were between 31 and
40 years old (95% CI), 46% were 41–50 and 51–60 years old (95% CI), and finally, 44% of
subjects were >60 years old; this difference was statistically significant (p value > 0.05, 95%
CI, 95%).

Table 1. Total number and percentage of HPV-infected and non-infected patients, also divided
by gender.

Total Male Female
Infected % of All M Infected % of All F

HPV not Infected 4778 554 42% 4224 51%

HPV Infected 4869 764 58% 4105 49%
Total 9647 1318 100% 8329 100%
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Of these, 32% were positive for high- and low-risk genotypes, 42.3% of positive
subjects had only high-risk genotypes, and finally, 25.6% of subjects had only low-risk
genotypes (Figure 3).
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Among the high-risk genotypes detected, we have the following: HPV 53 (15%), HPV
16 (14%), HPV 31 (12%), HPV 66 (9%), HPV 51, 58, 68 (8%), HPV 52 and 56 (7%), HPV 59
(6%), HPV 18, 39, 73 (5%), HPV 33 (4%), HPV 35 and 45 (3%), HPV 82 (2%), and finally,
HPV 26 and 639 (0.3% and 0.2%, respectively) (p values < 0.05, 95% CI, 95%) (Figure 3).

Table 2 shows the values with relative percentages of subjects (males and females)
positive for the HPV test with distinction by genotypes (high, low, both).

Table 2. Subdivision based on high and low risk genotypes considering the male and female groups,
with absolute and relative percentages.

All Genders Male Female

Genotypes Number % All
Genders Number % from

Males Number % from
Females

HPV High-Risk
Genotypes High Risk 3621 74% 445 58% 3176 77%

HPV Low-Risk
Genotypes Low Risk 2807 58% 554 73% 2253 55%

HPV Both Risk
Genotypes Both 1559 32% 235 31% 1324 32%

HPV High-Risk
Genotypes Only High Only 2062 42% 210 27% 1852 45%

HPV Low-Risk
Genotypes Only Low Only 1248 26% 319 42% 929 23%

HPV Infected
Total

Total
Infected 4869 100% 764 100% 4105 100%

However, among the low-risk genotypes detected, we have the following: HPV 42
(19%), HPV 6 (16%), HPV 54 (13%), HPV 44 and 61 (7%), HPV 40, 43, 70 (4%), HPV 11
(3%), and finally, HPV 81 and 72 (0.4% and 0.02%, respectively) (p values < 0.05, 95% CI,
95%) (Figure 4).
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Furthermore, it was shown that 56% of patients screened for HPV were ≤30 years old,
53% were between 31 and 40 years old, 46% were 41–50 and 51–60 years old, and finally,
44% of subjects were >60 years old (p values < 0.05, 95% CI, 95%) (Figure 5).
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Over the years covered by the study, the number of people tested for the presence of
HPV varied. In particular, from 2011 to 2019, the number of people subjected to the test
increased more and more, reaching a quota of 1285 subjects in 2019. In 2020, on the other
hand, the number of subjects decreased, remaining at around 1000 subjects (Figure 6).
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Figure 6. Total number of people undergoing HPV molecular testing over the years (2011–2022).

4. Discussion

The present study investigated the presence and spread of HPV genotypes in a hospital
in the Apulia region over 11 years. Results showed that a smaller proportion of males
than females were infected with high-risk genotypes, while a greater proportion of males
than females were infected with low-risk genotypes. Overall, and in line with previous
studies, significant differences in HPV infection rates were found among the age groups
and genders (Figures 2–4).

During the period covered by this study, the number of people tested for the presence
of HPV varied. In particular, from 2011 to 2019, the number of people subjected to the test
increased more and more, reaching a quota of 1285 subjects in 2019. In 2020, on the other
hand, the number of subjects decreased, remaining at around 1000 subjects (Figures 5–7).
In addition, as reported by our study conducted in 2019, our data showed that the 53
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genotype was prevalent, while the 53-16 and 31 HR genotypes were seen correlated with
42-6 and 54 LR-HPV genotypes and remain the most representative HPV types involved in
co-infections in the Bari province. The outcomes showed a higher prevalence of HR-HPV
infection in women than men, while there was a higher prevalence of LR-HPV infection
in males.
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Figure 7. The total number of people undergoing HPV molecular testing over the years by gender
(2011–2022). There was a lower percentage of males than females infected with high-risk genotypes. A
greater percentage of males than females were infected with low-risk genotypes. An equal percentage
of males and females were infected with both risk genotypes. A lower percentage of males than
females were infected with high-risk genotypes only. A greater percentage of males than females
were infected with low-risk genotypes only (p values < 0.05, 95% CI, 95%).

The prevalence of HPV infection was almost equally distributed between younger and
elderly people; as reported elsewhere, we have detected the most infected groups within
the ages 31–40 (tot n-2.695) and 41–50 (tot n-2.672) [63,64]. Such data confirm the need for a
strict screening of the general population (male, female, young adult, and elderly) as a viral
reservoir, which eventually explains a constant risk of virus-related pathologies such as
genital warts, penile intraepithelial neoplasia, and CC [32,62,63]. A high prevalence of HR-
HPV infections was detected. Besides social behavior due to poor sexual campaigns among
young adult people on HPV infection-related problems, we proposed something quite new;
findings from this study showed that 56% of HPV-affected individuals were ≤ 30 years
old, and 53% were between 31 and 40 years old, of which 23% were males and 45% were
females, all affected with HR-HPV. This equal division between young and adult/elderly
people may hide something interesting indeed that we propose as a possible hypothesis in
the following sections.

4.1. The Possible Role of Retrotransposition-L1 and Local Stem Cells in Increasing HPV
Proliferative Capacity in Young Population Infection

Obligate intracellular pathogens such as HPV and C. trachomatis have a severely
degraded viral genome; they are not able to completely generate their own energy and
metabolic needs and must necessarily depend totally on the metabolic functions of the host
cell for their survival [63,64]. However, not all cells may be functional for these pathogens.
Therefore, it seems that the latter prefer cells with specific traits that better adapt to their
needs. Papillomaviruses and stem cells are a topic that has been proposed by a few
important studies in which adult stem cells seem to play a key role in the viral life cycle,
particularly during maintenance, and virus-route carcinogenesis [63,64]. We proposed that
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both HPV and C. trachomatis are capable of using local adult stem cells, because of their
plasticity, to establish the infection within the vagina and urogenital system [65,66].

The 50% of HPV infections among young adults revealed by our study might be linked
to the presence of a greater number of stem cells in precancerous and malignant cervical
cultures in the range of age. Viral oncogenes have been shown to modify stem cell dynamics,
cellular stemness, and neighbor cells, and previous studies have shown a direct interplay of
the stem cell niches practically located in every tissue with the extracellular matrix [67–71].
Interestingly, findings from recent studies revealed new information coming from infection
biology and stem cell biology, which showed a developmental reprogramming of certain
lines of committed mature cells to progenitor stem cell-like cells as a result of intracellular
intruders, such as Mycobacterium leprae, C. trachomatis, or HPV. This would imply the
acquisition of new differentiation and immunomodulation traits by such reprogrammed
cells that add particular advantages for obligatory intracellular pathogen spread [69]. This
is a sophisticated and often forgotten cellular manipulation mechanism whereby pathogens
hijack the genomic plasticity of local mature stem cells by acting on the expression of Sox10
and L1 retrotransposition [69].

Of note, in HPV persistent infections are crucial to the presence of basal cells with
similar features to stem cells with a high self-reproductive rate, proliferative ability, and plas-
ticity, which constitute the ideal environment for HPV intracellular settlement. Epithelial
transition within the endo-ectocervical and anorectal junctions are characterized by a high
presence of mature somatic stem cells and multipotent mesenchymal stem cells and are the
anatomical sites most susceptible to carcinogenesis due to HR-HPV aggression [69,72–74].
These instances are confirmed by several outcomes that showed the presence of viral
genomes within these anatomical locations, which are consistent with those of stem cells as
the preferred sites of HPV maintenance or cancer-initiating cells [69,72–74]. Thus, by select-
ing local adult stem cells as niches, HPV and C. trachomatis have acquired wide advantages
for their development, proliferation, and expansion [69,72–74].

A second aspect that is often underestimated is shown by biopsies of invasive cervical
carcinoma (squamous cell carcinomas and adenocarcinomas) with genotyped HPV, in
which results confirmed the presence of a large quantity of expressed retroelements (L1)
correlated with DNA methyltransferase 1 expression [69,72,73]. L1 retrotranspositions
are known to take place during early human embryonic development and, therefore,
along the totipotent lineage of embryonic stem cell differentiation [69]. They have been
identified in different progenitor adult stem cell lineages and have been observed in
various tissue cell lines in experiments performed to target L1 elements as well [72–74].
Interestingly, among uterine differentiated tissue cells, local adult stem cells, which derive
from the niche of multipotent adult precursors reveal remarkable plasticity, confirmed by
the ability of adult stem cells to switch between differentiated and de-differentiated states
following cervix and endometrium injuries [73,74]. Endogenous DNA retroelements are
an integral part of the human genome and are key factors in the evolution mechanism
of human eukaryotic cells [69,72,73]. However, these elements have been demonstrated
to have a role in tumorigenesis and cancer progression as well. Several studies have
reported their expression as biomarkers and immunotherapeutic targets for cancer [72–75].
Outcomes obtained from RT-PCR analysis confirmed the hypomethylation of L1 in either
squamous cell carcinoma or carcinoma in situ from the uterine cervix, confirming a close
correlation between the two events: the more the hypomethylation, the higher the cancer
progression [68–71]. Therefore, the LINE-1 methylation status may be used as a non-
invasive early diagnosis in women at risk of cervical cancer since several lines of evidence
showed a higher percentage of differential L1 expression in cancerous and precancerous
samples with HPV co-infection compared to normal tissues [73–75].

This demonstrates HPV’s ability to affect gene expression through random integration
in the human genome either in normal or tumor stem cells. In cervical mutation, HR-HPV 16
and HPV 18 are the main variants responsible as they hijack the LINE-1 Sox10 of host stem
cells, which leads to hypomethylation and is crucial in cervical cancer progression [74–76].
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The HPV strategy within the nuclear compartment is the Sox10 removal accompanied
by silencing Sox10 genes that are deeply correlated to the DNA methylation of the Sox10
promoter region in reprogrammed cells, results that highlighted the effective role of the L1
retroelement epigenetic regulation of Sox10 induced by intracellular HPV [69,72–76].

Intriguingly, it was observed that a high number of retroelements were found differ-
entially expressed between tumor histological types and between HPV types, including
several HERV families (HERV-K, HERV-H, HERV-E, HERV-I, and HERV-L) [74–76]. Recent
outcomes showed the highest proportion of differentially expressed L1 elements between
HPV mono- and co-infections. Of note, three HERVs and seven L1 were seen extremely
close to IL-20 family signaling genes (IL 19, IL 20, IL 20 RA, IL20RB, IL22RA2), and L1
was seen as capable of affecting IL-20 family signaling gene expression [74–76]. Eventually,
IL20RB overexpression has been correlated with a high rate of cell invasion and migration,
a higher grade of cell proliferation, and a poor prognosis in different types of carcinoma,
especially that of the kidney [77,78]. Overall, the outcomes were indicative of a combined
action between L1 and IL20 family gene expressions and their final contribution to cancer
development [74–78].

A possible clarification may be obtained by analyzing the specific behavior of Schwann
cells versus potential injuries. In response to injury-induced signaling, Schwann cells have
been shown to be capable of switching off the myelination program following the loss of
axonal contact to acquire a phenotype resembling immature cell status. Therefore, in a
similar way, local cervix endothelial and stromal cells, in response to HPV invasion, may
re-enter the cell cycle and de-differentiate, to differentiate again once HPV is ready to
enter the successive phases [79–81]. Animal models confirmed these clinical findings and
showed the way the sub-populations of infected hair follicle cells increased their clonogenic
activity, which is a typical feature of adult tissue stem cells [79–81].

Notably, in the presence of cutaneous lesions due to HPV or derived carcinoma, un-
sorted Lrig1+ cells (human interfollicular epidermal stem cells) demonstrated an increased
colony-forming efficiency consistent with an expansion in keratinocyte stem cell num-
bers [69]. This result infers papilloma as a possible result of continued keratinocyte stem
cell expansion into the adjacent overlying epidermis, the same as in human benign viral
warts as a result of HPV-infected keratinocyte adult stem cell expansion [69,71–73].

4.2. HPV Relationship with Different Pathogens and the Mutual Benefits

Recently, it has been confirmed that about 70% of cervical, lung, and oropharyngeal
cancers may be caused by HPV, of which the 16 and 18 genotypes are considered the
main genotypes responsible [82–85]. Two main mechanisms were proposed to be involved:
(i) the co-presence of bacteria, fungi, and other pathogens that may induce an epithelial
disruption, facilitating HPV’s entry into basal keratinocytes of the mucosal epithelium
by blocking the immune response necessary for virus clearance and (ii) the presence
of an already existing immunocompromised system (as above explained) [83–87]. The
presence of E6/E7 oncogenic proteins of HR-HPV genotypes was reported to promote the
chlamydial development cycle in the host cells [83–87]. Initially, a low copy number of the
HPV genome is kept in “standby” mode, and following epithelial cell differentiation with
ongoing chlamydial infection, the HPV commences to replicate faster with higher copies
expressing the capsid genes (L1 and L2), which generates new progeny virions that are
released from the epithelial surface [84–87].

The mutual benefits between HPV and bacteria like C. Trachomatis take place thanks to
specific mechanisms that regulate the proliferation and persistence phases within the host
cells; the presence of vacuoles surrounded by a membrane called “inclusion” in C. Trachoma-
tis allows the replication immediately followed by the transition from EB (elementary body)
to RB (reticulate body) and back, until the formation of the final form that indicates the right
time to exit the host cell (extrusion and lysis) to start infecting other cells [87–90]. From this
stage, the C. trachomatis commence enhancing the oncogenic pathway of Ras–Raf–MEK–
ERK with the production of ROS, generating the ideal microenvironment to support not
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only mutated cell growth but HPV as well [87–90]. As previously mentioned, bacteria like
C. trachomatis are also able to create mitosis spindle defects during the host cell’s replication
mechanism by avoiding the spindle assembly checkpoint (SAC) [89,90]. The cell is forced
to conclude prematurely the mitosis, losing the capacity to perform the right corrections.
At this point, both HPV and C. trachomatis keep growing and developing within the host
cells indefinitely [89,90]. An additional event adopted by C. trachomatis that facilitates
HPV’s steady development is determined by the subversion cell’s histones obtained by the
upregulation of PH2AX and H3K9me3, both hallmarks of DNA double-stranded breaks
(DSBs) and linked to senescence-associated heterochromatin foci (SAHF); this is extremely
beneficial for HPV’s safe growth [91–94].

4.3. The Role of Microbiota in the Carcinogenesis Process Induced by HPV in Adults and
the Elderly

As expected, once our data was compared with other countries and latitudes, there
were important differences. As observed by Przybylsk and colleagues in their metanalysis,
data need to be evaluated, keeping an eye on different screening procedures, latitudes,
environments, and social and food habits that may have influences either on the HPV
genotype itself or the microbiota composition [95,96]. For instance, a study group from
Russia was exclusively focused only on cytology and included healthy women as well as
those with pathology [95–98]. In addition, even data related to the most common HPV
genotypes are quite divergent. For us, the most common, though with minimal percentage
difference, was the HPV 53 genotype followed by the 16 and 31 genotypes. On the other
hand, the first and second most frequently observed in Spain, Canada, and France were
16 and 31, while in China, Russia, and New Zealand, the most frequent were 16 and 52,
in Venezuela, 16 and 18, in Mexico, 16 and 51, and in Portugal, 16 and 58 [95–98]. Of note,
HPV 53 is defined as a “probable high-risk type”, and it is starting to be recognized as one
of the four “emergent” genotypes, with a possible role in oncogenesis [98,99]. Therefore, the
frequency of different genotypes might be linked to different latitudes and different social
and behavioral habits and thus have a CC screening based on different genotypes [95–98].

The elderly individuals included in this study accounted for 46% (aged 41–50 and
51–60 years) and 44% (>60 years); to explain these data, we proposed the involvement
of dysbiosis as the most important cofactor for the high incidence of HPV in this age
group [98–100]. In this group, the most affected by HR-HPV genotypes were females.
Aging contributes together with diet to vaginal microbiota changes that are critical for HPV
acquisition, persistence, and clearance [100–102]. Dysbiosis in microbiota was observed
to promote infection with sexually transmitted pathogens, and HPV infection can also
increase the bacterial diversity in both the vagina and male reproductive tract, increasing
the chances of contracting CC [100–104].

The presence of specific lactic acid-producing bacteria within the vagina and ectocervix
microenvironments are important lubricant factors that trap invading pathogens [105–109].
These valuable bacteria are inextricably linked to the acidity of the vaginal environment,
crucial for the microbiome’s homeostasis, maintaining a pH of 4–4.5 [105–109]. Therefore,
in the vagina, a pH of 4.5 or below serves as a protective shield against harmful pathogens
that are unable to survive in such an acidic environment. On the other hand, an alkaline
pH favors harmful bacteria gaining the opportunity to move in the damaging vaginal
ecosystems [105–107].

The vaginal microbiome composition is differently expressed over the reproductive
tract, and Lactobacillus spp. appears to be the majority in the uterus, while the non-
Lactobacillus spp. are the major communities of the uterine cervix. In the vagina, the
presence of Lactobacillus spp. of the Community State Types (CST) I, II, III, and V was
observed; the CST-IV is composed of different anaerobes groups, indicating that a predomi-
nance of CST-IV is clinically related to bacterial vaginosis [105–107].

Furthermore, the vaginal microbiome exerts an endocrine function and represents
a crucial aspect, and through a complex communication pathway, it is linked to the en-
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docrine glands producing the right amount of the needed hormones, such as estradiol (E2),
serotonin, prolactin, and testosterone [107–109]. This relationship is multilevel and bidirec-
tional, and the host flora depends on sex and hormones via mutual interactions between its
metabolites, the immune system, inflammatory patterns, and nerve–endocrine/paracrine
pathways [107–109]. For instance, the involvement of E2, serotonin, and prolactin with
pathogens such as HPV and C. trachomatis in carcinogenesis is well-established not only
in CC but in breast cancer as well [106]. In breast carcinoma, findings have determined
estrogen-induced cell proliferation and increased DNA double-strand breaks (DSBs) with
BRCA mutations that impair DSB repair due to HR-HPV infection as well [106]. In an E2
deficit, HR-HPV oncogenes E6 and E7 tend to impair the hormone receptor (Hr) pathway
by reducing the mobilization of the HR protein RAD51 (pivotal enzymes for DNA-DSB
repair by the HR pathway), and the results indicated that E2 could be involved in the
carcinogenesis of CC due to HR-HPV infection as well, due to HPV interference on the HR
pathway [106].

Therefore, aging has a big impact on the vaginal microbiome composition, since it
is deeply altered during and after menopause due to abnormal levels of hormones [105].
Generally, the vaginal microbiota includes Gardnerella vaginalis, Ureaplasma urealyticum,
Candida albicans, and Prevotella spp., as minor commensals; during the aging process, the
prevalence of Lactobacillus progressively declines [102,103]. The decrease in lactic acid
bacteria in menopausal women is also suggestive of immune-biological and physiological
changes, which tend to affect the normal vaginal microbiome, the main cause of vulvovagi-
nal atrophy and vaginal dryness, promoting the settlement and development of aggressive
pathogens and HPV [107–110].

The strength of these outcomes is that the entire issue should be stratified by age to
better interpret the vaginal microbial compositions and hormone loading of HPV-positive
women with different stages of cervical lesions [107–110]. Although no one could conclude
a definitive causal relationship between the vaginal microbiome, hormone level, and HPV
viral load with cancerous development, nevertheless, there is a strong necessity to conduct
longitudinal studies to better understand these relationships and the progression of cells
toward anomalous mutation [107–110].

5. Strengths and Limitations

To date, it is rare to see the HPV 53 genotype in the first place among such a vast
number of individuals. In addition, the analysis of evidence-based medicine supported
by this study and the included literature provide a higher-quality foundation for the next
clinical practice [70]. Our outcomes are intended to highlight the attention of clinicians
providing valuable recommendations for prevention, treatment, and prophylaxis.

Our study has several limitations. First of all, in this study, the overall data of the
Apulian population have not been reported but only those relating to a hospital that carries
out this type of investigation; therefore, the results cannot be generalized. In addition,
no cytological or pre-existing disease data were reported for individuals enrolled in the
study. To this end, since such data were not available, it was not possible to correlate the
presence of HPV with the cytological and/or histological ultimate findings. Furthermore,
the lack of clinical and behavioral information on individuals did not allow us to better
characterize the analyzed sample population for the roles of these exposures, which should
be considered key variables in the spread of HPV infections; therefore, we were unable to
define the association between these variables and the prevalence of HPV.

6. Conclusions

To conclude, there is a need to collect more explicative information about the covari-
ables that eventually affect the vaginal microbiota or urogenital tract, such as the status of
the genetic makeup, metabolic disorders, smoking, and hormonal contraceptive use.
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